Top ▲
Unless otherwise stated all data on this page refer to the human proteins. Gene information is provided for human (Hs), mouse (Mm) and rat (Rn).
Show »« Hide
More detailed introduction
The TRP superfamily of channels (nomenclature as agreed by NC-IUPHAR [46,304]), whose founder member is the Drosophila Trp channel, exists in mammals as six families; TRPC, TRPM, TRPV, TRPA, TRPP and TRPML based on amino acid homologies. TRP subunits contain six putative TM domains and assemble as homo- or hetero-tetramers to form cation selective channels with diverse modes of activation and varied permeation properties (reviewed by [207]). Established, or potential, physiological functions of the individual members of the TRP families are discussed in detail in the recommended reviews and in a number of books [66,109,189,324]. The established, or potential, involvement of TRP channels in disease is reviewed in [122,188] and [191], together with a special edition of Biochemica et Biophysica Acta on the subject [188]. Additional disease related reviews, for pain [175], stroke [320], sensation and inflammation [278], itch [38], and airway disease [78,300], are available. The pharmacology of most TRP channels has been advanced in recent years. Broad spectrum agents are listed in the tables along with more selective, or recently recognised, ligands that are flagged by the inclusion of a primary reference. See Rubaiy (2019) for a review of pharmacological tools for TRPC1/C4/C5 channels [232]. Most TRP channels are regulated by phosphoinostides such as PtIns(4,5)P2 although the effects reported are often complex, occasionally contradictory, and likely to be dependent upon experimental conditions, such as intracellular ATP levels (reviewed by [192,231,283]). Such regulation is generally not included in the tables.When thermosensitivity is mentioned, it refers specifically to a high Q10 of gating, often in the range of 10-30, but does not necessarily imply that the channel's function is to act as a 'hot' or 'cold' sensor. In general, the search for TRP activators has led to many claims for temperature sensing, mechanosensation, and lipid sensing. All proteins are of course sensitive to energies of binding, mechanical force, and temperature, but the issue is whether the proposed input is within a physiologically relevant range resulting in a response.
TRPA1 is the sole mammalian member of this group (reviewed by [74]). TRPA1 activation of sensory neurons contribute to nociception [111,167,255]. Pungent chemicals such as mustard oil (AITC), allicin, and cinnamaldehyde activate TRPA1 by modification of free thiol groups of cysteine side chains, especially those located in its amino terminus [19,99,158,160]. Alkenals with α, β-unsaturated bonds, such as propenal (acrolein), butenal (crotylaldehyde), and 2-pentenal can react with free thiols via Michael addition and can activate TRPA1. However, potency appears to weaken as carbon chain length increases [10,19]. Covalent modification leads to sustained activation of TRPA1. Chemicals including carvacrol, menthol, and local anesthetics reversibly activate TRPA1 by non-covalent binding [115,140,307-308]. TRPA1 is not mechanosensitive under physiological conditions, but can be activated by cold temperatures [53,116]. The electron cryo-EM structure of TRPA1 [211] indicates that it is a 6-TM homotetramer. Each subunit of the channel contains two short ‘pore helices’ pointing into the ion selectivity filter, which is big enough to allow permeation of partially hydrated Ca2+ ions.
Members of the TRPC subfamily (reviewed by [2,5,25,30,73,120,210,222]) fall into the subgroups outlined below. TRPC2 is a pseudogene in humans. It is generally accepted that all TRPC channels are activated downstream of Gq/11-coupled receptors, or receptor tyrosine kinases (reviewed by [218,272,304]). A comprehensive listing of G-protein coupled receptors that activate TRPC channels is given in [2]. Hetero-oligomeric complexes of TRPC channels and their association with proteins to form signalling complexes are detailed in [5] and [121]. TRPC channels have frequently been proposed to act as store-operated channels (SOCs) (or compenents of mulimeric complexes that form SOCs), activated by depletion of intracellular calcium stores (reviewed by [5,22,42-43,206,212,220,236,318]). However, the weight of the evidence is that they are not directly gated by conventional store-operated mechanisms, as established for Stim-gated Orai channels. TRPC channels are not mechanically gated in physiologically relevant ranges of force. All members of the TRPC family are blocked by 2-APB and SKF96365 [93-94]. Activation of TRPC channels by lipids is discussed by [25]. Important progress has been recently made in TRPC pharmacology [33,117,172,232]. TRPC channels regulate a variety of physiological functions and are implicated in many human diseases [26,75,254,294].
TRPC1/C4/C5 subgroup
TRPC1 alone may not form a functional ion channel [60]. TRPC4/C5 may be distinguished from other TRP channels by their potentiation by micromolar concentrations of La3+. TRPC2 is a pseudogene in humans, but in other mammals appears to be an ion channel localized to microvilli of the vomeronasal organ. It is required for normal sexual behavior in response to pheromones in mice. It may also function in the main olfactory epithelia in mice [148,204-205,315-317,329].
TRPC3/C6/C7 subgroup
All members are activated by diacylglycerol independent of protein kinase C stimulation [94].
Members of the TRPM subfamily (reviewed by [70,93,212,322]) fall into the five subgroups outlined below.
TRPM1/M3 subgroup
In darkness, glutamate released by the photoreceptors and ON-bipolar cells binds to the metabotropic glutamate receptor 6 , leading to activation of Go . This results in the closure of TRPM1. When the photoreceptors are stimulated by light, glutamate release is reduced, and TRPM1 channels are more active, resulting in cell membrane depolarization. Human TRPM1 mutations are associated with congenital stationary night blindness (CSNB), whose patients lack rod function. TRPM1 is also found melanocytes. Isoforms of TRPM1 may present in melanocytes, melanoma, brain, and retina. In melanoma cells, TRPM1 is prevalent in highly dynamic intracellular vesicular structures [108,199]. TRPM3 (reviewed by [202]) exists as multiple splice variants which differ significantly in their biophysical properties. TRPM3 is expressed in somatosensory neurons and may be important in development of heat hyperalgesia during inflammation (see review [268]). TRPM3 is frequently coexpressed with TRPA1 and TRPV1 in these neurons. TRPM3 is expressed in pancreatic beta cells as well as brain, pituitary gland, eye, kidney, and adipose tissue [201,267]. TRPM3 may contribute to the detection of noxious heat [288].
TRPM2
TRPM2 is activated under conditions of oxidative stress (respiratory burst of phagocytic cells) and ischemic conditions. However, the direct activators are ADPR(P) and calcium. As for many ion channels, PIP2 must also be present (reviewed by [314]). Numerous splice variants of TRPM2 exist which differ in their activation mechanisms [63]. The C-terminal domain contains a TRP motif, a coiled-coil region, and an enzymatic NUDT9 homologous domain. TRPM2 appears not to be activated by NAD, NAAD, or NAADP, but is directly activated by ADPRP (adenosine-5'-O-disphosphoribose phosphate) [274]. TRPM2 is involved in warmth sensation [242], and contributes to neurological diseases [28]. Recent study shows that 2'-deoxy-ADPR is an endogenous TRPM2 superagonist [71].
TRPM4/5 subgroup
TRPM4 and TRPM5 have the distinction within all TRP channels of being impermeable to Ca2+ [304]. A splice variant of TRPM4 (i.e.TRPM4b) and TRPM5 are molecular candidates for endogenous calcium-activated cation (CAN) channels [84]. TRPM4 is active in the late phase of repolarization of the cardiac ventricular action potential. TRPM4 deletion or knockout enhances beta adrenergic-mediated inotropy [165]. Mutations are associated with conduction defects [110,165,252]. TRPM4 has been shown to be an important regulator of Ca2+ entry in to mast cells [279] and dendritic cell migration [18]. TRPM5 in taste receptor cells of the tongue appears essential for the transduction of sweet, amino acid and bitter stimuli [147] TRPM5 contributes to the slow afterdepolarization of layer 5 neurons in mouse prefrontal cortex [141]. Both TRPM4 and TRPM5 are required transduction of taste stimuli [64].
TRPM6/7 subgroup
TRPM6 and 7 combine channel and enzymatic activities (‘chanzymes’). These channels have the unusual property of permeation by divalent (Ca2+, Mg2+, Zn2+) and monovalent cations, high single channel conductances, but overall extremely small inward conductance when expressed to the plasma membrane. They are inhibited by internal Mg2+ at ~0.6 mM, around the free level of Mg2+ in cells. Whether they contribute to Mg2+ homeostasis is a contentious issue. When either gene is deleted in mice, the result is embryonic lethality. The C-terminal kinase region is cleaved under unknown stimuli, and the kinase phosphorylates nuclear histones. TRPM7 is responsible for oxidant- induced Zn2+ release from intracellular vesicles [1] and contributes to intestinal mineral absorption essential for postnatal survival [173].
TRPM8
Is a channel activated by cooling and pharmacological agents evoking a ‘cool’ sensation and participates in the thermosensation of cold temperatures [21,47,59] reviewed by [126,154,178,284].
The TRPML family [48,221,223,311,319] consists of three mammalian members (TRPML1-3). TRPML channels are probably restricted to intracellular vesicles and mutations in the gene (MCOLN1) encoding TRPML1 (mucolipin-1) cause the neurodegenerative disorder mucolipidosis type IV (MLIV) in man. TRPML1 is a cation selective ion channel that is important for sorting/transport of endosomes in the late endocytotic pathway and specifically, fission from late endosome-lysosome hybrid vesicles and lysosomal exocytosis [237]. TRPML2 and TRPML3 show increased channel activity in low extracellular sodium and are activated by similar small molecules [81]. A naturally occurring gain of function mutation in TRPML3 (i.e. A419P) results in the varitint waddler (Va) mouse phenotype (reviewed by [193,223]).
The TRPP family (reviewed by [54,56,77,101,302]) or PKD2 family is comprised of PKD2 (PC2), PKD2L1 (PC2L1), PKD2L2 (PC2L2), which have been renamed TRPP1, TRPP2 and TRPP3, respectively [304]. It should also be noted that the nomenclature of PC2 was TRPP2 in old literature. However, PC2 has been uniformed to be called TRPP2 [92]. PKD2 family channels are clearly distinct from the PKD1 family, whose function is unknown. PKD1 and PKD2 form a hetero-oligomeric complex with a 1:3 ratio. [259]. Although still being sorted out, TRPP family members appear to be 6TM spanning nonselective cation channels.
Members of the TRPV family (reviewed by [280]) can broadly be divided into the non-selective cation channels, TRPV1-4 and the more calcium selective channels TRPV5 and TRPV6.
TRPV1-V4 subfamily
TRPV1 is involved in the development of thermal hyperalgesia following inflammation and may contribute to the detection of noxius heat (reviewed by [217,253,263]). Numerous splice variants of TRPV1 have been described, some of which modulate the activity of TRPV1, or act in a dominant negative manner when co-expressed with TRPV1 [241]. The pharmacology of TRPV1 channels is discussed in detail in [86] and [286]. TRPV2 is probably not a thermosensor in man [208], but has recently been implicated in innate immunity [150]. TRPV3 and TRPV4 are both thermosensitive. There are claims that TRPV4 is also mechanosensitive, but this has not been established to be within a physiological range in a native environment [37,145].
TRPV5/V6 subfamily
TRPV5 and TRPV6 are highly expressed in placenta, bone, and kidney. Under physiological conditions, TRPV5 and TRPV6 are calcium selective channels involved in the absorption and reabsorption of calcium across intestinal and kidney tubule epithelia (reviewed by [50,69,179,301]).
TRPA1
C
Show summary »« Hide summary
More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
TRPC1 C
Show summary »« Hide summary
More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
TRPC2 C
Show summary »« Hide summary
More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
TRPC3
C
Show summary »« Hide summary
More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
TRPC4 C
Show summary »« Hide summary
More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
TRPC5
C
Show summary »« Hide summary
More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
TRPC6
C
Show summary »« Hide summary
More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
TRPC7
C
Show summary »« Hide summary
More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
TRPM1
C
Show summary »« Hide summary
More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
TRPM2
C
Show summary »« Hide summary
More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
TRPM3 C
Show summary »« Hide summary
More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
TRPM4
C
Show summary »« Hide summary
More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
TRPM5
C
Show summary »« Hide summary
More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
TRPM6
C
Show summary »« Hide summary
More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
TRPM7
C
Show summary »« Hide summary
More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
TRPM8 C
Show summary »« Hide summary
More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
TRPML1 C
Show summary »« Hide summary
More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
TRPML2 C
Show summary »« Hide summary
More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
TRPML3 C
Show summary »« Hide summary
More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
TRPP1 C
Show summary »« Hide summary
More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
TRPP2 C
Show summary »« Hide summary
More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
TRPP3 C
Show summary »« Hide summary
More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
TRPV1
C
Show summary »« Hide summary
More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
TRPV2
C
Show summary »« Hide summary
More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
TRPV3
C
Show summary »« Hide summary
More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
TRPV4
C
Show summary »« Hide summary
More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
TRPV5
C
Show summary »« Hide summary
More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
TRPV6
C
Show summary »« Hide summary
More detailed page
|
* Key recommended reading is highlighted with an asterisk
* Aghazadeh Tabrizi M, Baraldi PG, Baraldi S, Gessi S, Merighi S, Borea PA. (2017) Medicinal Chemistry, Pharmacology, and Clinical Implications of TRPV1 Receptor Antagonists. Med Res Rev, 37 (4): 936-983. [PMID:27976413]
Baraldi PG, Preti D, Materazzi S, Geppetti P. (2010) Transient receptor potential ankyrin 1 (TRPA1) channel as emerging target for novel analgesics and anti-inflammatory agents. J Med Chem, 53 (14): 5085-107. [PMID:20356305]
* Basso L, Altier C. (2017) Transient Receptor Potential Channels in neuropathic pain. Curr Opin Pharmacol, 32: 9-15. [PMID:27835802]
Cheng KT, Ong HL, Liu X, Ambudkar IS. (2011) Contribution of TRPC1 and Orai1 to Ca(2+) entry activated by store depletion. Adv Exp Med Biol, 704: 435-49. [PMID:21290310]
* Ciardo MG, Ferrer-Montiel A. (2017) Lipids as central modulators of sensory TRP channels. Biochim Biophys Acta, 1859 (9 Pt B): 1615-1628. [PMID:28432033]
* Clapham DE, Montell C, Schultz G, Julius D, International Union of Pharmacology. (2003) International Union of Pharmacology. XLIII. Compendium of voltage-gated ion channels: transient receptor potential channels. Pharmacol Rev, 55 (4): 591-6. [PMID:14657417]
* Diaz-Franulic I, Poblete H, Miño-Galaz G, González C, Latorre R. (2016) Allosterism and Structure in Thermally Activated Transient Receptor Potential Channels. Annu Rev Biophys, 45: 371-98. [PMID:27297398]
* Emir TLR. (2017) Neurobiology of TRP Channels. Neurobiology of TRP Channels,. [PMID:29356487]
Everaerts W, Nilius B, Owsianik G. (2010) The vanilloid transient receptor potential channel TRPV4: from structure to disease. Prog Biophys Mol Biol, 103 (1): 2-17. [PMID:19835908]
Grace MS, Bonvini SJ, Belvisi MG, McIntyre P. (2017) Modulation of the TRPV4 ion channel as a therapeutic target for disease. Pharmacol Ther, 177: 9-22. [PMID:28202366]
* Grayson TH, Murphy TV, Sandow SL. (2017) Transient receptor potential canonical type 3 channels: Interactions, role and relevance - A vascular focus. Pharmacol Ther, 174: 79-96. [PMID:28223224]
Guinamard R, Sallé L, Simard C. (2011) The non-selective monovalent cationic channels TRPM4 and TRPM5. Adv Exp Med Biol, 704: 147-71. [PMID:21290294]
Gunthorpe MJ, Chizh BA. (2009) Clinical development of TRPV1 antagonists: targeting a pivotal point in the pain pathway. Drug Discov Today, 14 (1-2): 56-67. [PMID:19063991]
Harteneck C, Gollasch M. (2011) Pharmacological modulation of diacylglycerol-sensitive TRPC3/6/7 channels. Curr Pharm Biotechnol, 12 (1): 35-41. [PMID:20932261]
Harteneck C, Klose C, Krautwurst D. (2011) Synthetic modulators of TRP channel activity. Adv Exp Med Biol, 704: 87-106. [PMID:21290290]
Islam MS. (2011) TRP channels of islets. Adv Exp Med Biol, 704: 811-30. [PMID:21290328]
Kashio M, Tominaga M. (2017) The TRPM2 channel: A thermo-sensitive metabolic sensor. Channels (Austin), 11 (5): 426-433. [PMID:28633002]
Knowlton WM, McKemy DD. (2011) TRPM8: from cold to cancer, peppermint to pain. Curr Pharm Biotechnol, 12 (1): 68-77. [PMID:20932257]
Koike C, Numata T, Ueda H, Mori Y, Furukawa T. (2010) TRPM1: a vertebrate TRP channel responsible for retinal ON bipolar function. Cell Calcium, 48 (2-3): 95-101. [PMID:20846719]
Liu Y, Qin N. (2011) TRPM8 in health and disease: cold sensing and beyond. Adv Exp Med Biol, 704: 185-208. [PMID:21290296]
Moran MM. (2018) TRP Channels as Potential Drug Targets. Annu Rev Pharmacol Toxicol, 58: 309-330. [PMID:28945977]
Mälkiä A, Morenilla-Palao C, Viana F. (2011) The emerging pharmacology of TRPM8 channels: hidden therapeutic potential underneath a cold surface. Curr Pharm Biotechnol, 12 (1): 54-67. [PMID:20932258]
* Nilius B, Flockerzi V. (2014) Mammalian transient receptor potential (TRP) cation channels. Preface. Handb Exp Pharmacol, 223: v - vi. [PMID:25296415]
Nilius B, Owsianik G. (2010) Transient receptor potential channelopathies. Pflugers Arch, 460 (2): 437-50. [PMID:20127491]
Nilius B, Owsianik G, Voets T, Peters JA. (2007) Transient receptor potential cation channels in disease. Physiol Rev, 87 (1): 165-217. [PMID:17237345]
Owsianik G, Talavera K, Voets T, Nilius B. (2006) Permeation and selectivity of TRP channels. Annu Rev Physiol, 68: 685-717. [PMID:16460288]
Ramsey IS, Delling M, Clapham DE. (2006) An introduction to TRP channels. Annu Rev Physiol, 68: 619-47. [PMID:16460286]
Rohacs T. (2009) Phosphoinositide regulation of non-canonical transient receptor potential channels. Cell Calcium, 45 (6): 554-65. [PMID:19376575]
* Rubaiy HN. (2019) Treasure troves of pharmacological tools to study transient receptor potential canonical 1/4/5 channels. Br J Pharmacol, 176 (7): 832-846. [PMID:30656647]
Runnels LW. (2011) TRPM6 and TRPM7: A Mul-TRP-PLIK-cation of channel functions. Curr Pharm Biotechnol, 12 (1): 42-53. [PMID:20932259]
Vay L, Gu C, McNaughton PA. (2012) The thermo-TRP ion channel family: properties and therapeutic implications. Br J Pharmacol, 165 (4): 787-801. [PMID:21797839]
Vennekens R, Owsianik G, Nilius B. (2008) Vanilloid transient receptor potential cation channels: an overview. Curr Pharm Des, 14 (1): 18-31. [PMID:18220815]
Vincent F, Duncton MA. (2011) TRPV4 agonists and antagonists. Curr Top Med Chem, 11 (17): 2216-26. [PMID:21671873]
Vriens J, Appendino G, Nilius B. (2009) Pharmacology of vanilloid transient receptor potential cation channels. Mol Pharmacol, 75 (6): 1262-79. [PMID:19297520]
* Wu LJ, Sweet TB, Clapham DE. (2010) International Union of Basic and Clinical Pharmacology. LXXVI. Current progress in the mammalian TRP ion channel family. Pharmacol Rev, 62 (3): 381-404. [PMID:20716668]
Yamamoto S, Takahashi N, Mori Y. (2010) Chemical physiology of oxidative stress-activated TRPM2 and TRPC5 channels. Prog Biophys Mol Biol, 103 (1): 18-27. [PMID:20553742]
Yuan JP, Kim MS, Zeng W, Shin DM, Huang G, Worley PF, Muallem S. (2009) TRPC channels as STIM1-regulated SOCs. Channels (Austin), 3 (4): 221-5. [PMID:19574740]
Zeevi DA, Frumkin A, Bach G. (2007) TRPML and lysosomal function. Biochim Biophys Acta, 1772 (8): 851-8. [PMID:17306511]
Zholos A. (2010) Pharmacology of transient receptor potential melastatin channels in the vasculature. Br J Pharmacol, 159 (8): 1559-71. [PMID:20233227]
* Zhu MX. (2011) Various. TRP Channels (CRC Press/Taylor & Francis),. [PMID:22593967]
* Zierler S, Hampe S, Nadolni W. (2017) TRPM channels as potential therapeutic targets against pro-inflammatory diseases. Cell Calcium, 67: 105-115. [PMID:28549569]
1. Abiria SA, Krapivinsky G, Sah R, Santa-Cruz AG, Chaudhuri D, Zhang J, Adstamongkonkul P, DeCaen PG, Clapham DE. (2017) TRPM7 senses oxidative stress to release Zn2+ from unique intracellular vesicles. Proc Natl Acad Sci USA, 114 (30): E6079-E6088. [PMID:28696294]
2. Abramowitz J, Birnbaumer L. (2009) Physiology and pathophysiology of canonical transient receptor potential channels. FASEB J, 23 (2): 297-328. [PMID:18940894]
3. Ahern GP. (2003) Activation of TRPV1 by the satiety factor oleoylethanolamide. J Biol Chem, 278 (33): 30429-34. [PMID:12761211]
4. Akbulut Y, Gaunt HJ, Muraki K, Ludlow MJ, Amer MS, Bruns A, Vasudev NS, Radtke L, Willot M, Hahn S et al.. (2015) (-)-Englerin A is a potent and selective activator of TRPC4 and TRPC5 calcium channels. Angew Chem Int Ed Engl, 54 (12): 3787-91. [PMID:25707820]
5. Ambudkar IS, Ong HL. (2007) Organization and function of TRPC channelosomes. Pflugers Arch, 455 (2): 187-200. [PMID:17486362]
6. Andersson DA, Chase HW, Bevan S. (2004) TRPM8 activation by menthol, icilin, and cold is differentially modulated by intracellular pH. J Neurosci, 24 (23): 5364-9. [PMID:15190109]
7. Andersson DA, Gentry C, Moss S, Bevan S. (2008) Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress. J Neurosci, 28 (10): 2485-94. [PMID:18322093]
8. Andersson DA, Gentry C, Moss S, Bevan S. (2009) Clioquinol and pyrithione activate TRPA1 by increasing intracellular Zn2+. Proc Natl Acad Sci USA, 106 (20): 8374-9. [PMID:19416844]
9. Andrews MD, Af Forselles K, Beaumont K, Galan SR, Glossop PA, Grenie M, Jessiman A, Kenyon AS, Lunn G, Maw G et al.. (2015) Discovery of a Selective TRPM8 Antagonist with Clinical Efficacy in Cold-Related Pain. ACS Med Chem Lett, 6 (4): 419-24. [PMID:25893043]
10. Andrè E, Campi B, Materazzi S, Trevisani M, Amadesi S, Massi D, Creminon C, Vaksman N, Nassini R, Civelli M et al.. (2008) Cigarette smoke-induced neurogenic inflammation is mediated by alpha,beta-unsaturated aldehydes and the TRPA1 receptor in rodents. J Clin Invest, 118 (7): 2574-82. [PMID:18568077]
11. Appendino G, De Petrocellis L, Trevisani M, Minassi A, Daddario N, Moriello AS, Gazzieri D, Ligresti A, Campi B, Fontana G et al.. (2005) Development of the first ultra-potent "capsaicinoid" agonist at transient receptor potential vanilloid type 1 (TRPV1) channels and its therapeutic potential. J Pharmacol Exp Ther, 312 (2): 561-70. [PMID:15356216]
12. Asakawa M, Yoshioka T, Matsutani T, Hikita I, Suzuki M, Oshima I, Tsukahara K, Arimura A, Horikawa T, Hirasawa T et al.. (2006) Association of a mutation in TRPV3 with defective hair growth in rodents. J Invest Dermatol, 126 (12): 2664-72. [PMID:16858425]
13. Auer-Grumbach M, Olschewski A, Papić L, Kremer H, McEntagart ME, Uhrig S, Fischer C, Fröhlich E, Bálint Z, Tang B et al.. (2010) Alterations in the ankyrin domain of TRPV4 cause congenital distal SMA, scapuloperoneal SMA and HMSN2C. Nat Genet, 42 (2): 160-4. [PMID:20037588]
14. Badheka D, Yudin Y, Borbiro I, Hartle CM, Yazici A, Mirshahi T, Rohacs T. (2017) Inhibition of Transient Receptor Potential Melastatin 3 ion channels by G-protein βγ subunits. Elife, 6. [PMID:28829742]
15. Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, Earley TJ, Patapoutian A. (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron, 41 (6): 849-57. [PMID:15046718]
16. Bang S, Kim KY, Yoo S, Lee SH, Hwang SW. (2007) Transient receptor potential V2 expressed in sensory neurons is activated by probenecid. Neurosci Lett, 425 (2): 120-5. [PMID:17850966]
17. Baraldi PG, Preti D, Materazzi S, Geppetti P. (2010) Transient receptor potential ankyrin 1 (TRPA1) channel as emerging target for novel analgesics and anti-inflammatory agents. J Med Chem, 53 (14): 5085-107. [PMID:20356305]
18. Barbet G, Demion M, Moura IC, Serafini N, Léger T, Vrtovsnik F, Monteiro RC, Guinamard R, Kinet JP, Launay P. (2008) The calcium-activated nonselective cation channel TRPM4 is essential for the migration but not the maturation of dendritic cells. Nat Immunol, 9 (10): 1148-56. [PMID:18758465]
19. Bautista DM, Jordt SE, Nikai T, Tsuruda PR, Read AJ, Poblete J, Yamoah EN, Basbaum AI, Julius D. (2006) TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell, 124 (6): 1269-82. [PMID:16564016]
20. Bautista DM, Movahed P, Hinman A, Axelsson HE, Sterner O, Högestätt ED, Julius D, Jordt SE, Zygmunt PM. (2005) Pungent products from garlic activate the sensory ion channel TRPA1. Proc Natl Acad Sci USA, 102 (34): 12248-52. [PMID:16103371]
21. Bautista DM, Siemens J, Glazer JM, Tsuruda PR, Basbaum AI, Stucky CL, Jordt SE, Julius D. (2007) The menthol receptor TRPM8 is the principal detector of environmental cold. Nature, 448 (7150): 204-8. [PMID:17538622]
22. Bavencoffe A, Zhu MX, Tian JB. (2017) New Aspects of the Contribution of ER to SOCE Regulation: TRPC Proteins as a Link Between Plasma Membrane Ion Transport and Intracellular Ca2+ Stores. Adv Exp Med Biol, 993: 239-255. [PMID:28900918]
23. Beck A, Kolisek M, Bagley LA, Fleig A, Penner R. (2006) Nicotinic acid adenine dinucleotide phosphate and cyclic ADP-ribose regulate TRPM2 channels in T lymphocytes. FASEB J, 20 (7): 962-4. [PMID:16585058]
24. Beckmann H, Richter J, Hill K, Urban N, Lemoine H, Schaefer M. (2017) A benzothiadiazine derivative and methylprednisolone are novel and selective activators of transient receptor potential canonical 5 (TRPC5) channels. Cell Calcium, 66: 10-18. [PMID:28807145]
25. Beech DJ. (2012) Integration of transient receptor potential canonical channels with lipids. Acta Physiol (Oxf), 204 (2): 227-37. [PMID:21624095]
26. Beech DJ. (2013) Characteristics of transient receptor potential canonical calcium-permeable channels and their relevance to vascular physiology and disease. Circ J, 77 (3): 570-9. [PMID:23412755]
27. Behrendt HJ, Germann T, Gillen C, Hatt H, Jostock R. (2004) Characterization of the mouse cold-menthol receptor TRPM8 and vanilloid receptor type-1 VR1 using a fluorometric imaging plate reader (FLIPR) assay. Br J Pharmacol, 141 (4): 737-45. [PMID:14757700]
28. Belrose JC, Jackson MF. (2018) TRPM2: a candidate therapeutic target for treating neurological diseases. Acta Pharmacol Sin, 39 (5): 722-732. [PMID:29671419]
29. Bianchi BR, El Kouhen R, Neelands TR, Lee CH, Gomtsyan A, Raja SN, Vaidyanathan SN, Surber B, McDonald HA, Surowy CS et al.. (2007) [3H]A-778317 [1-((R)-5-tert-butyl-indan-1-yl)-3-isoquinolin-5-yl-urea]: a novel, stereoselective, high-affinity antagonist is a useful radioligand for the human transient receptor potential vanilloid-1 (TRPV1) receptor. J Pharmacol Exp Ther, 323 (1): 285-93. [PMID:17660385]
30. Birnbaumer L. (2009) The TRPC class of ion channels: a critical review of their roles in slow, sustained increases in intracellular Ca(2+) concentrations. Annu Rev Pharmacol Toxicol, 49: 395-426. [PMID:19281310]
31. Blum CA, Caldwell T, Zheng X, Bakthavatchalam R, Capitosti S, Brielmann H, De Lombaert S, Kershaw MT, Matson D, Krause JE et al.. (2010) Discovery of novel 6,6-heterocycles as transient receptor potential vanilloid (TRPV1) antagonists. J Med Chem, 53 (8): 3330-48. [PMID:20307063]
32. Bohlen CJ, Priel A, Zhou S, King D, Siemens J, Julius D. (2010) A bivalent tarantula toxin activates the capsaicin receptor, TRPV1, by targeting the outer pore domain. Cell, 141 (5): 834-45. [PMID:20510930]
33. Bon RS, Beech DJ. (2013) In pursuit of small molecule chemistry for calcium-permeable non-selective TRPC channels -- mirage or pot of gold?. Br J Pharmacol, 170 (3): 459-74. [PMID:23763262]
34. Broertjes J, Klarenbeek J, Habani Y, Langeslag M, Jalink K. (2019) TRPM7 residue S1269 mediates cAMP dependence of Ca2+ influx. PLoS ONE, 14 (1): e0209563. [PMID:30615643]
35. Brône B, Peeters PJ, Marrannes R, Mercken M, Nuydens R, Meert T, Gijsen HJ. (2008) Tear gasses CN, CR, and CS are potent activators of the human TRPA1 receptor. Toxicol Appl Pharmacol, 231 (2): 150-6. [PMID:18501939]
36. Cabanas H, Muraki K, Eaton N, Balinas C, Staines D, Marshall-Gradisnik S. (2018) Loss of Transient Receptor Potential Melastatin 3 ion channel function in natural killer cells from Chronic Fatigue Syndrome/Myalgic Encephalomyelitis patients. Mol Med, 24 (1): 44. [PMID:30134818]
37. Cao E, Liao M, Cheng Y, Julius D. (2013) TRPV1 structures in distinct conformations reveal activation mechanisms. Nature, 504 (7478): 113-8. [PMID:24305161]
38. Carstens E, Akiyama T, Wilson SR, Bautista DM. (2014) Role of Transient Receptor Potential Channels in Acute and Chronic Itch. Itch: Mechanisms and Treatment,. [PMID:24830011]
39. Chaudhari SS, Kadam AB, Khairatkar-Joshi N, Mukhopadhyay I, Karnik PV, Raghuram A, Rao SS, Vaiyapuri TS, Wale DP, Bhosale VM et al.. (2013) Synthesis and pharmacological evaluation of novel N-aryl-3,4-dihydro-1'H-spiro[chromene-2,4'-piperidine]-1'-carboxamides as TRPM8 antagonists. Bioorg Med Chem, 21 (21): 6542-53. [PMID:24055075]
40. Chen CC, Keller M, Hess M, Schiffmann R, Urban N, Wolfgardt A, Schaefer M, Bracher F, Biel M, Wahl-Schott C et al.. (2014) A small molecule restores function to TRPML1 mutant isoforms responsible for mucolipidosis type IV. Nat Commun, 5: 4681. [PMID:25119295]
41. Chen XZ, Vassilev PM, Basora N, Peng JB, Nomura H, Segal Y, Brown EM, Reeders ST, Hediger MA, Zhou J. (1999) Polycystin-L is a calcium-regulated cation channel permeable to calcium ions. Nature, 401 (6751): 383-6. [PMID:10517637]
42. Cheng KT, Ong HL, Liu X, Ambudkar IS. (2011) Contribution of TRPC1 and Orai1 to Ca(2+) entry activated by store depletion. Adv Exp Med Biol, 704: 435-49. [PMID:21290310]
43. Cheng KT, Ong HL, Liu X, Ambudkar IS. (2013) Contribution and regulation of TRPC channels in store-operated Ca2+ entry. Curr Top Membr, 71: 149-79. [PMID:23890115]
44. Chung MK, Güler AD, Caterina MJ. (2005) Biphasic currents evoked by chemical or thermal activation of the heat-gated ion channel, TRPV3. J Biol Chem, 280 (16): 15928-41. [PMID:15722340]
45. Chung MK, Lee H, Mizuno A, Suzuki M, Caterina MJ. (2004) 2-aminoethoxydiphenyl borate activates and sensitizes the heat-gated ion channel TRPV3. J Neurosci, 24 (22): 5177-82. [PMID:15175387]
46. Clapham DE, Montell C, Schultz G, Julius D, International Union of Pharmacology. (2003) International Union of Pharmacology. XLIII. Compendium of voltage-gated ion channels: transient receptor potential channels. Pharmacol Rev, 55 (4): 591-6. [PMID:14657417]
47. Colburn RW, Lubin ML, Stone DJ, Wang Y, Lawrence D, D'Andrea MR, Brandt MR, Liu Y, Flores CM, Qin N. (2007) Attenuated cold sensitivity in TRPM8 null mice. Neuron, 54 (3): 379-86. [PMID:17481392]
48. Cuajungco MP, Silva J, Habibi A, Valadez JA. (2016) The mucolipin-2 (TRPML2) ion channel: a tissue-specific protein crucial to normal cell function. Pflugers Arch, 468 (2): 177-92. [PMID:26336837]
49. Dai XQ, Ramji A, Liu Y, Li Q, Karpinski E, Chen XZ. (2007) Inhibition of TRPP3 channel by amiloride and analogs. Mol Pharmacol, 72 (6): 1576-85. [PMID:17804601]
50. de Groot T, Bindels RJ, Hoenderop JG. (2008) TRPV5: an ingeniously controlled calcium channel. Kidney Int, 74 (10): 1241-6. [PMID:18596722]
51. DeCaen PG, Delling M, Vien TN, Clapham DE. (2013) Direct recording and molecular identification of the calcium channel of primary cilia. Nature, 504 (7479): 315-8. [PMID:24336289]
52. DeCaen PG, Liu X, Abiria S, Clapham DE. (2016) Atypical calcium regulation of the PKD2-L1 polycystin ion channel. Elife, 5. [PMID:27348301]
53. del Camino D, Murphy S, Heiry M, Barrett LB, Earley TJ, Cook CA, Petrus MJ, Zhao M, D'Amours M, Deering N et al.. (2010) TRPA1 contributes to cold hypersensitivity. J Neurosci, 30 (45): 15165-74. [PMID:21068322]
54. Delmas P. (2005) Polycystins: polymodal receptor/ion-channel cellular sensors. Pflugers Arch, 451 (1): 264-76. [PMID:15889307]
55. Delmas P, Nauli SM, Li X, Coste B, Osorio N, Crest M, Brown DA, Zhou J. (2004) Gating of the polycystin ion channel signaling complex in neurons and kidney cells. FASEB J, 18 (6): 740-2. [PMID:14766803]
56. Delmas P, Padilla F, Osorio N, Coste B, Raoux M, Crest M. (2004) Polycystins, calcium signaling, and human diseases. Biochem Biophys Res Commun, 322 (4): 1374-83. [PMID:15336986]
57. Dembla S, Behrendt M, Mohr F, Goecke C, Sondermann J, Schneider FM, Schmidt M, Stab J, Enzeroth R, Leitner MG et al.. (2017) Anti-nociceptive action of peripheral mu-opioid receptors by G-beta-gamma protein-mediated inhibition of TRPM3 channels. Elife, 6. [PMID:28826482]
58. Deng HX, Klein CJ, Yan J, Shi Y, Wu Y, Fecto F, Yau HJ, Yang Y, Zhai H, Siddique N et al.. (2010) Scapuloperoneal spinal muscular atrophy and CMT2C are allelic disorders caused by alterations in TRPV4. Nat Genet, 42 (2): 165-9. [PMID:20037587]
59. Dhaka A, Murray AN, Mathur J, Earley TJ, Petrus MJ, Patapoutian A. (2007) TRPM8 is required for cold sensation in mice. Neuron, 54 (3): 371-8. [PMID:17481391]
60. Dietrich A, Fahlbusch M, Gudermann T. (2014) Classical Transient Receptor Potential 1 (TRPC1): Channel or Channel Regulator?. Cells, 3 (4): 939-62. [PMID:25268281]
61. Dong XP, Cheng X, Mills E, Delling M, Wang F, Kurz T, Xu H. (2008) The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel. Nature, 455 (7215): 992-6. [PMID:18794901]
62. Dong XP, Shen D, Wang X, Dawson T, Li X, Zhang Q, Cheng X, Zhang Y, Weisman LS, Delling M et al.. (2010) PI(3,5)P(2) controls membrane trafficking by direct activation of mucolipin Ca(2+) release channels in the endolysosome. Nat Commun, 1: 38. [PMID:20802798]
63. Du J, Xie J, Yue L. (2009) Intracellular calcium activates TRPM2 and its alternative spliced isoforms. Proc Natl Acad Sci USA, 106 (17): 7239-44. [PMID:19372375]
64. Dutta Banik D, Martin LE, Freichel M, Torregrossa AM, Medler KF. (2018) TRPM4 and TRPM5 are both required for normal signaling in taste receptor cells. Proc Natl Acad Sci USA, 115 (4): E772-E781. [PMID:29311301]
65. El Kouhen R, Surowy CS, Bianchi BR, Neelands TR, McDonald HA, Niforatos W, Gomtsyan A, Lee CH, Honore P, Sullivan JP et al.. (2005) A-425619 [1-isoquinolin-5-yl-3-(4-trifluoromethyl-benzyl)-urea], a novel and selective transient receptor potential type V1 receptor antagonist, blocks channel activation by vanilloids, heat, and acid. J Pharmacol Exp Ther, 314 (1): 400-9. [PMID:15837819]
66. Emir TLR. (2017) various. In Neurobiology of TRP Channels (2nd Ed.) Edited by Emir TLR (CRC Press/Taylor & Francis) . [PMID:29356469]
67. Escalera J, von Hehn CA, Bessac BF, Sivula M, Jordt SE. (2008) TRPA1 mediates the noxious effects of natural sesquiterpene deterrents. J Biol Chem, 283 (35): 24136-44. [PMID:18550530]
68. Everaerts W, Zhen X, Ghosh D, Vriens J, Gevaert T, Gilbert JP, Hayward NJ, McNamara CR, Xue F, Moran MM et al.. (2010) Inhibition of the cation channel TRPV4 improves bladder function in mice and rats with cyclophosphamide-induced cystitis. Proc Natl Acad Sci USA, 107 (44): 19084-9. [PMID:20956320]
69. Fecher-Trost C, Weissgerber P, Wissenbach U. (2014) TRPV6 channels. Handb Exp Pharmacol, 222: 359-84. [PMID:24756713]
70. Fleig A, Penner R. (2004) The TRPM ion channel subfamily: molecular, biophysical and functional features. Trends Pharmacol Sci, 25 (12): 633-9. [PMID:15530641]
71. Fliegert R, Bauche A, Wolf Pérez AM, Watt JM, Rozewitz MD, Winzer R, Janus M, Gu F, Rosche A, Harneit A et al.. (2017) 2'-Deoxyadenosine 5'-diphosphoribose is an endogenous TRPM2 superagonist. Nat Chem Biol, 13 (9): 1036-1044. [PMID:28671679]
72. Fonfria E, Marshall IC, Benham CD, Boyfield I, Brown JD, Hill K, Hughes JP, Skaper SD, McNulty S. (2004) TRPM2 channel opening in response to oxidative stress is dependent on activation of poly(ADP-ribose) polymerase. Br J Pharmacol, 143 (1): 186-92. [PMID:15302683]
73. Freichel M, Vennekens R, Olausson J, Stolz S, Philipp SE, Weissgerber P, Flockerzi V. (2005) Functional role of TRPC proteins in native systems: implications from knockout and knock-down studies. J Physiol (Lond.), 567 (Pt 1): 59-66. [PMID:15975974]
74. García-Añoveros J, Nagata K. (2007) TRPA1. Handb Exp Pharmacol, (179): 347-62. [PMID:17217068]
75. Gaunt HJ, Vasudev NS, Beech DJ. (2016) Transient receptor potential canonical 4 and 5 proteins as targets in cancer therapeutics. Eur Biophys J, 45 (7): 611-620. [PMID:27289383]
76. Gavva NR, Tamir R, Qu Y, Klionsky L, Zhang TJ, Immke D, Wang J, Zhu D, Vanderah TW, Porreca F et al.. (2005) AMG 9810 [(E)-3-(4-t-butylphenyl)-N-(2,3-dihydrobenzo[b][1,4] dioxin-6-yl)acrylamide], a novel vanilloid receptor 1 (TRPV1) antagonist with antihyperalgesic properties. J Pharmacol Exp Ther, 313 (1): 474-84. [PMID:15615864]
77. Giamarchi A, Padilla F, Coste B, Raoux M, Crest M, Honoré E, Delmas P. (2006) The versatile nature of the calcium-permeable cation channel TRPP2. EMBO Rep, 7 (8): 787-93. [PMID:16880824]
78. Grace MS, Baxter M, Dubuis E, Birrell MA, Belvisi MG. (2014) Transient receptor potential (TRP) channels in the airway: role in airway disease. Br J Pharmacol, 171 (10): 2593-607. [PMID:24286227]
79. Grand T, Demion M, Norez C, Mettey Y, Launay P, Becq F, Bois P, Guinamard R. (2008) 9-phenanthrol inhibits human TRPM4 but not TRPM5 cationic channels. Br J Pharmacol, 153 (8): 1697-705. [PMID:18297105]
80. Grimm C, Cuajungco MP, van Aken AF, Schnee M, Jörs S, Kros CJ, Ricci AJ, Heller S. (2007) A helix-breaking mutation in TRPML3 leads to constitutive activity underlying deafness in the varitint-waddler mouse. Proc Natl Acad Sci USA, 104 (49): 19583-8. [PMID:18048323]
81. Grimm C, Jörs S, Guo Z, Obukhov AG, Heller S. (2012) Constitutive activity of TRPML2 and TRPML3 channels versus activation by low extracellular sodium and small molecules. J Biol Chem, 287 (27): 22701-8. [PMID:22753890]
82. Grimm C, Kraft R, Sauerbruch S, Schultz G, Harteneck C. (2003) Molecular and functional characterization of the melastatin-related cation channel TRPM3. J Biol Chem, 278 (24): 21493-501. [PMID:12672799]
83. Grimm C, Kraft R, Schultz G, Harteneck C. (2005) Activation of the melastatin-related cation channel TRPM3 by D-erythro-sphingosine [corrected]. Mol Pharmacol, 67 (3): 798-805. [PMID:15550678]
84. Guinamard R, Sallé L, Simard C. (2011) The non-selective monovalent cationic channels TRPM4 and TRPM5. Adv Exp Med Biol, 704: 147-71. [PMID:21290294]
85. Guler AD, Lee H, Iida T, Shimizu I, Tominaga M, Caterina M. (2002) Heat-evoked activation of the ion channel, TRPV4. J Neurosci, 22 (15): 6408-14. [PMID:12151520]
86. Gunthorpe MJ, Chizh BA. (2009) Clinical development of TRPV1 antagonists: targeting a pivotal point in the pain pathway. Drug Discov Today, 14 (1-2): 56-67. [PMID:19063991]
87. Gunthorpe MJ, Hannan SL, Smart D, Jerman JC, Arpino S, Smith GD, Brough S, Wright J, Egerton J, Lappin SC et al.. (2007) Characterization of SB-705498, a potent and selective vanilloid receptor-1 (VR1/TRPV1) antagonist that inhibits the capsaicin-, acid-, and heat-mediated activation of the receptor. J Pharmacol Exp Ther, 321 (3): 1183-92. [PMID:17392405]
88. Gunthorpe MJ, Rami HK, Jerman JC, Smart D, Gill CH, Soffin EM, Luis Hannan S, Lappin SC, Egerton J, Smith GD et al.. (2004) Identification and characterisation of SB-366791, a potent and selective vanilloid receptor (VR1/TRPV1) antagonist. Neuropharmacology, 46 (1): 133-49. [PMID:14654105]
89. Halaszovich CR, Zitt C, Jungling E, Luckhoff A. (2000) Inhibition of TRP3 channels by lanthanides. Block from the cytosolic side of the plasma membrane. J Biol Chem, 275 (48): 37423-8. [PMID:10970899]
90. Han Q, Liu D, Convertino M, Wang Z, Jiang C, Kim YH, Luo X, Zhang X, Nackley A, Dokholyan NV et al.. (2018) miRNA-711 Binds and Activates TRPA1 Extracellularly to Evoke Acute and Chronic Pruritus. Neuron, 99 (3): 449-463.e6. [PMID:30033153]
91. Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M, Yoshida T, Yamada H, Shimizu S, Mori E, Kudoh J et al.. (2002) LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell, 9 (1): 163-73. [PMID:11804595]
92. Harding SD, Sharman JL, Faccenda E, Southan C, Pawson AJ, Ireland S, Gray AJG, Bruce L, Alexander SPH, Anderton S et al.. (2018) The IUPHAR/BPS Guide to PHARMACOLOGY in 2018: updates and expansion to encompass the new guide to IMMUNOPHARMACOLOGY. Nucleic Acids Res, 46 (D1): D1091-D1106. [PMID:29149325]
93. Harteneck C. (2005) Function and pharmacology of TRPM cation channels. Naunyn Schmiedebergs Arch Pharmacol, 371 (4): 307-14. [PMID:15843919]
94. Harteneck C, Gollasch M. (2011) Pharmacological modulation of diacylglycerol-sensitive TRPC3/6/7 channels. Curr Pharm Biotechnol, 12 (1): 35-41. [PMID:20932261]
95. He LP, Hewavitharana T, Soboloff J, Spassova MA, Gill DL. (2005) A functional link between store-operated and TRPC channels revealed by the 3,5-bis(trifluoromethyl)pyrazole derivative, BTP2. J Biol Chem, 280 (12): 10997-1006. [PMID:15647288]
96. Held K, Kichko T, De Clercq K, Klaassen H, Van Bree R, Vanherck JC, Marchand A, Reeh PW, Chaltin P, Voets T et al.. (2015) Activation of TRPM3 by a potent synthetic ligand reveals a role in peptide release. Proc Natl Acad Sci USA, 112 (11): E1363-72. [PMID:25733887]
97. Hill K, Benham CD, McNulty S, Randall AD. (2004) Flufenamic acid is a pH-dependent antagonist of TRPM2 channels. Neuropharmacology, 47 (3): 450-60. [PMID:15275834]
98. Hill K, McNulty S, Randall AD. (2004) Inhibition of TRPM2 channels by the antifungal agents clotrimazole and econazole. Naunyn Schmiedebergs Arch Pharmacol, 370 (4): 227-37. [PMID:15549272]
99. Hinman A, Chuang HH, Bautista DM, Julius D. (2006) TRP channel activation by reversible covalent modification. Proc Natl Acad Sci USA, 103 (51): 19564-8. [PMID:17164327]
100. Hoenderop JG, Vennekens R, Müller D, Prenen J, Droogmans G, Bindels RJ, Nilius B. (2001) Function and expression of the epithelial Ca(2+) channel family: comparison of mammalian ECaC1 and 2. J Physiol (Lond.), 537 (Pt 3): 747-61. [PMID:11744752]
101. Hofherr A, Köttgen M. (2011) TRPP channels and polycystins. Adv Exp Med Biol, 704: 287-313. [PMID:21290302]
102. Hofmann T, Chubanov V, Gudermann T, Montell C. (2003) TRPM5 is a voltage-modulated and Ca(2+)-activated monovalent selective cation channel. Curr Biol, 13 (13): 1153-8. [PMID:12842017]
103. Hofmann T, Schäfer S, Linseisen M, Sytik L, Gudermann T, Chubanov V. (2014) Activation of TRPM7 channels by small molecules under physiological conditions. Pflugers Arch, 466 (12): 2177-89. [PMID:24633576]
104. Hu H, Bandell M, Petrus MJ, Zhu MX, Patapoutian A. (2009) Zinc activates damage-sensing TRPA1 ion channels. Nat Chem Biol, 5 (3): 183-90. [PMID:19202543]
105. Hu HZ, Gu Q, Wang C, Colton CK, Tang J, Kinoshita-Kawada M, Lee LY, Wood JD, Zhu MX. (2004) 2-aminoethoxydiphenyl borate is a common activator of TRPV1, TRPV2, and TRPV3. J Biol Chem, 279 (34): 35741-8. [PMID:15194687]
106. Hwang SW, Cho H, Kwak J, Lee SY, Kang CJ, Jung J, Cho S, Min KH, Suh YG, Kim D et al.. (2000) Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances. Proc Natl Acad Sci USA, 97 (11): 6155-60. [PMID:10823958]
107. Inoue R, Okada T, Onoue H, Hara Y, Shimizu S, Naitoh S, Ito Y, Mori Y. (2001) The transient receptor potential protein homologue TRP6 is the essential component of vascular alpha(1)-adrenoceptor-activated Ca(2+)-permeable cation channel. Circ Res, 88 (3): 325-32. [PMID:11179201]
108. Irie S, Furukawa T. (2014) TRPM1. Handb Exp Pharmacol, 222: 387-402. [PMID:24756714]
109. Islam MS. (2011) TRP channels of islets. Adv Exp Med Biol, 704: 811-30. [PMID:21290328]
110. Jacobs G, Oosterlinck W, Dresselaers T, Geenens R, Kerselaers S, Himmelreich U, Herijgers P, Vennekens R. (2015) Enhanced β-adrenergic cardiac reserve in Trpm4⁻/⁻ mice with ischaemic heart failure. Cardiovasc Res, 105 (3): 330-9. [PMID:25600961]
111. Jordt SE, Bautista DM, Chuang HH, McKemy DD, Zygmunt PM, Högestätt ED, Meng ID, Julius D. (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature, 427 (6971): 260-5. [PMID:14712238]
112. Jung S, Mühle A, Schaefer M, Strotmann R, Schultz G, Plant TD. (2003) Lanthanides potentiate TRPC5 currents by an action at extracellular sites close to the pore mouth. J Biol Chem, 278 (6): 3562-71. [PMID:12456670]
113. Just S, Chenard BL, Ceci A, Strassmaier T, Chong JA, Blair NT, Gallaschun RJ, Del Camino D, Cantin S, D'Amours M et al.. (2018) Treatment with HC-070, a potent inhibitor of TRPC4 and TRPC5, leads to anxiolytic and antidepressant effects in mice. PLoS ONE, 13 (1): e0191225. [PMID:29385160]
114. Juvin V, Penna A, Chemin J, Lin YL, Rassendren FA. (2007) Pharmacological characterization and molecular determinants of the activation of transient receptor potential V2 channel orthologs by 2-aminoethoxydiphenyl borate. Mol Pharmacol, 72 (5): 1258-68. [PMID:17673572]
115. Karashima Y, Damann N, Prenen J, Talavera K, Segal A, Voets T, Nilius B. (2007) Bimodal action of menthol on the transient receptor potential channel TRPA1. J Neurosci, 27 (37): 9874-84. [PMID:17855602]
116. Karashima Y, Talavera K, Everaerts W, Janssens A, Kwan KY, Vennekens R, Nilius B, Voets T. (2009) TRPA1 acts as a cold sensor in vitro and in vivo. Proc Natl Acad Sci USA, 106 (4): 1273-8. [PMID:19144922]
117. Khairatkar-Joshi N, Shah DM, Mukhopadhyay I, Lingam VS, Thomas A. (2015) TRPC channel modulators and their potential therapeutic applications. Pharm Pat Anal, 4 (3): 207-18. [PMID:26030081]
118. Kim HJ, Li Q, Tjon-Kon-Sang S, So I, Kiselyov K, Muallem S. (2007) Gain-of-function mutation in TRPML3 causes the mouse Varitint-Waddler phenotype. J Biol Chem, 282 (50): 36138-42. [PMID:17962195]
119. Kim HJ, Li Q, Tjon-Kon-Sang S, So I, Kiselyov K, Soyombo AA, Muallem S. (2008) A novel mode of TRPML3 regulation by extracytosolic pH absent in the varitint-waddler phenotype. EMBO J, 27 (8): 1197-205. [PMID:18369318]
120. Kiselyov K, Patterson RL. (2009) The integrative function of TRPC channels. Front Biosci, 14: 45-58. [PMID:19273053]
121. Kiselyov K, Shin DM, Kim JY, Yuan JP, Muallem S. (2007) TRPC channels: interacting proteins. Handb Exp Pharmacol, (179): 559-74. [PMID:17217079]
122. Kiselyov K, Soyombo A, Muallem S. (2007) TRPpathies. J Physiol (Lond.), 578 (Pt 3): 641-53. [PMID:17138610]
123. Kittaka H, Yamanoi Y, Tominaga M. (2017) Transient receptor potential vanilloid 4 (TRPV4) channel as a target of crotamiton and its bimodal effects. Pflugers Arch, 469 (10): 1313-1323. [PMID:28612138]
124. Kiyonaka S, Kato K, Nishida M, Mio K, Numaga T, Sawaguchi Y, Yoshida T, Wakamori M, Mori E, Numata T et al.. (2009) Selective and direct inhibition of TRPC3 channels underlies biological activities of a pyrazole compound. Proc Natl Acad Sci USA, 106 (13): 5400-5. [PMID:19289841]
125. Klausen TK, Pagani A, Minassi A, Ech-Chahad A, Prenen J, Owsianik G, Hoffmann EK, Pedersen SF, Appendino G, Nilius B. (2009) Modulation of the transient receptor potential vanilloid channel TRPV4 by 4alpha-phorbol esters: a structure-activity study. J Med Chem, 52 (9): 2933-9. [PMID:19361196]
126. Knowlton WM, McKemy DD. (2011) TRPM8: from cold to cancer, peppermint to pain. Curr Pharm Biotechnol, 12 (1): 68-77. [PMID:20932257]
127. Kojima R, Nozawa K, Doihara H, Keto Y, Kaku H, Yokoyama T, Itou H. (2014) Effects of novel TRPA1 receptor agonist ASP7663 in models of drug-induced constipation and visceral pain. Eur J Pharmacol, 723: 288-93. [PMID:24291101]
128. Kolisek M, Beck A, Fleig A, Penner R. (2005) Cyclic ADP-ribose and hydrogen peroxide synergize with ADP-ribose in the activation of TRPM2 channels. Mol Cell, 18 (1): 61-9. [PMID:15808509]
129. Kozak JA, Kerschbaum HH, Cahalan MD. (2002) Distinct properties of CRAC and MIC channels in RBL cells. J Gen Physiol, 120 (2): 221-35. [PMID:12149283]
130. Kraft R. (2007) The Na+/Ca2+ exchange inhibitor KB-R7943 potently blocks TRPC channels. Biochem Biophys Res Commun, 361 (1): 230-6. [PMID:17658472]
131. Kraft R, Grimm C, Frenzel H, Harteneck C. (2006) Inhibition of TRPM2 cation channels by N-(p-amylcinnamoyl)anthranilic acid. Br J Pharmacol, 148 (3): 264-73. [PMID:16604090]
132. Kraft R, Grimm C, Grosse K, Hoffmann A, Sauerbruch S, Kettenmann H, Schultz G, Harteneck C. (2004) Hydrogen peroxide and ADP-ribose induce TRPM2-mediated calcium influx and cation currents in microglia. Am J Physiol, Cell Physiol, 286 (1): C129-37. [PMID:14512294]
133. Krakow D, Vriens J, Camacho N, Luong P, Deixler H, Funari TL, Bacino CA, Irons MB, Holm IA, Sadler L et al.. (2009) Mutations in the gene encoding the calcium-permeable ion channel TRPV4 produce spondylometaphyseal dysplasia, Kozlowski type and metatropic dysplasia. Am J Hum Genet, 84 (3): 307-15. [PMID:19232556]
134. Kremeyer B, Lopera F, Cox JJ, Momin A, Rugiero F, Marsh S, Woods CG, Jones NG, Paterson KJ, Fricker FR et al.. (2010) A gain-of-function mutation in TRPA1 causes familial episodic pain syndrome. Neuron, 66 (5): 671-80. [PMID:20547126]
135. Krügel U, Straub I, Beckmann H, Schaefer M. (2017) Primidone inhibits TRPM3 and attenuates thermal nociception in vivo. Pain, 158 (5): 856-867. [PMID:28106668]
136. Lambert S, Drews A, Rizun O, Wagner TF, Lis A, Mannebach S, Plant S, Portz M, Meissner M, Philipp SE et al.. (2011) Transient receptor potential melastatin 1 (TRPM1) is an ion-conducting plasma membrane channel inhibited by zinc ions. J Biol Chem, 286 (14): 12221-33. [PMID:21278253]
137. Landouré G, Zdebik AA, Martinez TL, Burnett BG, Stanescu HC, Inada H, Shi Y, Taye AA, Kong L, Munns CH et al.. (2010) Mutations in TRPV4 cause Charcot-Marie-Tooth disease type 2C. Nat Genet, 42 (2): 170-4. [PMID:20037586]
138. Lee N, Chen J, Sun L, Wu S, Gray KR, Rich A, Huang M, Lin JH, Feder JN, Janovitz EB et al.. (2003) Expression and characterization of human transient receptor potential melastatin 3 (hTRPM3). J Biol Chem, 278 (23): 20890-7. [PMID:12672827]
139. Lee SP, Buber MT, Yang Q, Cerne R, Cortés RY, Sprous DG, Bryant RW. (2008) Thymol and related alkyl phenols activate the hTRPA1 channel. Br J Pharmacol, 153 (8): 1739-49. [PMID:18334983]
140. Leffler A, Lattrell A, Kronewald S, Niedermirtl F, Nau C. (2011) Activation of TRPA1 by membrane permeable local anesthetics. Mol Pain, 7: 62. [PMID:21861907]
141. Lei YT, Thuault SJ, Launay P, Margolskee RF, Kandel ER, Siegelbaum SA. (2014) Differential contribution of TRPM4 and TRPM5 nonselective cation channels to the slow afterdepolarization in mouse prefrontal cortex neurons. Front Cell Neurosci, 8: 267. [PMID:25237295]
142. Leuner K, Heiser JH, Derksen S, Mladenov MI, Fehske CJ, Schubert R, Gollasch M, Schneider G, Harteneck C, Chatterjee SS et al.. (2010) Simple 2,4-diacylphloroglucinols as classic transient receptor potential-6 activators--identification of a novel pharmacophore. Mol Pharmacol, 77 (3): 368-77. [PMID:20008516]
143. Leuner K, Kazanski V, Müller M, Essin K, Henke B, Gollasch M, Harteneck C, Müller WE. (2007) Hyperforin--a key constituent of St. John's wort specifically activates TRPC6 channels. FASEB J, 21 (14): 4101-11. [PMID:17666455]
144. Li M, Jiang J, Yue L. (2006) Functional characterization of homo- and heteromeric channel kinases TRPM6 and TRPM7. J Gen Physiol, 127 (5): 525-37. [PMID:16636202]
145. Liao M, Cao E, Julius D, Cheng Y. (2013) Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature, 504 (7478): 107-12. [PMID:24305160]
146. Lievremont JP, Bird GS, Putney Jr JW. (2005) Mechanism of inhibition of TRPC cation channels by 2-aminoethoxydiphenylborane. Mol Pharmacol, 68 (3): 758-62. [PMID:15933213]
147. Liman ER. (2007) TRPM5 and taste transduction. Handb Exp Pharmacol, (179): 287-98. [PMID:17217064]
148. Liman, E. R. and Dulac, C. (2007) TRP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades Frontiers in Neuroscience. In Edited by W. B. Liedtke and S. Heller () .
149. Lin Z, Chen Q, Lee M, Cao X, Zhang J, Ma D, Chen L, Hu X, Wang H, Wang X et al.. (2012) Exome sequencing reveals mutations in TRPV3 as a cause of Olmsted syndrome. Am J Hum Genet, 90 (3): 558-64. [PMID:22405088]
150. Link TM, Park U, Vonakis BM, Raben DM, Soloski MJ, Caterina MJ. (2010) TRPV2 has a pivotal role in macrophage particle binding and phagocytosis. Nat Immunol, 11 (3): 232-9. [PMID:20118928]
151. Liu B, Yao J, Zhu MX, Qin F. (2011) Hysteresis of gating underlines sensitization of TRPV3 channels. J Gen Physiol, 138 (5): 509-20. [PMID:22006988]
152. Liu D, Liman ER. (2003) Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction ion channel TRPM5. Proc Natl Acad Sci USA, 100 (25): 15160-5. [PMID:14657398]
153. Liu X, Vien T, Duan J, Sheu SH, DeCaen PG, Clapham DE. (2018) Polycystin-2 is an essential ion channel subunit in the primary cilium of the renal collecting duct epithelium. Elife, 7. [PMID:29443690]
154. Liu Y, Qin N. (2011) TRPM8 in health and disease: cold sensing and beyond. Adv Exp Med Biol, 704: 185-208. [PMID:21290296]
155. Lucas P, Ukhanov K, Leinders-Zufall T, Zufall F. (2003) A diacylglycerol-gated cation channel in vomeronasal neuron dendrites is impaired in TRPC2 mutant mice: mechanism of pheromone transduction. Neuron, 40 (3): 551-61. [PMID:14642279]
156. Ma S, G G, Ak VE, Jf D, H H. (2008) Menthol derivative WS-12 selectively activates transient receptor potential melastatin-8 (TRPM8) ion channels. Pak J Pharm Sci, 21 (4): 370-8. [PMID:18930858]
157. Macpherson LJ, Dubin AE, Evans MJ, Marr F, Schultz PG, Cravatt BF, Patapoutian A. (2007) Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature, 445 (7127): 541-5. [PMID:17237762]
158. Macpherson LJ, Geierstanger BH, Viswanath V, Bandell M, Eid SR, Hwang S, Patapoutian A. (2005) The pungency of garlic: activation of TRPA1 and TRPV1 in response to allicin. Curr Biol, 15 (10): 929-34. [PMID:15916949]
159. Macpherson LJ, Hwang SW, Miyamoto T, Dubin AE, Patapoutian A, Story GM. (2006) More than cool: promiscuous relationships of menthol and other sensory compounds. Mol Cell Neurosci, 32 (4): 335-43. [PMID:16829128]
160. Macpherson LJ, Xiao B, Kwan KY, Petrus MJ, Dubin AE, Hwang S, Cravatt B, Corey DP, Patapoutian A. (2007) An ion channel essential for sensing chemical damage. J Neurosci, 27 (42): 11412-5. [PMID:17942735]
161. Mahieu F, Owsianik G, Verbert L, Janssens A, De Smedt H, Nilius B, Voets T. (2007) TRPM8-independent menthol-induced Ca2+ release from endoplasmic reticulum and Golgi. J Biol Chem, 282 (5): 3325-36. [PMID:17142461]
162. Maier T, Follmann M, Hessler G, Kleemann HW, Hachtel S, Fuchs B, Weissmann N, Linz W, Schmidt T, Löhn M et al.. (2015) Discovery and pharmacological characterization of a novel potent inhibitor of diacylglycerol-sensitive TRPC cation channels. Br J Pharmacol, 172 (14): 3650-60. [PMID:25847402]
163. Majeed Y, Agarwal AK, Naylor J, Seymour VA, Jiang S, Muraki K, Fishwick CW, Beech DJ. (2010) Cis-isomerism and other chemical requirements of steroidal agonists and partial agonists acting at TRPM3 channels. Br J Pharmacol, 161 (2): 430-41. [PMID:20735426]
164. Majeed Y, Bahnasi Y, Seymour VA, Wilson LA, Milligan CJ, Agarwal AK, Sukumar P, Naylor J, Beech DJ. (2011) Rapid and contrasting effects of rosiglitazone on transient receptor potential TRPM3 and TRPC5 channels. Mol Pharmacol, 79 (6): 1023-30. [PMID:21406603]
165. Mathar I, Kecskes M, Van der Mieren G, Jacobs G, Camacho Londoño JE, Uhl S, Flockerzi V, Voets T, Freichel M, Nilius B et al.. (2014) Increased β-adrenergic inotropy in ventricular myocardium from Trpm4-/- mice. Circ Res, 114 (2): 283-94. [PMID:24226423]
166. McIntyre P, McLatchie LM, Chambers A, Phillips E, Clarke M, Savidge J, Toms C, Peacock M, Shah K, Winter J et al.. (2001) Pharmacological differences between the human and rat vanilloid receptor 1 (VR1). Br J Pharmacol, 132 (5): 1084-94. [PMID:11226139]
167. McNamara CR, Mandel-Brehm J, Bautista DM, Siemens J, Deranian KL, Zhao M, Hayward NJ, Chong JA, Julius D, Moran MM et al.. (2007) TRPA1 mediates formalin-induced pain. Proc Natl Acad Sci USA, 104 (33): 13525-30. [PMID:17686976]
168. McNamara FN, Randall A, Gunthorpe MJ. (2005) Effects of piperine, the pungent component of black pepper, at the human vanilloid receptor (TRPV1). Br J Pharmacol, 144 (6): 781-90. [PMID:15685214]
169. Miao Y, Li G, Zhang X, Xu H, Abraham SN. (2015) A TRP Channel Senses Lysosome Neutralization by Pathogens to Trigger Their Expulsion. Cell, 161 (6): 1306-19. [PMID:26027738]
170. Miehe S, Crause P, Schmidt T, Löhn M, Kleemann HW, Licher T, Dittrich W, Rütten H, Strübing C. (2012) Inhibition of diacylglycerol-sensitive TRPC channels by synthetic and natural steroids. PLoS ONE, 7 (4): e35393. [PMID:22530015]
171. Miller M, Shi J, Zhu Y, Kustov M, Tian JB, Stevens A, Wu M, Xu J, Long S, Yang P et al.. (2011) Identification of ML204, a novel potent antagonist that selectively modulates native TRPC4/C5 ion channels. J Biol Chem, 286 (38): 33436-46. [PMID:21795696]
172. Minard A, Bauer CC, Wright DJ, Rubaiy HN, Muraki K, Beech DJ, Bon RS. (2018) Remarkable Progress with Small-Molecule Modulation of TRPC1/4/5 Channels: Implications for Understanding the Channels in Health and Disease. Cells, 7 (6). [PMID:29865154]
173. Mittermeier L, Demirkhanyan L, Stadlbauer B, Breit A, Recordati C, Hilgendorff A, Matsushita M, Braun A, Simmons DG, Zakharian E et al.. (2019) TRPM7 is the central gatekeeper of intestinal mineral absorption essential for postnatal survival. Proc Natl Acad Sci USA, 116 (10): 4706-4715. [PMID:30770447]
174. Moqrich A, Hwang SW, Earley TJ, Petrus MJ, Murray AN, Spencer KS, Andahazy M, Story GM, Patapoutian A. (2005) Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science, 307 (5714): 1468-72. [PMID:15746429]
175. Moran MM, Szallasi A. (2018) Targeting nociceptive transient receptor potential channels to treat chronic pain: current state of the field. Br J Pharmacol, 175 (12): 2185-2203. [PMID:28924972]
176. Moussaieff A, Rimmerman N, Bregman T, Straiker A, Felder CC, Shoham S, Kashman Y, Huang SM, Lee H, Shohami E et al.. (2008) Incensole acetate, an incense component, elicits psychoactivity by activating TRPV3 channels in the brain. FASEB J, 22 (8): 3024-34. [PMID:18492727]
177. Mälkiä A, Madrid R, Meseguer V, de la Peña E, Valero M, Belmonte C, Viana F. (2007) Bidirectional shifts of TRPM8 channel gating by temperature and chemical agents modulate the cold sensitivity of mammalian thermoreceptors. J Physiol (Lond.), 581 (Pt 1): 155-74. [PMID:17317754]
178. Mälkiä A, Morenilla-Palao C, Viana F. (2011) The emerging pharmacology of TRPM8 channels: hidden therapeutic potential underneath a cold surface. Curr Pharm Biotechnol, 12 (1): 54-67. [PMID:20932258]
179. Na T, Peng JB. (2014) TRPV5: a Ca(2+) channel for the fine-tuning of Ca(2+) reabsorption. Handb Exp Pharmacol, 222: 321-57. [PMID:24756712]
180. Nadler MJ, Hermosura MC, Inabe K, Perraud AL, Zhu Q, Stokes AJ, Kurosaki T, Kinet JP, Penner R, Scharenberg AM et al.. (2001) LTRPC7 is a Mg.ATP-regulated divalent cation channel required for cell viability. Nature, 411 (6837): 590-5. [PMID:11385574]
181. Nagata K, Duggan A, Kumar G, García-Añoveros J. (2005) Nociceptor and hair cell transducer properties of TRPA1, a channel for pain and hearing. J Neurosci, 25 (16): 4052-61. [PMID:15843607]
182. Nagata K, Zheng L, Madathany T, Castiglioni AJ, Bartles JR, García-Añoveros J. (2008) The varitint-waddler (Va) deafness mutation in TRPML3 generates constitutive, inward rectifying currents and causes cell degeneration. Proc Natl Acad Sci USA, 105 (1): 353-8. [PMID:18162548]
183. Nakanishi O, Fujimori Y, Aizawa N, Hayashi T, Matsuzawa A, Kobayashi JI, Hirasawa H, Mutai Y, Tanada F, Igawa Y. (2020) KPR-5714, a Novel Transient Receptor Potential Melastatin 8 Antagonist, Improves Overactive Bladder via Inhibition of Bladder Afferent Hyperactivity in Rats. J Pharmacol Exp Ther, 373 (2): 239-247. [PMID:32102918]
184. Naylor J, Minard A, Gaunt HJ, Amer MS, Wilson LA, Migliore M, Cheung SY, Rubaiy HN, Blythe NM, Musialowski KE et al.. (2016) Natural and synthetic flavonoid modulation of TRPC5 channels. Br J Pharmacol, 173 (3): 562-74. [PMID:26565375]
185. Naziroğlu M, Ozgül C. (2012) Effects of antagonists and heat on TRPM8 channel currents in dorsal root ganglion neuron activated by nociceptive cold stress and menthol. Neurochem Res, 37 (2): 314-20. [PMID:21964764]
186. Neeper MP, Liu Y, Hutchinson TL, Wang Y, Flores CM, Qin N. (2007) Activation properties of heterologously expressed mammalian TRPV2: evidence for species dependence. J Biol Chem, 282 (21): 15894-902. [PMID:17395593]
187. Niforatos W, Zhang XF, Lake MR, Walter KA, Neelands T, Holzman TF, Scott VE, Faltynek CR, Moreland RB, Chen J. (2007) Activation of TRPA1 channels by the fatty acid amide hydrolase inhibitor 3'-carbamoylbiphenyl-3-yl cyclohexylcarbamate (URB597). Mol Pharmacol, 71 (5): 1209-16. [PMID:17314320]
188. Nilius B. (2007) TRP channels in disease. Biochim Biophys Acta, 1772 (8): 805-12. [PMID:17368864]
189. Nilius B, Flockerzi V. (2014) Mammalian transient receptor potential (TRP) cation channels. Preface. Handb Exp Pharmacol, 223: v - vi. [PMID:25296415]
190. Nilius B, Mahieu F, Prenen J, Janssens A, Owsianik G, Vennekens R, Voets T. (2006) The Ca2+-activated cation channel TRPM4 is regulated by phosphatidylinositol 4,5-biphosphate. EMBO J, 25 (3): 467-78. [PMID:16424899]
191. Nilius B, Owsianik G. (2010) Transient receptor potential channelopathies. Pflugers Arch, 460 (2): 437-50. [PMID:20127491]
192. Nilius B, Owsianik G, Voets T. (2008) Transient receptor potential channels meet phosphoinositides. EMBO J, 27 (21): 2809-16. [PMID:18923420]
193. Nilius B, Owsianik G, Voets T, Peters JA. (2007) Transient receptor potential cation channels in disease. Physiol Rev, 87 (1): 165-217. [PMID:17237345]
194. Nilius B, Prenen J, Janssens A, Voets T, Droogmans G. (2004) Decavanadate modulates gating of TRPM4 cation channels. J Physiol (Lond.), 560 (Pt 3): 753-65. [PMID:15331675]
195. Nilius B, Prenen J, Tang J, Wang C, Owsianik G, Janssens A, Voets T, Zhu MX. (2005) Regulation of the Ca2+ sensitivity of the nonselective cation channel TRPM4. J Biol Chem, 280 (8): 6423-33. [PMID:15590641]
196. Nilius B, Prenen J, Voets T, Droogmans G. (2004) Intracellular nucleotides and polyamines inhibit the Ca2+-activated cation channel TRPM4b. Pflugers Arch, 448 (1): 70-5. [PMID:14758478]
197. Nilius B, Vriens J, Prenen J, Droogmans G, Voets T. (2004) TRPV4 calcium entry channel: a paradigm for gating diversity. Am J Physiol, Cell Physiol, 286 (2): C195-205. [PMID:14707014]
198. Nina DUllrich. (2005) PhD Thesis. In TRPM4 and TRPM5: Functional characterisation and comparison of two novel Ca2+-activated cation channels of the TRPM subfamily (Faculteit Geneeskunde, Dept. Moleculaire Celbiologie, KU Leuven) .
199. Oancea E, Vriens J, Brauchi S, Jun J, Splawski I, Clapham DE. (2009) TRPM1 forms ion channels associated with melanin content in melanocytes. Sci Signal, 2 (70): ra21. [PMID:19436059]
200. Oberwinkler J, Lis A, Giehl KM, Flockerzi V, Philipp SE. (2005) Alternative splicing switches the divalent cation selectivity of TRPM3 channels. J Biol Chem, 280 (23): 22540-8. [PMID:15824111]
201. Oberwinkler J, Philipp SE. (2014) TRPM3. Handb Exp Pharmacol, 222: 427-59. [PMID:24756716]
202. Oberwinkler J, Phillipp SE. (2007) TRPM3. Handb Exp Pharmacol, (179): 253-67. [PMID:17217062]
203. Okada T, Inoue R, Yamazaki K, Maeda A, Kurosaki T, Yamakuni T, Tanaka I, Shimizu S, Ikenaka K, Imoto K et al.. (1999) Molecular and functional characterization of a novel mouse transient receptor potential protein homologue TRP7. Ca(2+)-permeable cation channel that is constitutively activated and enhanced by stimulation of G protein-coupled receptor. J Biol Chem, 274 (39): 27359-70. [PMID:10488066]
204. Omura M, Mombaerts P. (2014) Trpc2-expressing sensory neurons in the main olfactory epithelium of the mouse. Cell Rep, 8 (2): 583-95. [PMID:25001287]
205. Omura M, Mombaerts P. (2015) Trpc2-expressing sensory neurons in the mouse main olfactory epithelium of type B express the soluble guanylate cyclase Gucy1b2. Mol Cell Neurosci, 65: 114-24. [PMID:25701815]
206. Ong HL, Ambudkar IS. (2017) STIM-TRP Pathways and Microdomain Organization: Contribution of TRPC1 in Store-Operated Ca2+ Entry: Impact on Ca2+ Signaling and Cell Function. Adv Exp Med Biol, 993: 159-188. [PMID:28900914]
207. Owsianik G, Talavera K, Voets T, Nilius B. (2006) Permeation and selectivity of TRP channels. Annu Rev Physiol, 68: 685-717. [PMID:16460288]
208. Park U, Vastani N, Guan Y, Raja SN, Koltzenburg M, Caterina MJ. (2011) TRP vanilloid 2 knock-out mice are susceptible to perinatal lethality but display normal thermal and mechanical nociception. J Neurosci, 31 (32): 11425-36. [PMID:21832173]
209. Parnas M, Peters M, Dadon D, Lev S, Vertkin I, Slutsky I, Minke B. (2009) Carvacrol is a novel inhibitor of Drosophila TRPL and mammalian TRPM7 channels. Cell Calcium, 45 (3): 300-9. [PMID:19135721]
210. Patel A, Sharif-Naeini R, Folgering JR, Bichet D, Duprat F, Honoré E. (2010) Canonical TRP channels and mechanotransduction: from physiology to disease states. Pflugers Arch, 460 (3): 571-81. [PMID:20490539]
211. Paulsen CE, Armache JP, Gao Y, Cheng Y, Julius D. (2015) Structure of the TRPA1 ion channel suggests regulatory mechanisms. Nature, 520 (7548): 511-7. [PMID:25855297]
212. Pedersen SF, Owsianik G, Nilius B. (2005) TRP channels: an overview. Cell Calcium, 38 (3-4): 233-52. [PMID:16098585]
213. Peier AM, Reeve AJ, Andersson DA, Moqrich A, Earley TJ, Hergarden AC, Story GM, Colley S, Hogenesch JB, McIntyre P et al.. (2002) A heat-sensitive TRP channel expressed in keratinocytes. Science, 296 (5575): 2046-9. [PMID:12016205]
214. Perez-Ortega I, Moniche-Alvarez F, Jimenez-Hernandez MD, Gonzalez-Marcos JR. (2012) [Cardioembolic stroke in atrial fibrillation and new anticoagulation criteria: a therapeutic dare]. Rev Neurol, 55 (2): 74-80. [PMID:22760766]
215. Perraud AL, Fleig A, Dunn CA, Bagley LA, Launay P, Schmitz C, Stokes AJ, Zhu Q, Bessman MJ, Penner R, Kinet JP, Scharenberg AM. (2001) ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature, 411 (6837): 595-9. [PMID:11385575]
216. Petrus M, Peier AM, Bandell M, Hwang SW, Huynh T, Olney N, Jegla T, Patapoutian A. (2007) A role of TRPA1 in mechanical hyperalgesia is revealed by pharmacological inhibition. Mol Pain, 3: 40. [PMID:18086313]
217. Pingle SC, Matta JA, Ahern GP. (2007) Capsaicin receptor: TRPV1 a promiscuous TRP channel. Handb Exp Pharmacol, (179): 155-71. [PMID:17217056]
218. Plant TD, Schaefer M. (2003) TRPC4 and TRPC5: receptor-operated Ca2+-permeable nonselective cation channels. Cell Calcium, 33 (5-6): 441-50. [PMID:12765689]
219. Plesch E, Chen CC, Butz E, Scotto Rosato A, Krogsaeter EK, Yinan H, Bartel K, Keller M, Robaa D, Teupser D et al.. (2018) Selective agonist of TRPML2 reveals direct role in chemokine release from innate immune cells. Elife, 7. [PMID:30479274]
220. Potier M, Trebak M. (2008) New developments in the signaling mechanisms of the store-operated calcium entry pathway. Pflugers Arch, 457 (2): 405-15. [PMID:18536932]
221. Puertollano R, Kiselyov K. (2009) TRPMLs: in sickness and in health. Am J Physiol Renal Physiol, 296 (6): F1245-54. [PMID:19158345]
222. Putney JW. (2005) Physiological mechanisms of TRPC activation. Pflugers Arch, 451 (1): 29-34. [PMID:16133266]
223. Qian F, Noben-Trauth K. (2005) Cellular and molecular function of mucolipins (TRPML) and polycystin 2 (TRPP2). Pflugers Arch, 451 (1): 277-85. [PMID:15971078]
224. Qin N, Neeper MP, Liu Y, Hutchinson TL, Lubin ML, Flores CM. (2008) TRPV2 is activated by cannabidiol and mediates CGRP release in cultured rat dorsal root ganglion neurons. J Neurosci, 28 (24): 6231-8. [PMID:18550765]
225. Qu C, Ding M, Zhu Y, Lu Y, Du J, Miller M, Tian J, Zhu J, Xu J, Wen M et al.. (2017) Pyrazolopyrimidines as Potent Stimulators for Transient Receptor Potential Canonical 3/6/7 Channels. J Med Chem, 60 (11): 4680-4692. [PMID:28395140]
226. Quallo T, Alkhatib O, Gentry C, Andersson DA, Bevan S. (2017) G protein βγ subunits inhibit TRPM3 ion channels in sensory neurons. Elife, 6. [PMID:28826490]
227. Riccio A, Mattei C, Kelsell RE, Medhurst AD, Calver AR, Randall AD, Davis JB, Benham CD, Pangalos MN. (2002) Cloning and functional expression of human short TRP7, a candidate protein for store-operated Ca2+ influx. J Biol Chem, 277 (14): 12302-9. [PMID:11805119]
228. Richter JM, Schaefer M, Hill K. (2014) Clemizole hydrochloride is a novel and potent inhibitor of transient receptor potential channel TRPC5. Mol Pharmacol, 86 (5): 514-21. [PMID:25140002]
229. Richter JM, Schaefer M, Hill K. (2014) Riluzole activates TRPC5 channels independently of PLC activity. Br J Pharmacol, 171 (1): 158-70. [PMID:24117252]
230. Rock MJ, Prenen J, Funari VA, Funari TL, Merriman B, Nelson SF, Lachman RS, Wilcox WR, Reyno S, Quadrelli R et al.. (2008) Gain-of-function mutations in TRPV4 cause autosomal dominant brachyolmia. Nat Genet, 40 (8): 999-1003. [PMID:18587396]
231. Rohacs T. (2009) Phosphoinositide regulation of non-canonical transient receptor potential channels. Cell Calcium, 45 (6): 554-65. [PMID:19376575]
232. Rubaiy HN. (2019) Treasure troves of pharmacological tools to study transient receptor potential canonical 1/4/5 channels. Br J Pharmacol, 176 (7): 832-846. [PMID:30656647]
233. Rubaiy HN, Ludlow MJ, Henrot M, Gaunt HJ, Miteva K, Cheung SY, Tanahashi Y, Hamzah N, Musialowski KE, Blythe NM et al.. (2017) Picomolar, selective, and subtype-specific small-molecule inhibition of TRPC1/4/5 channels. J Biol Chem, 292 (20): 8158-8173. [PMID:28325835]
234. Rubaiy HN, Ludlow MJ, Siems K, Norman K, Foster R, Wolf D, Beutler JA, Beech DJ. (2018) Tonantzitlolone is a nanomolar potency activator of transient receptor potential canonical 1/4/5 channels. Br J Pharmacol, 175 (16): 3361-3368. [PMID:29859013]
235. Runnels LW, Yue L, Clapham DE. (2001) TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science, 291 (5506): 1043-7. [PMID:11161216]
236. Salido GM, Sage SO, Rosado JA. (2009) TRPC channels and store-operated Ca(2+) entry. Biochim Biophys Acta, 1793 (2): 223-30. [PMID:19061922]
237. Samie M, Wang X, Zhang X, Goschka A, Li X, Cheng X, Gregg E, Azar M, Zhuo Y, Garrity AG et al.. (2013) A TRP channel in the lysosome regulates large particle phagocytosis via focal exocytosis. Dev Cell, 26 (5): 511-24. [PMID:23993788]
238. Sawada Y, Hosokawa H, Matsumura K, Kobayashi S. (2008) Activation of transient receptor potential ankyrin 1 by hydrogen peroxide. Eur J Neurosci, 27 (5): 1131-42. [PMID:18364033]
239. Schenkel LB, Olivieri PR, Boezio AA, Deak HL, Emkey R, Graceffa RF, Gunaydin H, Guzman-Perez A, Lee JH, Teffera Y et al.. (2016) Optimization of a Novel Quinazolinone-Based Series of Transient Receptor Potential A1 (TRPA1) Antagonists Demonstrating Potent in Vivo Activity. J Med Chem, 59 (6): 2794-809. [PMID:26942860]
240. Schleifer H, Doleschal B, Lichtenegger M, Oppenrieder R, Derler I, Frischauf I, Glasnov TN, Kappe CO, Romanin C, Groschner K. (2012) Novel pyrazole compounds for pharmacological discrimination between receptor-operated and store-operated Ca(2+) entry pathways. Br J Pharmacol, 167 (8): 1712-22. [PMID:22862290]
241. Schumacher MA, Eilers H. (2010) TRPV1 splice variants: structure and function. Front Biosci, 15: 872-82. [PMID:20515731]
242. Schwartz FW. (1987) [Medical orientation data--a challenge to public health]. Offentl Gesundheitswes, 49 (5): 229-33. [PMID:2955270]
243. Seo K, Rainer PP, Shalkey Hahn V, Lee DI, Jo SH, Andersen A, Liu T, Xu X, Willette RN, Lepore JJ et al.. (2014) Combined TRPC3 and TRPC6 blockade by selective small-molecule or genetic deletion inhibits pathological cardiac hypertrophy. Proc Natl Acad Sci USA, 111 (4): 1551-6. [PMID:24453217]
244. Shen D, Wang X, Li X, Zhang X, Yao Z, Dibble S, Dong XP, Yu T, Lieberman AP, Showalter HD et al.. (2012) Lipid storage disorders block lysosomal trafficking by inhibiting a TRP channel and lysosomal calcium release. Nat Commun, 3: 731. [PMID:22415822]
245. Sherkheli MA, Vogt-Eisele AK, Bura D, Beltrán Márques LR, Gisselmann G, Hatt H. (2010) Characterization of selective TRPM8 ligands and their structure activity response (S.A.R) relationship. J Pharm Pharm Sci, 13 (2): 242-53. [PMID:20816009]
246. Shimizu T, Janssens A, Voets T, Nilius B. (2009) Regulation of the murine TRPP3 channel by voltage, pH, and changes in cell volume. Pflugers Arch, 457 (4): 795-807. [PMID:18663466]
247. Smart D, Jerman JC, Gunthorpe MJ, Brough SJ, Ranson J, Cairns W, Hayes PD, Randall AD, Davis JB. (2001) Characterisation using FLIPR of human vanilloid VR1 receptor pharmacology. Eur J Pharmacol, 417 (1-2): 51-8. [PMID:11301059]
248. Smith MA, Herson PS, Lee K, Pinnock RD, Ashford ML. (2003) Hydrogen-peroxide-induced toxicity of rat striatal neurones involves activation of a non-selective cation channel. J Physiol (Lond.), 547 (Pt 2): 417-25. [PMID:12562896]
249. Smith PL, Maloney KN, Pothen RG, Clardy J, Clapham DE. (2006) Bisandrographolide from Andrographis paniculata activates TRPV4 channels. J Biol Chem, 281 (40): 29897-904. [PMID:16899456]
250. Spehr J, Hagendorf S, Weiss J, Spehr M, Leinders-Zufall T, Zufall F. (2009) Ca2+ -calmodulin feedback mediates sensory adaptation and inhibits pheromone-sensitive ion channels in the vomeronasal organ. J Neurosci, 29 (7): 2125-35. [PMID:19228965]
251. Spix B, Butz ES, Chen CC, Rosato AS, Tang R, Jeridi A, Kudrina V, Plesch E, Wartenberg P, Arlt E et al.. (2022) Lung emphysema and impaired macrophage elastase clearance in mucolipin 3 deficient mice. Nat Commun, 13 (1): 318. DOI: 10.1038/s41467-021-27860-x [PMID:35031603]
252. Stallmeyer B, Zumhagen S, Denjoy I, Duthoit G, Hébert JL, Ferrer X, Maugenre S, Schmitz W, Kirchhefer U, Schulze-Bahr E et al.. (2012) Mutational spectrum in the Ca(2+)--activated cation channel gene TRPM4 in patients with cardiac conductance disturbances. Hum Mutat, 33 (1): 109-17. [PMID:21887725]
253. Starowicz K, Nigam S, Di Marzo V. (2007) Biochemistry and pharmacology of endovanilloids. Pharmacol Ther, 114 (1): 13-33. [PMID:17349697]
254. Stiber JA, Tang Y, Li T, Rosenberg PB. (2012) Cytoskeletal regulation of TRPC channels in the cardiorenal system. Curr Hypertens Rep, 14 (6): 492-7. [PMID:23054893]
255. Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, Earley TJ, Hergarden AC, Andersson DA, Hwang SW et al.. (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell, 112 (6): 819-29. [PMID:12654248]
256. Straub I, Krügel U, Mohr F, Teichert J, Rizun O, Konrad M, Oberwinkler J, Schaefer M. (2013) Flavanones that selectively inhibit TRPM3 attenuate thermal nociception in vivo. Mol Pharmacol, 84 (5): 736-50. [PMID:24006495]
257. Straub I, Mohr F, Stab J, Konrad M, Philipp SE, Oberwinkler J, Schaefer M. (2013) Citrus fruit and fabacea secondary metabolites potently and selectively block TRPM3. Br J Pharmacol, 168 (8): 1835-50. [PMID:23190005]
258. Strübing C, Krapivinsky G, Krapivinsky L, Clapham DE. (2001) TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron, 29 (3): 645-55. [PMID:11301024]
259. Su Q, Hu F, Ge X, Lei J, Yu S, Wang T, Zhou Q, Mei C, Shi Y. (2018) Structure of the human PKD1-PKD2 complex. Science, 361 (6406). [PMID:30093605]
260. Sun XY, Sun LL, Qi H, Gao Q, Wang GX, Wei NN, Wang K. (2018) Antipruritic Effect of Natural Coumarin Osthole through Selective Inhibition of Thermosensitive TRPV3 Channel in the Skin. Mol Pharmacol, 94 (4): 1164-1173. [PMID:30108138]
261. Suzuki H, Sasaki E, Nakagawa A, Muraki Y, Hatano N, Muraki K. (2016) Diclofenac, a nonsteroidal anti-inflammatory drug, is an antagonist of human TRPM3 isoforms. Pharmacol Res Perspect, 4 (3): e00232. [PMID:27433342]
262. Swanson DM, Dubin AE, Shah C, Nasser N, Chang L, Dax SL, Jetter M, Breitenbucher JG, Liu C, Mazur C et al.. (2005) Identification and biological evaluation of 4-(3-trifluoromethylpyridin-2-yl)piperazine-1-carboxylic acid (5-trifluoromethylpyridin-2-yl)amide, a high affinity TRPV1 (VR1) vanilloid receptor antagonist. J Med Chem, 48 (6): 1857-72. [PMID:15771431]
263. Szallasi A, Cortright DN, Blum CA, Eid SR. (2007) The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. Nat Rev Drug Discov, 6 (5): 357-72. [PMID:17464295]
264. Takaya J, Mio K, Shiraishi T, Kurokawa T, Otsuka S, Mori Y, Uesugi M. (2015) A Potent and Site-Selective Agonist of TRPA1. J Am Chem Soc, 137 (50): 15859-64. [PMID:26630251]
265. Takezawa R, Cheng H, Beck A, Ishikawa J, Launay P, Kubota H, Kinet JP, Fleig A, Yamada T, Penner R. (2006) A pyrazole derivative potently inhibits lymphocyte Ca2+ influx and cytokine production by facilitating transient receptor potential melastatin 4 channel activity. Mol Pharmacol, 69 (4): 1413-20. [PMID:16407466]
266. Talavera K, Gees M, Karashima Y, Meseguer VM, Vanoirbeek JA, Damann N, Everaerts W, Benoit M, Janssens A, Vennekens R et al.. (2009) Nicotine activates the chemosensory cation channel TRPA1. Nat Neurosci, 12 (10): 1293-9. [PMID:19749751]
267. Thiel G, Müller I, Rössler OG. (2013) Signal transduction via TRPM3 channels in pancreatic β-cells. J Mol Endocrinol, 50 (3): R75-83. [PMID:23511953]
268. Thiel G, Rubil S, Lesch A, Guethlein LA, Rössler OG. (2017) Transient receptor potential TRPM3 channels: Pharmacology, signaling, and biological functions. Pharmacol Res, 124: 92-99. [PMID:28720517]
269. Thorneloe KS, Sulpizio AC, Lin Z, Figueroa DJ, Clouse AK, McCafferty GP, Chendrimada TP, Lashinger ES, Gordon E, Evans L et al.. (2008) N-((1S)-1-{[4-((2S)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)-1-piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamide (GSK1016790A), a novel and potent transient receptor potential vanilloid 4 channel agonist induces urinary bladder contraction and hyperactivity: Part I. J Pharmacol Exp Ther, 326 (2): 432-42. [PMID:18499743]
270. Togashi K, Hara Y, Tominaga T, Higashi T, Konishi Y, Mori Y, Tominaga M. (2006) TRPM2 activation by cyclic ADP-ribose at body temperature is involved in insulin secretion. EMBO J, 25 (9): 1804-15. [PMID:16601673]
271. Togashi K, Inada H, Tominaga M. (2008) Inhibition of the transient receptor potential cation channel TRPM2 by 2-aminoethoxydiphenyl borate (2-APB). Br J Pharmacol, 153 (6): 1324-30. [PMID:18204483]
272. Trebak M, Lemonnier L, Smyth JT, Vazquez G, Putney JW. (2007) Phospholipase C-coupled receptors and activation of TRPC channels. Handb Exp Pharmacol, (179): 593-614. [PMID:17217081]
273. Tóth B, Csanády L. (2012) Pore collapse underlies irreversible inactivation of TRPM2 cation channel currents. Proc Natl Acad Sci USA, 109 (33): 13440-5. [PMID:22847436]
274. Tóth B, Iordanov I, Csanády L. (2015) Ruling out pyridine dinucleotides as true TRPM2 channel activators reveals novel direct agonist ADP-ribose-2'-phosphate. J Gen Physiol, 145 (5): 419-30. [PMID:25918360]
275. Ullrich ND, Voets T, Prenen J, Vennekens R, Talavera K, Droogmans G, Nilius B. (2005) Comparison of functional properties of the Ca2+-activated cation channels TRPM4 and TRPM5 from mice. Cell Calcium, 37 (3): 267-78. [PMID:15670874]
276. Urban N, Wang L, Kwiek S, Rademann J, Kuebler WM, Schaefer M. (2016) Identification and Validation of Larixyl Acetate as a Potent TRPC6 Inhibitor. Mol Pharmacol, 89 (1): 197-213. [PMID:26500253]
277. Vandewauw I, De Clercq K, Mulier M, Held K, Pinto S, Van Ranst N, Segal A, Voet T, Vennekens R, Zimmermann K et al.. (2018) A TRP channel trio mediates acute noxious heat sensing. Nature, 555 (7698): 662-666. [PMID:29539642]
278. Veldhuis NA, Poole DP, Grace M, McIntyre P, Bunnett NW. (2015) The G protein-coupled receptor-transient receptor potential channel axis: molecular insights for targeting disorders of sensation and inflammation. Pharmacol Rev, 67 (1): 36-73. [PMID:25361914]
279. Vennekens R, Nilius B. (2007) Insights into TRPM4 function, regulation and physiological role. Handb Exp Pharmacol, (179): 269-85. [PMID:17217063]
280. Vennekens R, Owsianik G, Nilius B. (2008) Vanilloid transient receptor potential cation channels: an overview. Curr Pharm Des, 14 (1): 18-31. [PMID:18220815]
281. Vincent F, Acevedo A, Nguyen MT, Dourado M, DeFalco J, Gustafson A, Spiro P, Emerling DE, Kelly MG, Duncton MA. (2009) Identification and characterization of novel TRPV4 modulators. Biochem Biophys Res Commun, 389 (3): 490-4. [PMID:19737537]
282. Voets T, Droogmans G, Wissenbach U, Janssens A, Flockerzi V, Nilius B. (2004) The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature, 430 (7001): 748-54. [PMID:15306801]
283. Voets T, Nilius B. (2007) Modulation of TRPs by PIPs. J Physiol (Lond.), 582 (Pt 3): 939-44. [PMID:17395625]
284. Voets T, Owsianik G, Nilius B. (2007) TRPM8. Handb Exp Pharmacol, (179): 329-44. [PMID:17217067]
285. Vogt-Eisele AK, Weber K, Sherkheli MA, Vielhaber G, Panten J, Gisselmann G, Hatt H. (2007) Monoterpenoid agonists of TRPV3. Br J Pharmacol, 151 (4): 530-40. [PMID:17420775]
286. Vriens J, Appendino G, Nilius B. (2009) Pharmacology of vanilloid transient receptor potential cation channels. Mol Pharmacol, 75 (6): 1262-79. [PMID:19297520]
287. Vriens J, Held K, Janssens A, Tóth BI, Kerselaers S, Nilius B, Vennekens R, Voets T. (2014) Opening of an alternative ion permeation pathway in a nociceptor TRP channel. Nat Chem Biol, 10 (3): 188-95. [PMID:24390427]
288. Vriens J, Owsianik G, Hofmann T, Philipp SE, Stab J, Chen X, Benoit M, Xue F, Janssens A, Kerselaers S et al.. (2011) TRPM3 is a nociceptor channel involved in the detection of noxious heat. Neuron, 70 (3): 482-94. [PMID:21555074]
289. Vriens J, Voets T. (2018) Sensing the heat with TRPM3. Pflugers Arch, 470 (5): 799-807. [PMID:29305649]
290. Wagner TF, Loch S, Lambert S, Straub I, Mannebach S, Mathar I, Düfer M, Lis A, Flockerzi V, Philipp SE et al.. (2008) Transient receptor potential M3 channels are ionotropic steroid receptors in pancreatic beta cells. Nat Cell Biol, 10 (12): 1421-30. [PMID:18978782]
291. Wahl P, Foged C, Tullin S, Thomsen C. (2001) Iodo-resiniferatoxin, a new potent vanilloid receptor antagonist. Mol Pharmacol, 59 (1): 9-15. [PMID:11125018]
292. Walker RL, Koh SD, Sergeant GP, Sanders KM, Horowitz B. (2002) TRPC4 currents have properties similar to the pacemaker current in interstitial cells of Cajal. Am J Physiol, Cell Physiol, 283 (6): C1637-45. [PMID:12388058]
293. Wang HL, Katon J, Balan C, Bannon AW, Bernard C, Doherty EM, Dominguez C, Gavva NR, Gore V, Ma V et al.. (2007) Novel vanilloid receptor-1 antagonists: 3. The identification of a second-generation clinical candidate with improved physicochemical and pharmacokinetic properties. J Med Chem, 50 (15): 3528-39. [PMID:17585751]
294. Wang Y, Bu J, Shen H, Li H, Wang Z, Chen G. (2017) Targeting Transient Receptor Potential Canonical Channels for Diseases of the Nervous System. Curr Drug Targets, 18 (12): 1460-1465. [PMID:26648074]
295. Wang Y, Szabo T, Welter JD, Toth A, Tran R, Lee J, Kang SU, Suh YG, Blumberg PM, Lee J. (2002) High affinity antagonists of the vanilloid receptor. Mol Pharmacol, 62 (4): 947-56. [PMID:12237342]
296. Washburn DG, Holt DA, Dodson J, McAtee JJ, Terrell LR, Barton L, Manns S, Waszkiewicz A, Pritchard C, Gillie DJ et al.. (2013) The discovery of potent blockers of the canonical transient receptor channels, TRPC3 and TRPC6, based on an anilino-thiazole pharmacophore. Bioorg Med Chem Lett, 23 (17): 4979-84. [PMID:23886683]
297. Watanabe H, Vriens J, Prenen J, Droogmans G, Voets T, Nilius B. (2003) Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature, 424 (6947): 434-8. [PMID:12879072]
298. Wehage E, Eisfeld J, Heiner I, Jüngling E, Zitt C, Lückhoff A. (2002) Activation of the cation channel long transient receptor potential channel 2 (LTRPC2) by hydrogen peroxide. A splice variant reveals a mode of activation independent of ADP-ribose. J Biol Chem, 277 (26): 23150-6. [PMID:11960981]
299. Wei ZL, Nguyen MT, O'Mahony DJ, Acevedo A, Zipfel S, Zhang Q, Liu L, Dourado M, Chi C, Yip V et al.. (2015) Identification of orally-bioavailable antagonists of the TRPV4 ion-channel. Bioorg Med Chem Lett, 25 (18): 4011-5. [PMID:26235950]
300. Wescott SA, Rauthan M, Xu XZ. (2013) When a TRP goes bad: transient receptor potential channels in addiction. Life Sci, 92 (8-9): 410-4. [PMID:22820171]
301. Wissenbach U, Niemeyer BA. (2007) TRPV6. Handb Exp Pharmacol, (179): 221-34. [PMID:17217060]
302. Witzgall R. (2007) TRPP2 channel regulation. Handb Exp Pharmacol, (179): 363-75. [PMID:17217069]
303. Wong CO, Huang Y, Yao X. (2010) Genistein potentiates activity of the cation channel TRPC5 independently of tyrosine kinases. Br J Pharmacol, 159 (7): 1486-96. [PMID:20233211]
304. Wu LJ, Sweet TB, Clapham DE. (2010) International Union of Basic and Clinical Pharmacology. LXXVI. Current progress in the mammalian TRP ion channel family. Pharmacol Rev, 62 (3): 381-404. [PMID:20716668]
305. Xiao B, Dubin AE, Bursulaya B, Viswanath V, Jegla TJ, Patapoutian A. (2008) Identification of transmembrane domain 5 as a critical molecular determinant of menthol sensitivity in mammalian TRPA1 channels. J Neurosci, 28 (39): 9640-51. [PMID:18815250]
306. Xu F, Satoh E, Iijima T. (2003) Protein kinase C-mediated Ca2+ entry in HEK 293 cells transiently expressing human TRPV4. Br J Pharmacol, 140 (2): 413-21. [PMID:12970074]
307. Xu H, Blair NT, Clapham DE. (2005) Camphor activates and strongly desensitizes the transient receptor potential vanilloid subtype 1 channel in a vanilloid-independent mechanism. J Neurosci, 25 (39): 8924-37. [PMID:16192383]
308. Xu H, Delling M, Jun JC, Clapham DE. (2006) Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nat Neurosci, 9 (5): 628-35. [PMID:16617338]
309. Xu H, Delling M, Li L, Dong X, Clapham DE. (2007) Activating mutation in a mucolipin transient receptor potential channel leads to melanocyte loss in varitint-waddler mice. Proc Natl Acad Sci USA, 104 (46): 18321-6. [PMID:17989217]
310. Xu H, Ramsey IS, Kotecha SA, Moran MM, Chong JA, Lawson D, Ge P, Lilly J, Silos-Santiago I, Xie Y et al.. (2002) TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature, 418 (6894): 181-6. [PMID:12077604]
311. Xu H, Ren D. (2015) Lysosomal physiology. Annu Rev Physiol, 77: 57-80. [PMID:25668017]
312. Xu SZ, Zeng F, Boulay G, Grimm C, Harteneck C, Beech DJ. (2005) Block of TRPC5 channels by 2-aminoethoxydiphenyl borate: a differential, extracellular and voltage-dependent effect. Br J Pharmacol, 145 (4): 405-14. [PMID:15806115]
313. Xu X, Lozinskaya I, Costell M, Lin Z, Ball JA, Bernard R, Behm DJ, Marino JP, Schnackenberg CG. (2013) Characterization of Small Molecule TRPC3 and TRPC6 agonist and Antagonists. Biophys J, 104 (2): 454a Meeting abstract. DOI: 10.1016/j.bpj.2012.11.2513
314. Yamamoto S, Takahashi N, Mori Y. (2010) Chemical physiology of oxidative stress-activated TRPM2 and TRPC5 channels. Prog Biophys Mol Biol, 103 (1): 18-27. [PMID:20553742]
315. Yildirim E, Dietrich A, Birnbaumer L. (2003) The mouse C-type transient receptor potential 2 (TRPC2) channel: alternative splicing and calmodulin binding to its N terminus. Proc Natl Acad Sci USA, 100 (5): 2220-5. [PMID:12601176]
316. Yu CR. (2015) TRICK or TRP? What Trpc2(-/-) mice tell us about vomeronasal organ mediated innate behaviors. Front Neurosci, 9: 221. [PMID:26157356]
317. Yu L, Jin W, Wang JX, Zhang X, Chen MM, Zhu ZH, Lee H, Lee M, Zhang YP. (2010) Characterization of TRPC2, an essential genetic component of VNS chemoreception, provides insights into the evolution of pheromonal olfaction in secondary-adapted marine mammals. Mol Biol Evol, 27 (7): 1467-77. [PMID:20142439]
318. Yuan JP, Kim MS, Zeng W, Shin DM, Huang G, Worley PF, Muallem S. (2009) TRPC channels as STIM1-regulated SOCs. Channels (Austin), 3 (4): 221-5. [PMID:19574740]
319. Zeevi DA, Frumkin A, Bach G. (2007) TRPML and lysosomal function. Biochim Biophys Acta, 1772 (8): 851-8. [PMID:17306511]
320. Zhang E, Liao P. (2015) Brain transient receptor potential channels and stroke. J Neurosci Res, 93 (8): 1165-83. [PMID:25502473]
321. Zhang H, Sun X, Qi H, Ma Q, Zhou Q, Wang W, Wang K. (2019) Pharmacological Inhibition of the Temperature-Sensitive and Ca2+-Permeable Transient Receptor Potential Vanilloid TRPV3 Channel by Natural Forsythoside B Attenuates Pruritus and Cytotoxicity of Keratinocytes. J Pharmacol Exp Ther, 368 (1): 21-31. [PMID:30377214]
322. Zholos A. (2010) Pharmacology of transient receptor potential melastatin channels in the vasculature. Br J Pharmacol, 159 (8): 1559-71. [PMID:20233227]
323. Zhou Y, Castonguay P, Sidhom EH, Clark AR, Dvela-Levitt M, Kim S, Sieber J, Wieder N, Jung JY, Andreeva S et al.. (2017) A small-molecule inhibitor of TRPC5 ion channels suppresses progressive kidney disease in animal models. Science, 358 (6368): 1332-1336. [PMID:29217578]
324. Zhu MX. (2011) Various. TRP Channels (CRC Press/Taylor & Francis),. [PMID:22593967]
325. Zhu X, Jiang M, Peyton M, Boulay G, Hurst R, Stefani E, Birnbaumer L. (1996) trp, a novel mammalian gene family essential for agonist-activated capacitative Ca2+ entry. Cell, 85 (5): 661-71. [PMID:8646775]
326. Zhu Y, Lu Y, Qu C, Miller M, Tian J, Thakur DP, Zhu J, Deng Z, Hu X, Wu M et al.. (2015) Identification and optimization of 2-aminobenzimidazole derivatives as novel inhibitors of TRPC4 and TRPC5 channels. Br J Pharmacol, 172 (14): 3495-509. [PMID:25816897]
327. Zierler S, Yao G, Zhang Z, Kuo WC, Pörzgen P, Penner R, Horgen FD, Fleig A. (2011) Waixenicin A inhibits cell proliferation through magnesium-dependent block of transient receptor potential melastatin 7 (TRPM7) channels. J Biol Chem, 286 (45): 39328-35. [PMID:21926172]
328. Zitt C, Zobel A, Obukhov AG, Harteneck C, Kalkbrenner F, Lückhoff A, Schultz G. (1996) Cloning and functional expression of a human Ca2+-permeable cation channel activated by calcium store depletion. Neuron, 16 (6): 1189-96. [PMID:8663995]
329. Zufall F, Ukhanov K, Lucas P, Liman ER, Leinders-Zufall T. (2005) Neurobiology of TRPC2: from gene to behavior. Pflugers Arch, 451 (1): 61-71. [PMID:15971083]
Subcommittee members:
Haoxing Xu (Chairperson)
Markus Delling
Kotdaji Ha
Jinbin Tian
Charlotte Van den Eynde
Joris Vriens
Lixia Yue
Xiaoli Zhang
Michael X. Zhu
Christian M. Grimm, Prof. |
Other contributors:
Nathaniel T. Blair
Ingrid Carvacho
Dipayan Chaudhuri
David E. Clapham (Past chairperson)
Paul DeCaen
Julia F. Doerner
Lu Fan
Sven E. Jordt
David Julius
Kristopher T Kahle
Boyi Liu
David McKemy
Bernd Nilius
Elena Oancea
Grzegorz Owsianik
Antonio Riccio
Rajan Sah
Stephanie C. Stotz
Dan Tong
Long-Jun Wu |
Database page citation (select format):
Concise Guide to PHARMACOLOGY citation:
Alexander SP, Mathie A, Peters JA, Veale EL, Striessnig J, Kelly E et al. (2021) THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Ion channels. Br J Pharmacol. 178 Suppl 1:S157-S245.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
TRPA (ankyrin) family
Agents activating TRPA1 in a covalent manner are thiol reactive electrophiles that bind to cysteine and lysine residues within the cytoplasmic domain of the channel [99,157]. TRPA1 is activated by a wide range of endogenous and exogenous compounds and only a few representative examples are mentioned in the table: an exhaustive listing can be found in [17]. In addition, TRPA1 is potently activated by intracellular zinc (EC50 = 8 nM) [8,104]. A gain-of-function mutation in TRPA1 was found to cause familial episodic pain syndrome [134].
TRPM (melastatin) family
Ca2+ activates all splice variants of TRPM2, but other activators listed are effective only at the full length isoform [63]. Inhibition of TRPM2 by clotrimazole, miconazole, econazole, flufenamic acid is largely irreversible. Co-application of pregnenolone sulphate and clotrimazole caused TRPM3 currents to acquire an inwardly rectifying component at negative voltages, resulting in a biphasic conductance-voltage relationship. Evidence was presented that the inward current might reflect the permeation of cations through the opening of a non-canonical pore [287]. TRPM3 activity is impaired in chronic fatigue syndrome/myalgic encephalomyelitis patients suggesting changes in intracellular Ca2+ concentration, which may impact natural killer cellular functions [36]. TRPM4 exists as multiple spice variants: data listed are for TRPM4b. The sensitivity of TRPM4b and TRPM5 to activation by [Ca2+]i demonstrates a pronounced and time-dependent reduction following excision of inside-out membrane patches [275]. The V½ for activation of TRPM4 and TRPM5 demonstrates a pronounced negative shift with increasing temperature. Activation of TRPM8 by depolarization is strongly temperature-dependent via a channel-closing rate that decreases with decreasing temperature. The V½ is shifted in the hyperpolarizing direction both by decreasing temperature and by exogenous agonists, such as (-)-menthol [282] whereas antagonists produce depolarizing shifts in V½ [177]. The V½ for the native channel is far more positive than that of heterologously expressed TRPM8 [177]. It should be noted that (-)-menthol and structurally related compounds can elicit release of Ca2+ from the endoplasmic reticulum independent of activation of TRPM8 [161]. Intracellular pH modulates activation of TRPM8 by cold and icilin, but not (-)-menthol [6].
TRPML (mucolipin) family
Data in the table are for TRPML proteins mutated (i.e TRPML1Va, TRPML2Va and TRPML3Va) at loci equivalent to TRPML3 A419P to allow plasma membrane expression when expressed in HEK-293 cells and subsequent characterisation by patch-clamp recording [61,80,118,182,309]. Data for wild type TRPML3 are also tabulated [118-119,182,309]. It should be noted that alternative methodologies, particularly in the case of TRPML1, have resulted in channels with differing biophysical characteristics (reviewed by [221]). Initial functional characteristics of TRPML channels are performed on their Va mutations of TRPMLs at loci equivalent to TRPML3 A419P. Current pharmacological characterization of channel activators and blockers are conducted on wild-type channel proteins using endolysosomal patch-clamp [40,62,219,244].
TRPP (polycystin) family
Data in the table are extracted from [49,56] and [246]. Broadly similar single channel conductance, mono- and di-valent cation selectivity and sensitivity to blockers are observed for TRPP2 co-expressed with TRPP1 [55]. Ca2+, Ba2+ and Sr2+ permeate TRPP3, but reduce inward currents carried by Na+. Mg2+ is largely impermeant and exerts a voltage dependent inhibition that increases with hyperpolarization.
TRPV (vanilloid) family
Activation of TRPV1 by depolarisation is strongly temperature-dependent via a channel opening rate that increases with increasing temperature. The V½ is shifted in the hyperpolarizing direction both by increasing temperature and by exogenous agonists [282]. TRPV3 channel dysfunction caused by genetic gain-of-function mutations is implicated in the pathogenesis of skin inflammation, dermatitis, and chronic itch. In rodents, a sponateous gain-of-function matation of the TRPV3 gene causes the development of skin lesions with pruritus and dermatitis [12,149]. In contrast to other thermoTRP channels, TRPV3 sensitizes rather than desensitizes, upon repeated stimulation with either heat or agonists [45,151,310]. The sensitivity of TRPV4 to heat, but not 4α-PDD is lost upon patch excision. TRPV4 is activated by anandamide and arachidonic acid following P450 epoxygenase-dependent metabolism to 5,6-epoxyeicosatrienoic acid (reviewed by [197]). Activation of TRPV4 by cell swelling, but not heat, or phorbol esters, is mediated via the formation of epoxyeicosatrieonic acids. Phorbol esters bind directly to TRPV4. Different TRPV4 mutations load to a broad spectrum of dominant skeletal dysplasias [133,230] and spinal muscular atrophies and hereditary motor and sensory neuropathies [13,58]. Similar mutations were also found in patients with Charcot-Marie-Tooth disease type 2C [137]. TRPV5 preferentially conducts Ca2+ under physiological conditions, but in the absence of extracellular Ca2+, conducts monovalent cations. Single channel conductances listed for TRPV5 and TRPV6 were determined in divalent cation-free extracellular solution. Ca2+-induced inactivation occurs at hyperpolarized potentials when Ca2+ is present extracellularly. Single channel events cannot be resolved (probably due to greatly reduced conductance) in the presence of extracellular divalent cations. Measurements of PCa/PNa for TRPV5 and TRPV6 are dependent upon ionic conditions due to anomalous mole fraction behaviour. Blockade of TRPV5 and TRPV6 by extracellular Mg2+ is voltage-dependent. Intracellular Mg2+ also exerts a voltage dependent block that is alleviated by hyperpolarization and contributes to the time-dependent activation and deactivation of TRPV6 mediated monovalent cation currents. TRPV5 and TRPV6 differ in their kinetics of Ca2+-dependent inactivation and recovery from inactivation. TRPV5 and TRPV6 function as homo- and hetero-tetramers.