phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit delta | Phosphatidylinositol-4,5-bisphosphate 3-kinase family | IUPHAR Guide to IMMUNOPHARMACOLOGY

Top ▲

phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit delta

  Target has curated data in GtoImmuPdb

Target id: 2155

Nomenclature: phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit delta

Abbreviated Name: PI3Kδ

Family: Phosphatidylinositol-4,5-bisphosphate 3-kinase family, Phosphatidylinositol kinases

Gene and Protein Information
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human - 1044 1p36.2 PIK3CD phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit delta 72
Mouse - 1047 4 E2 Pik3cd phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit delta
Rat - 944 5q36 Pik3cd phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit delta
Previous and Unofficial Names
PI3Kdelta | p110δ/PIK3CD | phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit delta | phosphatidylinositol-4 | phosphatidylinositol 3-kinase catalytic delta polypeptide
Database Links
ChEMBL Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Enzyme
RefSeq Nucleotide
RefSeq Protein
Selected 3D Structures
Image of receptor 3D structure from RCSB PDB
Description:  Discovery and Optimization of New Benzimidazole- and Benzoxazole-Pyrimidone Selective PI3KBeta Inhibitors for the Treatment of Phosphatase and TENsin homologue (PTEN)-Deficient Cancers
Resolution:  2.8Å
Species:  Mouse
References:  16
Image of receptor 3D structure from RCSB PDB
Description:  The crystal structure of the murine class IA PI 3-kinase p110delta in complex with IC-87114.
PDB Id:  2X38
Ligand:  IC-87114
Resolution:  2.2Å
Species:  Mouse
References:  8
Image of receptor 3D structure from RCSB PDB
Description:  PI3K delta in complex with 2methoxyN[2methoxy5(7{[(2R)4(oxetan3 yl)morpholin2yl]methoxy}1,3dihydro2 benzofuran5yl)pyridin3yl]ethane1 sulfonamide
Ligand:  compound 41 [PMID: 31855425]
Resolution:  2.4Å
Species:  Mouse
References:  33
Enzyme Reaction
EC Number:

Download all structure-activity data for this target as a CSV file

Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
compound 20f [PMID: 28520415] Hs Inhibition 9.2 pIC50 59
pIC50 9.2 (IC50 6.3x10-10 M) [59]
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
compound 41 [PMID: 31855425] Hs Inhibition 9.7 pKd 33
pKd 9.7 (Kd 2x10-10 M) [33]
Description: Apparent binding affinity determined using the lipid kinobead assay.
neolymphostin A Hs Inhibition 8.3 pKd 14
pKd 8.3 (Kd 4.9x10-9 M) [14]
Description: Determined using an active-site dependent competition binding assay.
wortmannin Hs Inhibition 8.3 pKd 14
pKd 8.3 (Kd 5.5x10-9 M) [14]
IPI549 Hs Inhibition 7.6 pKd 25
pKd 7.6 (Kd 2.3x10-8 M) [25]
bimiralisib Hs Inhibition 7.6 pKd
pKd 7.6 (Kd 2.5x10-8 M)
LY 294002 Hs Inhibition 6.2 pKd 22
pKd 6.2 (Kd 7.1x10-7 M) [22]
taselisib Hs Inhibition 9.7 – 10.1 pKi 10,54
pKi 10.1 (Ki 7.9x10-11 M) [10]
pKi 9.7 (Ki 2.1x10-10 M) [54]
compound 82 [PMID: 21332118] Hs Inhibition 8.9 pKi 20
pKi 8.9 (Ki 1.2x10-9 M) [20]
pictilisib Hs Inhibition 8.8 pKi 10
pKi 8.8 (Ki 1.54x10-9 M) [10]
GDC-0077 Hs Inhibition 7.9 pKi 10
pKi 7.9 (Ki 1.22x10-8 M) [10]
IC-87114 Hs Inhibition ~7.7 pKi 40
pKi ~7.7 (Ki ~2x10-8 M) [40]
omipalisib Hs Inhibition 7.2 pKi 38
pKi 7.2 (Ki 6x10-8 M) [38]
AZ2 Hs Inhibition 6.7 pKi 29
pKi 6.7 (Ki 1.99x10-7 M) [29]
KU-0060648 Hs Inhibition >10.0 pIC50 13
pIC50 >10.0 (IC50 <1x10-10 M) [13]
nemiralisib Hs Inhibition 9.9 pIC50 23
pIC50 9.9 (IC50 1.26x10-10 M) [23]
Description: In a homogeneous time-resolved fluorescence (HTRF) assay in the presence of 2mM ATP.
compound 15a [PMID: 32069401] Hs Inhibition 9.3 pIC50 80
pIC50 9.3 (IC50 5x10-10 M) [80]
copanlisib Hs Inhibition 9.1 pIC50 46
pIC50 9.1 (IC50 7x10-10 M) [46]
compound 5d [PMID: 31335136] Hs Inhibition 9.0 pIC50 44
pIC50 9.0 (IC50 1.1x10-9 M) [44]
compound 52 [PMID: 28541707] Hs Inhibition 8.8 pIC50 47
pIC50 8.8 (IC50 1.7x10-9 M) [47]
linperlisib Hs Inhibition 8.6 pIC50 78
pIC50 8.6 (IC50 2.4x10-9 M) [78]
Description: Measured in a luminescence assay to detect modulation of ADP formation in the presence of test compound and hPI3Kδ.
idelalisib Hs Inhibition 8.6 pIC50 41
pIC50 8.6 (IC50 2.5x10-9 M) in vitro activity against recombinant enzyme [41]
duvelisib Hs Inhibition 8.6 pIC50 74
pIC50 8.6 (IC50 2.5x10-9 M) [74]
RV6153 Hs Inhibition 8.6 pIC50 67
pIC50 8.6 (IC50 2.5x10-9 M) [67]
Description: In a biochemical enzyme activity assay.
pictilisib Hs Inhibition 8.5 pIC50 26
pIC50 8.5 (IC50 3x10-9 M) [26]
PI-103 Hs Inhibition 8.5 pIC50 62
pIC50 8.5 (IC50 3x10-9 M) [62]
puquitinib Hs Inhibition 8.5 pIC50 77
pIC50 8.5 (IC50 3.3x10-9 M) [77]
compound 2q [PMID: 30986068] Hs Inhibition 8.4 pIC50 52
pIC50 8.4 (IC50 3.9x10-9 M) [52]
Description: In a biochemical HTRF assay measuring generation of PIP3 via phosphorylation of PIP2, using PI3Kδ 14-604 fragment.
panulisib Hs Inhibition 8.4 pIC50 36
pIC50 8.4 (IC50 4x10-9 M) [36]
Description: Using a radiometric protein kinase (33PanQinase activity) assay.
ZSTK474 Hs Inhibition 8.2 – 8.3 pIC50 76,79
pIC50 8.2 – 8.3 (IC50 6x10-9 – 5x10-9 M) [76,79]
torin 2 Hs Inhibition 8.3 pIC50 48
pIC50 8.3 (IC50 5.67x10-9 M) [48]
AZD8835 Hs Inhibition 8.2 pIC50 7
pIC50 8.2 (IC50 5.7x10-9 M) [7]
compound 41 [PMID: 31855425] Hs Inhibition 8.2 pIC50 33
pIC50 8.2 (IC50 6.31x10-9 M) [33]
apitolisib Hs Inhibition 8.2 pIC50 66
pIC50 8.2 (IC50 6.7x10-9 M) [66]
dactolisib Hs Inhibition 8.1 pIC50 51
pIC50 8.1 (IC50 7x10-9 M) [51]
AZD8186 Hs Inhibition 7.9 pIC50 30
pIC50 7.9 (IC50 1.2x10-8 M) [30]
seletalisib Hs Inhibition 7.9 pIC50 3
pIC50 7.9 (IC50 1.2x10-8 M) [3]
RV1729 Hs Inhibition 7.9 pIC50 37
pIC50 7.9 (IC50 1.2x10-8 M) [37]
Description: In a biochemical enzyme activity assay.
acalisib Hs Inhibition 7.9 pIC50 65
pIC50 7.9 (IC50 1.27x10-8 M) [65]
Description: In an in vitro biochemical assay using recombinant enzyme.
umbralisib Hs Inhibition 7.9 pIC50 71
pIC50 7.9 (IC50 1.383x10-8 M) [71]
PI-3065 Hs Inhibition 7.8 pIC50 2
pIC50 7.8 (IC50 1.5x10-8 M) [2]
AMG319 Hs Inhibition 7.7 pIC50 19
pIC50 7.7 (IC50 1.8x10-8 M) [19]
parsaclisib Hs Inhibition 7.3 – 8.0 pIC50 43
pIC50 7.3 – 8.0 (IC50 5x10-8 – 1x10-8 M) [43]
leniolisib Hs Inhibition 7.6 pIC50 17
pIC50 7.6 (IC50 2.3x10-8 M) [17]
Description: In vitro enzyme assay
tenalisib Hs Inhibition 7.6 pIC50 70
pIC50 7.6 (IC50 2.405x10-8 M) [70]
Description: In a high throughput biochemical assay.
pilaralisib Hs Inhibition 7.4 pIC50 76
pIC50 7.4 (IC50 3.6x10-8 M) [76]
samotolisib Hs Inhibition 7.4 pIC50 6
pIC50 7.4 (IC50 3.8x10-8 M) [6]
fimepinostat Hs Inhibition 7.4 pIC50 60
pIC50 7.4 (IC50 3.9x10-8 M) [60]
VS-5584 Hs Inhibition 7.4 pIC50 32
pIC50 7.4 (IC50 4.2x10-8 M) [32]
dezapelisib Hs Inhibition >7.3 pIC50 42
pIC50 >7.3 (IC50 <5x10-8 M) [42]
Description: The same value was obtained using an enzyme activity assay and a scintillation proximity assay.
AZD6482 Hs Inhibition 7.1 pIC50 55
pIC50 7.1 (IC50 8x10-8 M) [55]
TGX-221 Hs Inhibition 7.0 pIC50 35
pIC50 7.0 (IC50 1x10-7 M) [35]
Example 51 [WO2012135160A1] Hs Inhibition >7.0 pIC50 11
pIC50 >7.0 (IC50 <1x10-7 M) [11]
PP121 Hs Inhibition 6.8 pIC50 5
pIC50 6.8 (IC50 1.5x10-7 M) [5]
LY 294002 Hs Inhibition 6.7 pIC50 13
pIC50 6.7 (IC50 2.2x10-7 M) [13]
sapanisertib Hs Inhibition 6.6 pIC50 34
pIC50 6.6 (IC50 2.3x10-7 M) [34]
TG-100-115 Hs Inhibition 6.6 pIC50 57
pIC50 6.6 (IC50 2.35x10-7 M) [57]
alpelisib Hs Inhibition 6.5 pIC50 28
pIC50 6.5 (IC50 2.9x10-7 M) [28]
PI 3-Kg inhibitor Hs Inhibition 6.5 pIC50 12
pIC50 6.5 (IC50 3x10-7 M) [12]
compound 15 [PMID: 29852070] Hs Inhibition 6.5 pIC50 58
pIC50 6.5 (IC50 3.16x10-7 M) [58]
Description: In a biochemical enzyme activity assay.
SAR260301 Hs Inhibition 6.3 pIC50 15
pIC50 6.3 (IC50 4.68x10-7 M) [15]
MEN1611 Hs Inhibition 6.3 pIC50 56
pIC50 6.3 (IC50 5x10-7 M) [56]
IC-87114 Hs Inhibition 6.3 pIC50 64
pIC50 6.3 (IC50 5x10-7 M) [64]
PIK-75 Hs Inhibition 6.3 pIC50 39
pIC50 6.3 (IC50 5.1x10-7 M) [39]
STK16-IN-1 Hs Inhibition 6.1 pIC50 45
pIC50 6.1 (IC50 8.56x10-7 M) [45]
Description: In an in vitro enzymatic assay.
compound 7 [PMID: 31955578] Hs Inhibition 5.8 pIC50 9
pIC50 5.8 (IC50 1.7x10-6 M) [9]
eCF309 Hs Inhibition 5.7 pIC50 27
pIC50 5.7 (IC50 1.84x10-6 M) [27]
Description: In a biochemical assay.
serabelisib Hs Inhibition >5.0 pIC50 63
pIC50 >5.0 (IC50 <1x10-5 M) [63]
Allosteric Modulators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
PIK-108 Hs Negative 6.2 pIC50 16
pIC50 6.2 (IC50 6.58x10-7 M) [16]
DiscoveRx KINOMEscan® screen
A screen of 72 inhibitors against 456 human kinases. Quantitative data were derived using DiscoveRx KINOMEscan® platform.
Reference: 21,75

Key to terms and symbols Click column headers to sort
Target used in screen: PIK3CD
Ligand Sp. Type Action Value Parameter
pictilisib Hs Inhibitor Inhibition 8.3 pKd
PI-103 Hs Inhibitor Inhibition 7.8 pKd
PP-242 Hs Inhibitor Inhibition 7.5 pKd
TG-100-115 Hs Inhibitor Inhibition 6.6 pKd
ruboxistaurin Hs Inhibitor Inhibition <5.5 pKd
SB203580 Hs Inhibitor Inhibition <5.5 pKd
erlotinib Hs Inhibitor Inhibition <5.5 pKd
GSK690693 Hs Inhibitor Inhibition <5.5 pKd
masitinib Hs Inhibitor Inhibition <5.5 pKd
A-674563 Hs Inhibitor Inhibition <5.5 pKd
Displaying the top 10 most potent ligands  View all ligands in screen »
Immunopharmacology Comments
PI3Kδ is preferentially expressed in cells of hemopoietic lineage and is involved in neutrophil chemotaxis. It is the only PI3K isoform with expression restricted to leukocytes. Genetic and pharmacological inactivation of PI3Kδ indicates its importantance for the function of T cells, B cell, mast cells and neutrophils. PI3kδ is a promising target for drugs for preventing or treating inflammation, autoimmunity and transplant rejection [31], with selective PI3Kδ inhibitors of particular relevance- see for example AMG319 [19], leniolisib [17] and seletalisib [3].
The PI3Kδ isoform is of particular therapeutic interest in chronic obstructive airway diseases, such as severe asthma and COPD given its signalling role in regulating neutrophil superoxide generation.
The potential for PI3kδ as a druggable target in immuno-oncology and chronic obstructive airway diseases is discussed in [1] and [53], respectively.
Cell Type Associations
Immuno Cell Type:  B cells
Cell Ontology Term:   B cell (CL:0000236)
References:  72
Immuno Cell Type:  T cells
Cell Ontology Term:   alpha-beta T cell (CL:0000789)
References:  72
Immuno Process Associations
Immuno Process:  Inflammation
Comment:  Also involved in neutrophil superoxide generation.
GO Annotations:  Associated to 9 GO processes
GO:0002551 mast cell chemotaxis TAS
GO:0006954 inflammatory response TAS
GO:0010818 T cell chemotaxis TAS
GO:0030593 neutrophil chemotaxis TAS
GO:0035747 natural killer cell chemotaxis TAS
GO:0035754 B cell chemotaxis TAS
GO:0043303 mast cell degranulation TAS
GO:0045087 innate immune response TAS
GO:0072672 neutrophil extravasation TAS
Immuno Process:  T cell (activation)
GO Annotations:  Associated to 3 GO processes
GO:0002250 adaptive immune response TAS
GO:0030217 T cell differentiation TAS
GO:0042110 T cell activation TAS
Immuno Process:  B cell (activation)
GO Annotations:  Associated to 2 GO processes
GO:0002250 adaptive immune response TAS
GO:0042113 B cell activation TAS
Immuno Process:  Immune regulation
GO Annotations:  Associated to 4 GO processes
GO:0001782 B cell homeostasis IMP
GO:0033031 positive regulation of neutrophil apoptotic process IMP
GO:0050852 T cell receptor signaling pathway TAS
GO:0050853 B cell receptor signaling pathway TAS
Immuno Process:  Immune system development
GO Annotations:  Associated to 3 GO processes
GO:0001779 natural killer cell differentiation TAS
GO:0030217 T cell differentiation TAS
GO:0060374 mast cell differentiation TAS
Immuno Process:  Cytokine production & signalling
GO Annotations:  Associated to 2 GO processes
GO:0001816 cytokine production TAS
GO:0019221 cytokine-mediated signaling pathway TAS
Immuno Process:  Chemotaxis & migration
GO Annotations:  Associated to 6 GO processes
GO:0002551 mast cell chemotaxis TAS
GO:0010818 T cell chemotaxis TAS
GO:0030593 neutrophil chemotaxis TAS
GO:0035747 natural killer cell chemotaxis TAS
GO:0035754 B cell chemotaxis TAS
GO:0072672 neutrophil extravasation TAS
Immuno Process:  Cellular signalling
Comment:  Also involved in neutrophil superoxide generation.
GO Annotations:  Associated to 8 GO processes
GO:0001779 natural killer cell differentiation TAS
GO:0030101 natural killer cell activation TAS
GO:0030217 T cell differentiation TAS
GO:0042110 T cell activation TAS
GO:0042113 B cell activation TAS
GO:0043303 mast cell degranulation TAS
GO:0050852 T cell receptor signaling pathway TAS
GO:0050853 B cell receptor signaling pathway TAS
Immuno Disease Associations
Disease Name:  Activated PI3K delta syndrome
Disease Synonyms:  no synonynms
Comment:  The effects of constitutive PI3Kδ activation in this syndrome are the opposite (or inverse) of the effects mediated by pharmacological PI3Kδ inhibition.
Disease X-refs:  OMIM: 615513
Orphanet: ORPHA397596
Tissue Distribution
Lymphoid and myeloid cell populations, T cells, B cells (N.B. platelets negative)
Species:  Human
Technique:  Immunocytochemistry
References:  72
Species:  Human
Technique:  Northern blot
References:  72
Spleen and thymus
Species:  Rat
Technique:  Immunohistochemistry
References:  72
Clinically-Relevant Mutations and Pathophysiology
Disease:  Activated PI3K delta syndrome
Description: A rare autosomal dominant, genetic disease causing primary immunodeficiency and characterised by lymphadenopathy, immunodeficiency leading to recurrent infections, and an increased risk of EBV-associated lymphoma.
Synonyms: APDS/PASLI
Immunodeficiency 14
p110 delta activating mutation causing senescent T cells, lymphadenopathy, and immunodeficiency
OMIM: 615513
Orphanet: ORPHA397596
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Missense, gain of function Human Y524N 1570 T>A This is a de novo pathogenic GOF mutation in the helical domain of PI3Kδ discovered in a 6-year-old patient with APDS. 50
Missense, gain of function Human N334K; E525K; E1021K 1002 C>A; 1573 G>A; 3061 G>A N334K is in the C2 domain, E525K is in the helical domain and E1021K is in the C-lobe of the kinase domain. 49
Clinically-Relevant Mutations and Pathophysiology Comments
To date (August 2018) eleven missense disease-causing variants of PIK3δ have been identified in the various functional domains of the kinase:
R929C [73], E1021K [4], and E1025G [24] in the kinase domain
N334 K [49], C416R [18], and R405C [61] in the C2 domain
E525K [49], E525A [69] and Y524N [50] in the helical domain
E81K [68] in the adaptor-binding domain (ABD)
G124D [68] in the ABD-Ras-binding domain linker
General Comments
PI3Kδ belongs to the class IA phospho-inositide-3-kinases (PI3Ks). In common with PI3Kα and PI3Kβ, PI3Kδ displays a broad phosphoinositide lipid substrate specificity. It interacts with SH2/SH3 domain-containing p85 adaptor proteins and with GTP-bound Ras. Expression of PI3Kδ is restricted to leukocytes [72], whereas PI3Kα and PI3Kβ are widely expressed.


Show »

1. Adams JL, Smothers J, Srinivasan R, Hoos A. (2015) Big opportunities for small molecules in immuno-oncology. Nat Rev Drug Discov, 14 (9): 603-22. [PMID:26228631]

2. Ali K, Soond DR, Piñeiro R, Hagemann T, Pearce W, Lim EL, Bouabe H, Scudamore CL, Hancox T, Maecker H et al.. (2014) Inactivation of PI(3)K p110δ breaks regulatory T-cell-mediated immune tolerance to cancer. Nature, 510 (7505): 407-11. [PMID:24919154]

3. Allen RA, Brookings DC, Powell MJ, Delgado J, Shuttleworth LK, Merriman M, Fahy IJ, Tewari R, Silva JP, Healy LJ et al.. (2017) Seletalisib: Characterization of a Novel, Potent, and Selective Inhibitor of PI3Kδ. J. Pharmacol. Exp. Ther., 361 (3): 429-440. [PMID:28442583]

4. Angulo I, Vadas O, Garçon F, Banham-Hall E, Plagnol V, Leahy TR, Baxendale H, Coulter T, Curtis J, Wu C et al.. (2013) Phosphoinositide 3-kinase δ gene mutation predisposes to respiratory infection and airway damage. Science, 342 (6160): 866-71. [PMID:24136356]

5. Apsel B, Blair JA, Gonzalez B, Nazif TM, Feldman ME, Aizenstein B, Hoffman R, Williams RL, Shokat KM, Knight ZA. (2008) Targeted polypharmacology: discovery of dual inhibitors of tyrosine and phosphoinositide kinases. Nat. Chem. Biol., 4 (11): 691-9. [PMID:18849971]

6. Barda DA, Mader MM. (2013) PI3 kinase/mTOR dual inhibitor. Patent number: US8440829 B2. Assignee: Eli Lilly And Company. Priority date: 14/01/2011. Publication date: 14/05/2013.

7. Barlaam B, Cosulich S, Delouvrié B, Ellston R, Fitzek M, Germain H, Green S, Hancox U, Harris CS, Hudson K et al.. (2015) Discovery of 1-(4-(5-(5-amino-6-(5-tert-butyl-1,3,4-oxadiazol-2-yl)pyrazin-2-yl)-1-ethyl-1,2,4-triazol-3-yl)piperidin-1-yl)-3-hydroxypropan-1-one (AZD8835): A potent and selective inhibitor of PI3Kα and PI3Kδ for the treatment of cancers. Bioorg. Med. Chem. Lett., 25 (22): 5155-62. [PMID:26475521]

8. Berndt A, Miller S, Williams O, Le DD, Houseman BT, Pacold JI, Gorrec F, Hon WC, Liu Y, Rommel C et al.. (2010) The p110 delta structure: mechanisms for selectivity and potency of new PI(3)K inhibitors. Nat. Chem. Biol., 6 (2): 117-24. [PMID:20081827]

9. Bonazzi S, Goold CP, Gray A, Thomsen NM, Nunez J, Karki RG, Gorde A, Biag JD, Malik HA, Sun Y et al.. (2020) Discovery of a Brain-Penetrant ATP-Competitive Inhibitor of the Mechanistic Target of Rapamycin (mTOR) for CNS Disorders. J. Med. Chem., 63 (3): 1068-1083. [PMID:31955578]

10. Braun M-G, Hanan E, Staben ST, Heald RA, Macleod C, Elliott R. (2017) Benzoxazepin oxazolidinone compounds and methods of use. Patent number: US20170015678. Assignee: Genentech, Inc.. Priority date: 02/07/2015. Publication date: 19/01/2017.

11. Brown SD, Matthews DJ. (2012) (alpha- substituted aralkylamino and heteroarylalkylamino) pyrimidinyl and 1,3,5 -triazinyl benzimidazoles, pharmaceutical compositions containing them, and these compounds for use in treating proliferative diseases. Patent number: WO2012135160A1. Assignee: Pathway Therapeutics Inc.. Priority date: 28/03/2011. Publication date: 04/10/2012.

12. Camps M, Rückle T, Ji H, Ardissone V, Rintelen F, Shaw J, Ferrandi C, Chabert C, Gillieron C, Françon B et al.. (2005) Blockade of PI3Kgamma suppresses joint inflammation and damage in mouse models of rheumatoid arthritis. Nat. Med., 11 (9): 936-43. [PMID:16127437]

13. Cano C, Saravanan K, Bailey C, Bardos J, Curtin NJ, Frigerio M, Golding BT, Hardcastle IR, Hummersone MG, Menear KA et al.. (2013) 1-substituted (Dibenzo[b,d]thiophen-4-yl)-2-morpholino-4H-chromen-4-ones endowed with dual DNA-PK/PI3-K inhibitory activity. J. Med. Chem., 56 (16): 6386-401. [PMID:23855836]

14. Castro-Falcón G, Seiler GS, Demir Ö, Rathinaswamy MK, Hamelin D, Hoffmann RM, Makowski SL, Letzel AC, Field SJ, Burke JE et al.. (2018) Neolymphostin A Is a Covalent Phosphoinositide 3-Kinase (PI3K)/Mammalian Target of Rapamycin (mTOR) Dual Inhibitor That Employs an Unusual Electrophilic Vinylogous Ester. J. Med. Chem., 61 (23): 10463-10472. [PMID:30380865]

15. Certal V, Carry JC, Halley F, Virone-Oddos A, Thompson F, Filoche-Rommé B, El-Ahmad Y, Karlsson A, Charrier V, Delorme C et al.. (2014) Discovery and optimization of pyrimidone indoline amide PI3Kβ inhibitors for the treatment of phosphatase and tensin homologue (PTEN)-deficient cancers. J. Med. Chem., 57 (3): 903-20. [PMID:24387221]

16. Certal V, Halley F, Virone-Oddos A, Delorme C, Karlsson A, Rak A, Thompson F, Filoche-Rommé B, El-Ahmad Y, Carry JC et al.. (2012) Discovery and optimization of new benzimidazole- and benzoxazole-pyrimidone selective PI3Kβ inhibitors for the treatment of phosphatase and TENsin homologue (PTEN)-deficient cancers. J. Med. Chem., 55 (10): 4788-805. [PMID:22524426]

17. Cooke NG, Fernandes GDSP, Graveleau N, Hebach C, Hogenauer K, Hollingworth G, Smith AB, Soldermann N, Stowasser F, Strang R et al.. (2012) Tetrahydro-pyrido-pyrimidine derivatives. Patent number: WO2012004299. Assignee: Novartis Ag. Priority date: 06/07/2010. Publication date: 12/01/2012.

18. Crank MC, Grossman JK, Moir S, Pittaluga S, Buckner CM, Kardava L, Agharahimi A, Meuwissen H, Stoddard J, Niemela J et al.. (2014) Mutations in PIK3CD can cause hyper IgM syndrome (HIGM) associated with increased cancer susceptibility. J. Clin. Immunol., 34 (3): 272-6. [PMID:24610295]

19. Cushing TD, Hao X, Shin Y, Andrews K, Brown M, Cardozo M, Chen Y, Duquette J, Fisher B, Gonzalez-Lopez de Turiso F et al.. (2015) Discovery and in vivo evaluation of (S)-N-(1-(7-fluoro-2-(pyridin-2-yl)quinolin-3-yl)ethyl)-9H-purin-6-amine (AMG319) and related PI3Kδ inhibitors for inflammation and autoimmune disease. J. Med. Chem., 58 (1): 480-511. [PMID:25469863]

20. D'Angelo ND, Kim TS, Andrews K, Booker SK, Caenepeel S, Chen K, D'Amico D, Freeman D, Jiang J, Liu L et al.. (2011) Discovery and optimization of a series of benzothiazole phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) dual inhibitors. J. Med. Chem., 54 (6): 1789-811. [PMID:21332118]

21. Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP. (2011) Comprehensive analysis of kinase inhibitor selectivity. Nat. Biotechnol., 29 (11): 1046-51. [PMID:22037378]

22. Dittmann A, Werner T, Chung CW, Savitski MM, Fälth Savitski M, Grandi P, Hopf C, Lindon M, Neubauer G, Prinjha RK et al.. (2014) The commonly used PI3-kinase probe LY294002 is an inhibitor of BET bromodomains. ACS Chem. Biol., 9 (2): 495-502. [PMID:24533473]

23. Down K, Amour A, Baldwin IR, Cooper AW, Deakin AM, Felton LM, Guntrip SB, Hardy C, Harrison ZA, Jones KL et al.. (2015) Optimization of Novel Indazoles as Highly Potent and Selective Inhibitors of Phosphoinositide 3-Kinase δ for the Treatment of Respiratory Disease. J. Med. Chem., 58 (18): 7381-99. [PMID:26301626]

24. Dulau Florea AE, Braylan RC, Schafernak KT, Williams KW, Daub J, Goyal RK, Puck JM, Rao VK, Pittaluga S, Holland SM et al.. (2017) Abnormal B-cell maturation in the bone marrow of patients with germline mutations in PIK3CD. J. Allergy Clin. Immunol., 139 (3): 1032-1035.e6. [PMID:27697496]

25. Evans CA, Liu T, Lescarbeau A, Nair SJ, Grenier L, Pradeilles JA, Glenadel Q, Tibbitts T, Rowley AM, DiNitto JP et al.. (2016) Discovery of a Selective Phosphoinositide-3-Kinase (PI3K)-γ Inhibitor (IPI-549) as an Immuno-Oncology Clinical Candidate. ACS Med Chem Lett, 7 (9): 862-7. [PMID:27660692]

26. Folkes AJ, Ahmadi K, Alderton WK, Alix S, Baker SJ, Box G, Chuckowree IS, Clarke PA, Depledge P, Eccles SA et al.. (2008) The identification of 2-(1H-indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno[3,2-d]pyrimidine (GDC-0941) as a potent, selective, orally bioavailable inhibitor of class I PI3 kinase for the treatment of cancer . J. Med. Chem., 51 (18): 5522-32. [PMID:18754654]

27. Fraser C, Carragher NO, Unciti-Broceta A. (2016) eCF309: a potent, selective and cell-permeable mTOR inhibitor. Medchemcomm, 7 (3): 471-477.

28. Furet P, Guagnano V, Fairhurst RA, Imbach-Weese P, Bruce I, Knapp M, Fritsch C, Blasco F, Blanz J, Aichholz R et al.. (2013) Discovery of NVP-BYL719 a potent and selective phosphatidylinositol-3 kinase alpha inhibitor selected for clinical evaluation. Bioorg. Med. Chem. Lett., 23 (13): 3741-8. [PMID:23726034]

29. Gangadhara G, Dahl G, Bohnacker T, Rae R, Gunnarsson J, Blaho S, Öster L, Lindmark H, Karabelas K, Pemberton N et al.. (2019) A class of highly selective inhibitors bind to an active state of PI3Kγ. Nat. Chem. Biol., 15 (4): 348-357. [PMID:30718815]

30. Hancox U, Cosulich S, Hanson L, Trigwell C, Lenaghan C, Ellston R, Dry H, Crafter C, Barlaam B, Fitzek M et al.. (2015) Inhibition of PI3Kβ signaling with AZD8186 inhibits growth of PTEN-deficient breast and prostate tumors alone and in combination with docetaxel. Mol. Cancer Ther., 14 (1): 48-58. [PMID:25398829]

31. Harris SJ, Foster JG, Ward SG. (2009) PI3K isoforms as drug targets in inflammatory diseases: lessons from pharmacological and genetic strategies. Curr Opin Investig Drugs, 10 (11): 1151-62. [PMID:19876783]

32. Hart S, Novotny-Diermayr V, Goh KC, Williams M, Tan YC, Ong LC, Cheong A, Ng BK, Amalini C, Madan B et al.. (2013) VS-5584, a novel and highly selective PI3K/mTOR kinase inhibitor for the treatment of cancer. Mol. Cancer Ther., 12 (2): 151-61. [PMID:23270925]

33. Henley ZA, Amour A, Barton N, Bantscheff M, Bergamini G, Bertrand SM, Convery M, Down K, Dümpelfeld B, Edwards CD et al.. (2020) Optimization of Orally Bioavailable PI3Kδ Inhibitors and Identification of Vps34 as a Key Selectivity Target. J. Med. Chem., 63 (2): 638-655. DOI: 10.1021/acs.jmedchem.9b01585 [PMID:31855425]

34. Hsieh AC, Liu Y, Edlind MP, Ingolia NT, Janes MR, Sher A, Shi EY, Stumpf CR, Christensen C, Bonham MJ et al.. (2012) The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature, 485 (7396): 55-61. [PMID:22367541]

35. Jackson SP, Schoenwaelder SM, Goncalves I, Nesbitt WS, Yap CL, Wright CE, Kenche V, Anderson KE, Dopheide SM, Yuan Y et al.. (2005) PI 3-kinase p110beta: a new target for antithrombotic therapy. Nat. Med., 11 (5): 507-14. [PMID:15834429]

36. Jalota-Badhwar A, Bhatia DR, Boreddy S, Joshi A, Venkatraman M, Desai N, Chaudhari S, Bose J, Kolla LS, Deore V et al.. (2015) P7170: A Novel Molecule with Unique Profile of mTORC1/C2 and Activin Receptor-like Kinase 1 Inhibition Leading to Antitumor and Antiangiogenic Activity. Mol. Cancer Ther., 14 (5): 1095-106. [PMID:25700704]

37. King-Underwood J, Ito K, Murray PJ, Brookfield FA, Brown CJ. (2012) QUINAZOLIN-4 (3H) -ONE DERIVATIVES USED AS PI3 KINASE INHIBITORS. Patent number: WO2012052753. Assignee: RESPIVERT LIMITED. Priority date: 18/10/2010. Publication date: 26/04/2012.

38. Knight SD, Adams ND, Burgess JL, Chaudhari AM, Darcy MG, Donatelli CA, Luengo JI, Newlander KA, Parrish CA, Ridgers LH et al.. (2010) Discovery of GSK2126458, a Highly Potent Inhibitor of PI3K and the Mammalian Target of Rapamycin. ACS Med Chem Lett, 1 (1): 39-43. [PMID:24900173]

39. Knight ZA, Gonzalez B, Feldman ME, Zunder ER, Goldenberg DD, Williams O, Loewith R, Stokoe D, Balla A, Toth B et al.. (2006) A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling. Cell, 125 (4): 733-47. [PMID:16647110]

40. Knight ZA, Shokat KM. (2005) Features of selective kinase inhibitors. Chem. Biol., 12 (6): 621-37. [PMID:15975507]

41. Lannutti BJ, Meadows SA, Herman SE, Kashishian A, Steiner B, Johnson AJ, Byrd JC, Tyner JW, Loriaux MM, Deininger M et al.. (2011) CAL-101, a p110delta selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability. Blood, 117 (2): 591-4. [PMID:20959606]

42. Li Y-L, Metcalf BW, Combs AP. (2011) Pyrimidinones as PI3K inhibitors. Patent number: WO2011008487. Assignee: Incyte Corporation. Priority date: 29/06/2009. Publication date: 20/01/2011.

43. Li Y-L, Yao W, Combs AP, Yue EW, Mei S, Zhu W, Glenn J, Maduskuie TP Jr, Sparks RB, Douty B. (2013) Heterocyclylamines as pi3k inhibitors. Patent number: WO2013033569A1. Assignee: Incyte Corporation. Priority date: 02/09/2011. Publication date: 07/03/2013.

44. Lin S, Jin J, Liu Y, Tian H, Zhang Y, Fu R, Zhang J, Wang M, Du T, Ji M et al.. (2019) Discovery of 4-Methylquinazoline Based PI3K Inhibitors for the Potential Treatment of Idiopathic Pulmonary Fibrosis. J. Med. Chem., 62 (19): 8873-8879. [PMID:31335136]

45. Liu F, Wang J, Yang X, Li B, Wu H, Qi S, Chen C, Liu X, Yu K, Wang W et al.. (2016) Discovery of a Highly Selective STK16 Kinase Inhibitor. ACS Chem. Biol., 11 (6): 1537-43. [PMID:27082499]

46. Liu N, Rowley BR, Bull CO, Schneider C, Haegebarth A, Schatz CA, Fracasso PR, Wilkie DP, Hentemann M, Wilhelm SM et al.. (2013) BAY 80-6946 is a highly selective intravenous PI3K inhibitor with potent p110α and p110δ activities in tumor cell lines and xenograft models. Mol. Cancer Ther., 12 (11): 2319-30. [PMID:24170767]

47. Liu Q, Shi Q, Marcoux D, Batt DG, Cornelius L, Qin LY, Ruan Z, Neels J, Beaudoin-Bertrand M, Srivastava AS et al.. (2017) Identification of a Potent, Selective, and Efficacious Phosphatidylinositol 3-Kinase δ (PI3Kδ) Inhibitor for the Treatment of Immunological Disorders. J. Med. Chem., 60 (12): 5193-5208. [PMID:28541707]

48. Liu Q, Wang J, Kang SA, Thoreen CC, Hur W, Ahmed T, Sabatini DM, Gray NS. (2011) Discovery of 9-(6-aminopyridin-3-yl)-1-(3-(trifluoromethyl)phenyl)benzo[h][1,6]naphthyridin-2(1H)-one (Torin2) as a potent, selective, and orally available mammalian target of rapamycin (mTOR) inhibitor for treatment of cancer. J. Med. Chem., 54 (5): 1473-80. [PMID:21322566]

49. Lucas CL, Kuehn HS, Zhao F, Niemela JE, Deenick EK, Palendira U, Avery DT, Moens L, Cannons JL, Biancalana M et al.. (2014) Dominant-activating germline mutations in the gene encoding the PI(3)K catalytic subunit p110δ result in T cell senescence and human immunodeficiency. Nat. Immunol., 15 (1): 88-97. [PMID:24165795]

50. Luo Y, Xia Y, Wang W, Li Z, Jin Y, Gong Y, He T, Li Q, Li C, Yang J. (2018) Identification of a novel de novo gain-of-function mutation of PIK3CD in a patient with activated phosphoinositide 3-kinase δ syndrome. Clin. Immunol., 197: 60-67. [PMID:30138677]

51. Maira SM, Stauffer F, Brueggen J, Furet P, Schnell C, Fritsch C, Brachmann S, Chène P, De Pover A, Schoemaker K et al.. (2008) Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol. Cancer Ther., 7 (7): 1851-63. [PMID:18606717]

52. Methot JL, Zhou H, Kattar SD, McGowan MA, Wilson K, Garcia Y, Deng Y, Altman M, Fradera X, Lesburg C et al.. (2019) Structure Overhaul Affords a Potent Purine PI3Kδ Inhibitor with Improved Tolerability. J. Med. Chem., 62 (9): 4370-4382. [PMID:30986068]

53. Mårdh CK, Root J, Uddin M, Stenvall K, Malmgren A, Karabelas K, Thomas M. (2017) Targets of Neutrophil Influx and Weaponry: Therapeutic Opportunities for Chronic Obstructive Airway Disease. J Immunol Res, 2017: 5273201. [PMID:28596972]

54. Ndubaku CO, Heffron TP, Staben ST, Baumgardner M, Blaquiere N, Bradley E, Bull R, Do S, Dotson J, Dudley D et al.. (2013) Discovery of 2-{3-[2-(1-isopropyl-3-methyl-1H-1,2-4-triazol-5-yl)-5,6-dihydrobenzo[f]imidazo[1,2-d][1,4]oxazepin-9-yl]-1H-pyrazol-1-yl}-2-methylpropanamide (GDC-0032): a β-sparing phosphoinositide 3-kinase inhibitor with high unbound exposure and robust in vivo antitumor activity. J. Med. Chem., 56 (11): 4597-610. [PMID:23662903]

55. Nylander S, Kull B, Björkman JA, Ulvinge JC, Oakes N, Emanuelsson BM, Andersson M, Skärby T, Inghardt T, Fjellström O et al.. (2012) Human target validation of phosphoinositide 3-kinase (PI3K)β: effects on platelets and insulin sensitivity, using AZD6482 a novel PI3Kβ inhibitor. J. Thromb. Haemost., 10 (10): 2127-36. [PMID:22906130]

56. Ohwada J, Ebiike H, Kawada H, Tsukazaki M, Nakamura M, Miyazaki T, Morikami K, Yoshinari K, Yoshida M, Kondoh O et al.. (2011) Discovery and biological activity of a novel class I PI3K inhibitor, CH5132799. Bioorg. Med. Chem. Lett., 21 (6): 1767-72. [PMID:21316229]

57. Palanki MS, Dneprovskaia E, Doukas J, Fine RM, Hood J, Kang X, Lohse D, Martin M, Noronha G, Soll RM et al.. (2007) Discovery of 3,3'-(2,4-diaminopteridine-6,7-diyl)diphenol as an isozyme-selective inhibitor of PI3K for the treatment of ischemia reperfusion injury associated with myocardial infarction. J. Med. Chem., 50 (18): 4279-94. [PMID:17685602]

58. Pemberton N, Mogemark M, Arlbrandt S, Bold P, Cox RJ, Gardelli C, Holden NS, Karabelas K, Karlsson J, Lever S et al.. (2018) Discovery of Highly Isoform Selective Orally Bioavailable Phosphoinositide 3-Kinase (PI3K)-γ Inhibitors. J. Med. Chem., 61 (12): 5435-5441. [PMID:29852070]

59. Perry MWD, Björhall K, Bonn B, Carlsson J, Chen Y, Eriksson A, Fredlund L, Hao H, Holden NS, Karabelas K et al.. (2017) Design and Synthesis of Soluble and Cell-Permeable PI3Kδ Inhibitors for Long-Acting Inhaled Administration. J. Med. Chem., 60 (12): 5057-5071. [PMID:28520415]

60. Qian C, Lai CJ, Bao R, Wang DG, Wang J, Xu GX, Atoyan R, Qu H, Yin L, Samson M et al.. (2012) Cancer network disruption by a single molecule inhibitor targeting both histone deacetylase activity and phosphatidylinositol 3-kinase signaling. Clin. Cancer Res., 18 (15): 4104-13. [PMID:22693356]

61. Rae W, Gao Y, Ward D, Mattocks CJ, Eren E, Williams AP. (2017) A novel germline gain-of-function variant in PIK3CD. Clin. Immunol., 181: 29-31. [PMID:28578023]

62. Raynaud FI, Eccles SA, Patel S, Alix S, Box G, Chuckowree I, Folkes A, Gowan S, De Haven Brandon A, Di Stefano F et al.. (2009) Biological properties of potent inhibitors of class I phosphatidylinositide 3-kinases: from PI-103 through PI-540, PI-620 to the oral agent GDC-0941. Mol. Cancer Ther., 8 (7): 1725-38. [PMID:19584227]

63. Ren P, Liu Y, Li L, Chan K, Wilson TE, Campbell SF. (2013) Heterocyclic compounds and uses thereof. Patent number: US20130035324 A1. Assignee: Ren P, Liu Y, Li L, Chan K, Wilson TE, Campbell SF.. Priority date: 17/08/2009. Publication date: 07/02/2013.

64. Sadhu C, Masinovsky B, Dick K, Sowell CG, Staunton DE. (2003) Essential role of phosphoinositide 3-kinase delta in neutrophil directional movement. J. Immunol., 170 (5): 2647-54. [PMID:12594293]

65. Shugg RP, Thomson A, Tanabe N, Kashishian A, Steiner BH, Puri KD, Pereverzev A, Lannutti BJ, Jirik FR, Dixon SJ et al.. (2013) Effects of isoform-selective phosphatidylinositol 3-kinase inhibitors on osteoclasts: actions on cytoskeletal organization, survival, and resorption. J. Biol. Chem., 288 (49): 35346-57. [PMID:24133210]

66. Sutherlin DP, Bao L, Berry M, Castanedo G, Chuckowree I, Dotson J, Folks A, Friedman L, Goldsmith R, Gunzner J et al.. (2011) Discovery of a potent, selective, and orally available class I phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) kinase inhibitor (GDC-0980) for the treatment of cancer. J. Med. Chem., 54 (21): 7579-87. [PMID:21981714]

67. Taddei DMA, Onions ST, Smith AJ, Copmans AH, Broeckx RLM. (2016) Phosphoinositide 3-kinase inhibitors. Patent number: US9227977B2. Assignee: Respivert Ltd. Priority date: 15/03/2013. Publication date: 05/01/2016.

68. Takeda AJ, Zhang Y, Dornan GL, Siempelkamp BD, Jenkins ML, Matthews HF, McElwee JJ, Bi W, Seeborg FO, Su HC et al.. (2017) Novel PIK3CD mutations affecting N-terminal residues of p110δ cause activated PI3Kδ syndrome (APDS) in humans. J. Allergy Clin. Immunol., 140 (4): 1152-1156.e10. [PMID:28414062]

69. Tsujita Y, Mitsui-Sekinaka K, Imai K, Yeh TW, Mitsuiki N, Asano T, Ohnishi H, Kato Z, Sekinaka Y, Zaha K et al.. (2016) Phosphatase and tensin homolog (PTEN) mutation can cause activated phosphatidylinositol 3-kinase δ syndrome-like immunodeficiency. J. Allergy Clin. Immunol., 138 (6): 1672-1680.e10. [PMID:27426521]

70. Vakkalanka SKVS, Bhavar PK, Viswanadha S, Babu G. (2017) Dual selective PI3 delta and gamma kinase inhibitors. Patent number: US9790224B2. Assignee: Rhizen Pharmaceuticals SA. Priority date: 07/06/2013. Publication date: 17/10/2017.

71. Vakkalanka SKVS, Muthuppalaniappan M, Nagarathnam D. (2014) Novel selective pi3k delta inhibitors. Patent number: US20140011819 A1. Assignee: Rhizen Pharmaceuticals Sa.. Priority date: 04/07/2012. Publication date: 09/01/2014.

72. Vanhaesebroeck B, Welham MJ, Kotani K, Stein R, Warne PH, Zvelebil MJ, Higashi K, Volinia S, Downward J, Waterfield MD. (1997) P110delta, a novel phosphoinositide 3-kinase in leukocytes. Proc. Natl. Acad. Sci. U.S.A., 94 (9): 4330-5. [PMID:9113989]

73. Wentink M, Dalm V, Lankester AC, van Schouwenburg PA, Schölvinck L, Kalina T, Zachova R, Sediva A, Lambeck A, Pico-Knijnenburg I et al.. (2017) Genetic defects in PI3Kδ affect B-cell differentiation and maturation leading to hypogammaglobulineamia and recurrent infections. Clin. Immunol., 176: 77-86. [PMID:28104464]

74. Winkler DG, Faia KL, DiNitto JP, Ali JA, White KF, Brophy EE, Pink MM, Proctor JL, Lussier J, Martin CM et al.. (2013) PI3K-δ and PI3K-γ inhibition by IPI-145 abrogates immune responses and suppresses activity in autoimmune and inflammatory disease models. Chem. Biol., 20 (11): 1364-74. [PMID:24211136]

75. Wodicka LM, Ciceri P, Davis MI, Hunt JP, Floyd M, Salerno S, Hua XH, Ford JM, Armstrong RC, Zarrinkar PP et al.. (2010) Activation state-dependent binding of small molecule kinase inhibitors: structural insights from biochemistry. Chem. Biol., 17 (11): 1241-9. [PMID:21095574]

76. Wu P, Hu Y. (2012) Small molecules targeting phosphoinositide 3-kinases. Medchemcomm, 3 (11): 1337-1355. DOI: 10.1039/C2MD20044A

77. Xie C, He Y, Zhen M, Wang Y, Xu Y, Lou L. (2017) Puquitinib, a novel orally available PI3Kδ inhibitor, exhibits potent antitumor efficacy against acute myeloid leukemia. Cancer Sci., 108 (7): 1476-1484. [PMID:28418085]

78. Xu Z, Lou Y. (2017) Fused heterocyclic compound, preparation method therefor, pharmaceutcial composition, and uses thereof. Patent number: US20160244432A1. Assignee: SHANGHAI YINGLI PHARMACEUTICAL Co. Priority date: 16/10/2013. Publication date: 23/05/2017.

79. Yaguchi S, Fukui Y, Koshimizu I, Yoshimi H, Matsuno T, Gouda H, Hirono S, Yamazaki K, Yamori T. (2006) Antitumor activity of ZSTK474, a new phosphatidylinositol 3-kinase inhibitor. J. Natl. Cancer Inst., 98 (8): 545-56. [PMID:16622124]

80. Yu Y, Han Y, Zhang F, Gao Z, Zhu T, Dong S, Ma M. (2020) Design, Synthesis, and Biological Evaluation of Imidazo[1,2-a]pyridine Derivatives as Novel PI3K/mTOR Dual Inhibitors. J. Med. Chem., 63 (6): 3028-3046. [PMID:32069401]

How to cite this page

Select citation format: