Top ▲

TRPA1

Click here for help

Immunopharmacology Ligand  Target has curated data in GtoImmuPdb

Target id: 485

Nomenclature: TRPA1

Family: Transient Receptor Potential channels (TRP)

Gene and Protein Information Click here for help
Species TM P Loops AA Chromosomal Location Gene Symbol Gene Name Reference
Human 6 0 1119 8q21.11 TRPA1 transient receptor potential cation channel subfamily A member 1 61
Mouse 6 0 1125 1 A3 Trpa1 transient receptor potential cation channel, subfamily A, member 1 129
Rat 6 0 1125 5q11 Trpa1 transient receptor potential cation channel, subfamily A, member 1 62
Previous and Unofficial Names Click here for help
ANKTM1 | TRPN1 | ankyrin-like with transmembrane domains 1 | transient receptor potential cation channel
Database Links Click here for help
Alphafold
CATH/Gene3D
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Functional Characteristics Click here for help
γ = 87–100 pS; conducts mono- and di-valent cations non-selectively (PCa/PNa = 0.84); outward rectification; activated by elevated intracellular Ca2+
Ion Selectivity and Conductance Click here for help
Species:  Mouse
Rank order:  Ca2+ = Na+ > Mg2+
References:  96
Ion Selectivity and Conductance Comments
TRPA1 exhibits conductance of 98pS in physiological solution, dependent on Ca2+ and Mg2+ concentration [96].
Voltage Dependence Comments
Voltage-dependence not yet described, inactivation by extracellular Ca2+ might be voltage dependent [96].
Chemical activators (Human)
Isothiocyanates (covalent) and 1,4-dihydropyridines (non-covalent)
Oxidative stress compounds (Mouse)
4-oxo-nonenal: pEC50 5.7, H2O2 : pEC50 3.6, hypochlorite: EC50 11 ppm (human) and 7 ppm (mouse)  [3,20,121]
Physical activators (Human)
Cooling (<17°C) (disputed)  [62,96,144]

Download all structure-activity data for this target as a CSV file go icon to follow link

Activators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Concentration range (M) Holding voltage (mV) Reference
eugenol Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Mm Agonist - - 6x10-4 Physiological 9
Conc range: 6x10-4 M [9]
Holding voltage: Physiological
gingerol Small molecule or natural product Mm Agonist - - 6x10-4 Physiological 9
Conc range: 6x10-4 M [9]
Holding voltage: Physiological
methyl salicylate Small molecule or natural product Mm Agonist - - 6x10-4 Physiological 9
Conc range: 6x10-4 M [9]
Holding voltage: Physiological
icilin Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Mm Agonist - - 1x10-4 Physiological 129
Conc range: 1x10-4 M non-covalent [129]
Holding voltage: Physiological
JT010 Small molecule or natural product Ligand has a PDB structure Hs Activation 9.2 pEC50 - - 133
pEC50 9.2 (EC50 6.5x10-10 M) [133]
Description: Ligand-induced calcium influx in TRPA1-transfected HEK293 cells.
PF-4840154 Small molecule or natural product Hs Activation 7.6 pEC50 - - 119
pEC50 7.6 (EC50 2.51x10-8 M) This compound has similar activity at rat and mouse TRPA1 [119]
Description: Calcium imaging
Conditions: HEK-293cells expressing TRPA1
cannabichromene Small molecule or natural product Rn Agonist 7.2 pEC50 - - 12
pEC50 7.2 (EC50 6x10-8 M) [12]
Description: Measuring increase in intracellular calcium influx in HEK293 cells expressing rat TRPA1.
dibenzoxazepine Small molecule or natural product Hs Activation 7.2 pEC50 - - 26
pEC50 7.2 [26]
Description: Calcium imaging
Conditions: HEK293 cells expressing human TRPA1 loaded with Fluo-4.
morphanthridine Small molecule or natural product Hs Activation 7.1 pEC50 - - 26
pEC50 7.1 [26]
Description: Patch clamp
Conditions: HEK293 cells expressing human TRPA1
1'-acetoxychavicol acetate Small molecule or natural product Hs Activation 6.8 pEC50 - - 98
pEC50 6.8 [98]
Description: FlexStation 2 Calcium imaging
Conditions: HEK293 cells expressing human TRPA1 loaded with Fluo-4
chlorobenzylidene malononitrile Small molecule or natural product Hs Activation 6.7 pEC50 - - 26
pEC50 6.7 (EC50 1.99x10-7 M) covalent [26]
Description: Calcium imaging
Conditions: HEK293 cells expressing human TRPA1 loaded with Fluo-4.
chloropicrin Small molecule or natural product Hs Activation 6.7 pEC50 - - 19
pEC50 6.7 This compound also activates mouse TRPA1 [19]
Description: Calcium imaging
Conditions: HEK293 cells expressing human TRPA1 and mouse dorsal root ganglion neurons loaded with Fura-2
omega-chloroacetophenone Small molecule or natural product Hs Activation 6.6 pEC50 - - 26
pEC50 6.6 [26]
Description: Calcium imaging
Conditions: HEK293 cells expressing human TRPA1 loaded with Fluo-4.
NPPB Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Activation 6.5 pEC50 - - 80
pEC50 6.5 [80]
Description: FLIPR calcium influx assay
Conditions: HEK293 cells expressing human TRPA1 loaded with Calcium-4 dye
benzoquinone Small molecule or natural product Ligand has a PDB structure Hs Activation 6.4 pEC50 - - 2
pEC50 6.4 [2]
Description: Calcium imaging
Conditions: CHO cells expressing TRPA1 loaded with Fura-2
polygodial Small molecule or natural product Hs Activation 6.4 pEC50 - - 44
pEC50 6.4 (EC50 4x10-7 M) [44]
isovelleral Small molecule or natural product Hs Activation 6.3 pEC50 - - 44
pEC50 6.3 This compound is also an activator of mouse TRPA1. [44]
Description: Calcium imaging
Conditions: HEK293 cells expressing human or mouse TRPA1
ASP7663 Small molecule or natural product Mm Activation 6.3 pEC50 - - 70
pEC50 6.3 (EC50 5x10-7 M) [70]
Description: Ligand-induced increase in intracellular Ca2+ in HEK293 cells expressing mTrpa1.
ASP7663 Small molecule or natural product Hs Activation 6.3 pEC50 - - 70
pEC50 6.3 (EC50 5.1x10-7 M) [70]
Description: Ligand-induced increase in intracellular Ca2+ in HEK293 cells expressing hTRPA1.
ASP7663 Small molecule or natural product Rn Activation 6.3 pEC50 - - 70
pEC50 6.3 (EC50 5.4x10-7 M) [70]
Description: Ligand-induced increase in intracellular Ca2+ in HEK293 cells expressing rTrpa1.
Cu2+ Mm Activation 6.2 pEC50 - - 4,93
pEC50 6.2 (EC50 6x10-7 M) [4,93]
super cinnamaldehyde Small molecule or natural product Mm Activation 6.1 pEC50 - - 83
pEC50 6.1 (EC50 8x10-7 M) [83]
Description: Fluorometric Imaging Plate Reader (FLIRP) calcium-influx assay
Conditions: CHO cells expressing mouse TRPA1
bromoacetone Small molecule or natural product Hs Activation 6.0 pEC50 - - 19
pEC50 6.0 This compound also activates mouse TRPA1 [19]
Description: Calcium imaging
Conditions: HEK293 cells expressing human TRPA1 and mouse dorsal root ganglion neurons loaded with Fura-2dorsal root ganglion neurons
auranofin Small molecule or natural product Approved drug Immunopharmacology Ligand Hs Activation 6.0 pEC50 - - 56
pEC50 6.0 [56]
Description: Calcium imaging
Conditions: HEK293 cells expressing human TRPA1 loaded with Fura-2
allicin Small molecule or natural product Mm Agonist 5.9 pEC50 - Physiological 84
pEC50 5.9 [84]
Holding voltage: Physiological
Cu2+ Click here for species-specific activity table Hs Activation 5.9 pEC50 - - 4,93
pEC50 5.9 (EC50 1.3x10-6 M) [4,93]
Description: Sodium imaging
Conditions: CHO cells expressing human TRPA1
Cd2+ Click here for species-specific activity table Hs Activation 5.8 pEC50 - - 4,93
pEC50 5.8 (EC50 1.4x10-6 M) [4,93]
Description: Sodium and calcium imaging
Conditions: CHO cells expressing human TRPA1 and mouse dorsal root ganglion neurons
artepillin C Small molecule or natural product Hs Activation 5.7 pEC50 - - 54
pEC50 5.7 (EC50 1.8x10-6 M) [54]
Description: Calcium imaging
Conditions: HEK293 cells transfected with human TRPA1 loaded with Fura-2
4-oxo-nonenal Small molecule or natural product Ligand is endogenous in the given species Mm Activation 5.7 pEC50 - - 3
pEC50 5.7 [3]
Description: Calcium imaging
Conditions: CHO cells expressing mouse TRPA1 loaded with Fura-2
nitrooleic acid Small molecule or natural product Hs Activation 5.7 pEC50 - - 136
pEC50 5.7 This compound has a similar activity at mouse TRPA1 [136]
Description: Calcium imaging
Conditions: HEK293 cells expressing human TRPA1 and mouse trigeminal and vagal neurons loaded with Fura-2
Cd2+ Click here for species-specific activity table Mm Activation 5.7 pEC50 - - 4,93
pEC50 5.7 (EC50 2.1x10-6 M) [4,93]
1,6-hexamethylene diisocyanate Small molecule or natural product Hs Activation 5.6 pEC50 - - 19
pEC50 5.6 This compound also activates mouse TRPA1 [19]
Description: Calcium imaging
Conditions: HEK293 cells expressing human TRPA1 and mouse dorsal root ganglion neurons loaded with Fura-2
N-acetyl-4-benzoquinoneimine Small molecule or natural product Rn Activation 5.6 pEC50 - - 2,101
pEC50 5.6 This compound has similar activity at human and mouse TRPA1 [2,101]
Description: Calcium imaging
Conditions: CHO or HEK293 cells expressing rat/mouse/human TRPA1 loaded with Fura-2
oleocanthal Small molecule or natural product Hs Activation 5.6 pEC50 - -60.0 114
pEC50 5.6 [114]
Holding voltage: -60.0 mV
Description: Patch clamp
Conditions: HEK-293 cells expressing human TRPA1
O3 Hs Activation 5.5 pEC50 - - 137
pEC50 5.5 Ozone has similar activity at mouse TRPA1 [137]
Description: Calcium imaging
Conditions: HEK293 cells expressing human TRPA1 and mouse vagal neurons loaded with Fura-2
2-pentenal Small molecule or natural product ? Activation 5.3 pEC50 - - 12
pEC50 5.3 (EC50 5x10-6 M) [12]
acrolein Small molecule or natural product Hs Agonist 5.3 pEC50 - Physiological 14
pEC50 5.3 (EC50 5.011x10-6 M) covalent [14]
Holding voltage: Physiological
salirasib Small molecule or natural product Hs Activation 5.3 pEC50 - - 87
pEC50 5.3 [87]
Description: FLIPR calcium-influx assay
Conditions: CHO-TREx cells loaded with Fluo-3
apomorphine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Activation 5.1 pEC50 - - 123
pEC50 5.1 Apomorphine blocks TRPA1 at 100µM [123]
Description: Calcium imaging, patch clamp
Conditions: HEK293 cells transfected with human TRPA1
allicin Small molecule or natural product Click here for species-specific activity table Hs Agonist 5.1 pEC50 - Physiological 15
pEC50 5.1 (EC50 7.943x10-6 M) covalent [15]
Holding voltage: Physiological
allyl isothiocyanate Small molecule or natural product Ligand has a PDB structure Rn Activation 5.0 pEC50 - -40.0 62
pEC50 5.0 [62]
Holding voltage: -40.0 mV
cannabidiolic acid Small molecule or natural product Rn Agonist 4.9 pEC50 - - 12
pEC50 4.9 (EC50 1.2x10-5 M) [12]
Description: Activation of calcium flux via rTrpA1 expressed in HEK293 cells.
Δ9-tetrahydrocannabinol Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Agonist 4.9 pEC50 - -60.0 62
pEC50 4.9 (EC50 1.259x10-5 M) non-covalent [62]
Holding voltage: -60.0 mV
benzyl bromide Small molecule or natural product Hs Activation 4.9 pEC50 - - 19
pEC50 4.9 This compound also activates mouse TRPA1 [19]
Description: Calcium imaging
Conditions: HEK293 cells expressing human TRPA1 and mouse dorsal root ganglion neurons loaded with Fura-2
nicotine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Activation 4.8 pEC50 - -75.0 135
pEC50 4.8 (EC50 1.7x10-5 M) non-covalent [135]
Holding voltage: -75.0 mV
Description: Patch clamp
Conditions: CHO cells expressing mouse or human TRPA1
allyl isothiocyanate Small molecule or natural product Ligand has a PDB structure Mm Activation 4.7 pEC50 - Physiological 9
pEC50 4.7 [9]
Holding voltage: Physiological
thymol Small molecule or natural product Ligand has a PDB structure Hs Activation 4.7 pEC50 6.25x10-6 - 2.5x10-5 - 78
pEC50 4.7 (EC50 2x10-5 M) Conc range: 6.25x10-6 - 2.5x10-5 M non-covalent [78]
Description: FLIPR calcium influx assay
Conditions: Human TRPA1-HEK293 stable cell line loaded with calcium 3 dye
URB597 Small molecule or natural product Click here for species-specific activity table Hs Agonist 4.6 pEC50 - - 106
pEC50 4.6 (EC50 2.4x10-5 M) non-covalent [106]
Description: Fluorometric Imaging Plate Reader (FLIRP) calcium-influx assay
Conditions: HEK293 cells expressing human TRPA1
4-hydroxynonenal Small molecule or natural product Ligand is endogenous in the given species Rn Activation 4.6 pEC50 - - 86,141
pEC50 4.6 [86,141]
Description: Calcium imaging
Conditions: Rat dorsal root ganglion neurons
prostaglandin A2 Small molecule or natural product Ligand is endogenous in the given species Ligand has a PDB structure Mm Activation 4.6 pEC50 - - 88
pEC50 4.6 [88]
Description: Calcium imaging
Conditions: Mouse dorsal root ganglion neurons loaded with Fura-2
crotylaldehyde Small molecule or natural product Ligand has a PDB structure Rn Activation 4.6 pEC50 - - 6
pEC50 4.6 [6]
Description: Calcium imaging
Conditions: HEK293 cells expressing rat TRPA1 loaded with Fura-2
methyl isocyanate Small molecule or natural product Hs Activation 4.6 pEC50 - - 19
pEC50 4.6 This compound also activates mouse TRPA1 [19]
Description: Calcium imaging
Conditions: HEK293 cells expressing human TRPA1 and mouse dorsal root ganglion neurons loaded with Fura-2
dibutyl phthalate Small molecule or natural product Ligand has a PDB structure Hs Activation 4.6 pEC50 - - 125
pEC50 4.6 [125]
Description: Calcium imaging
Conditions: CHO cells stably expressing human TRPA1 loaded with Fluo-4
docosahexaenoic acid Small molecule or natural product Ligand is endogenous in the given species Ligand has a PDB structure Rn Activation 4.4 pEC50 - -60.0 94
pEC50 4.4 This compound has similar activity at human and mouse TRPA1 [94]
Holding voltage: -60.0 mV
Description: Patch clamp
Conditions: HEK293 celss expressing rat TRPA1
(-)-menthol Small molecule or natural product Approved drug Click here for species-specific activity table Hs Partial agonist 4.0 – 4.5 pEC50 - - 63,152
pEC50 4.0 – 4.5 (EC50 9.5x10-5 – 2.84x10-5 M) Menthol is also active at the mouse TRPA1, but becomes inhibitory at >100µM [63,152]
Description: Calcium imaging, patch clamp
Conditions: CHO cells expressing human TRPA1
methylglyoxal Small molecule or natural product Ligand is endogenous in the given species Ligand has a PDB structure Hs Activation 2.5 – 6.0 pEC50 - - 29,39,69
pEC50 2.5 – 6.0 This compound has similar activity at mouse and rat TRPA1 [29,39,69]
Description: Calcium imaging, patch clamp
Conditions: HEK 293 cells expressing hTRPA1, rTRPA1 loaded with Fura-2
allyl isothiocyanate Small molecule or natural product Ligand has a PDB structure Hs Activation 4.2 pEC50 - - 57
pEC50 4.2 (EC50 6.31x10-5 M) [57]
cinnamaldehyde Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Mm Agonist 4.2 pEC50 - Physiological 9
pEC50 4.2 (EC50 6.3x10-5 M) covalent [9]
Holding voltage: Physiological
acetaldehyde Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Activation 4.1 pEC50 - - 10
pEC50 4.1 [10]
Description: Calcium imaging
Conditions: HEK293 cells expressing human TRPA1 loaded with Fluo-3
flufenamic acid Small molecule or natural product Approved drug Ligand has a PDB structure Immunopharmacology Ligand Rn Activation 3.8 pEC50 - -100.0 60
pEC50 3.8 [60]
Holding voltage: -100.0 mV
Description: Two electrode voltage clamp
Conditions: Xenopus oocytes expressing rat TRPA1
isoflurane Small molecule or natural product Approved drug Click here for species-specific activity table Rn Activation 3.7 pEC50 - - 89
pEC50 3.7 [89]
Description: Patch clamp
Conditions: HEK293 cells expressing rat TRPA1
H2O2 Ligand is endogenous in the given species Mm Activation 3.6 pEC50 - - 3,121
pEC50 3.6 [3,121]
Description: Calcium imaging
Conditions: CHO cells expressing mouse TRPA1 loaded with Fura-2
2-iodoacetamide Small molecule or natural product Mm Activation 3.5 pEC50 - - 83
pEC50 3.5 (EC50 3.57x10-4 M) [83]
Description: Fluorometric Imaging Plate Reader (FLIRP) calcium-influx assay
Conditions: CHO cells expressing mouse TRPA1
formalin Small molecule or natural product Ligand has a PDB structure Mm Activation 3.4 pEC50 - - 86,90
pEC50 3.4 (EC50 3.981x10-4 M) covalent. This level of activity is also observed for rat TRPA1 [86,90]
Description: Calcium imaging
Conditions: HEK293 cells expressing human TRPA1 loaded with Fluo-4
niflumic acid Small molecule or natural product Approved drug Ligand has a PDB structure Immunopharmacology Ligand Rn Activation 3.3 pEC50 - -100.0 60
pEC50 3.3 [60]
Holding voltage: -100.0 mV
Description: Two electrode voltage clamp
Conditions: Xenopus oocytes expressing rat TRPA1
acetaldehyde Small molecule or natural product Ligand has a PDB structure Mm Activation 2.9 pEC50 - - 10
pEC50 2.9 [10]
Description: Calcium imaging
Conditions: HEK293 cells expressing mouse TRPA1loaded with Fluo-3
NaHS Ligand is endogenous in the given species Mm Activation 2.9 pEC50 - - 131
pEC50 2.9 This compound has similar activity at the human TRPA1 [131]
Description: Calcium imaging
Conditions: HEK293 cells expressing mouse TRPA1 loaded with Fura-2
MTSEA Small molecule or natural product Mm Activation 2.8 pEC50 - - 83
pEC50 2.8 (EC50 1.58x10-3 M) [83]
Description: Fluorometric Imaging Plate Reader (FLIRP) calcium-influx assay
Conditions: CHO cells expressing mouse TRPA1
methyl p-hydroxybenzoate Small molecule or natural product Ligand has a PDB structure Mm Activation 2.4 pEC50 - -60.0 48
pEC50 2.4 [48]
Holding voltage: -60.0 mV
Description: Patch clamp
Conditions: HEK293 cells expressing mouse TRPA1
Zn2+ Click here for species-specific activity table Mm Activation 2.3 pEC50 - - 4,59
pEC50 2.3 Zinc has similar activity at the human TRPA1 [4,59]
Description: Calcium imaging
Conditions: HEK293 cells expressing human TRPA1 and mouse dorsal root ganglia neurons loaded with Fura-2
NH4Cl Mm Activation 2.0 pEC50 - - 49
pEC50 2.0 [49]
Description: Patch clamp
Conditions: HEK293 cells expressing mouse TRPA1
PF-4840154 Small molecule or natural product Rn Activation 7.0 pIC50 - - 120
pIC50 7.0 (IC50 1x10-7 M) [120]
View species-specific activator tables
Activator Comments
TRPA1 is activated by covalent modification of intracellular cysteines [57], activated by bradykinin [9,14,62], probably activated by noxious cold [9,129], but this is disputed [62,96], mechano-activation is still under discussion. TRPA1 is modulated by intra- and extracellular Ca2+ [96].

Snake and fly TRPA1 are a heat-activated channels [50,105,146].

In a calcium imaging study the PGD2 metabolite 15-deoxy-Δ12,14-prostaglandin J2 activated the human TRPA1 expressed in HEK293 cells and in a subset of chemosensitive mouse trigeminal neurons, where this activation was blocked by both the nonselective TRP channel blocker ruthenium red, and the TRPA1 inhibitor HC-030031. Δ12-PGJ2 and 8-iso-PGA2 are also activators of TRPA1 [138].

Further compounds which are reported to activate TRPA1 in vitro include: 2-pentenal (mouse) [14], clotrimazole (human and mouse) [92], WIN55212-2 (mouse) [1] and AM1241 (mouse) [1], sodium hypochlorite (NaOCl; mouse and human) [20], 5,6-EET (mouse) [126], hepoxilin A3 (mouse, rat) [52], 12S-HPETE (mouse, rat) [52], carbon dioxide (rat, mouse) [148], acetic, propinoic, formic, and lactic acids (human, rat, mouse) [147].
Inhibitors
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Concentration range (M) Holding voltage (mV) Reference
AM-0902 Small molecule or natural product Rn Antagonist 7.6 pIC50 - - 122
pIC50 7.6 (IC50 2.4x10-8 M) [122]
Description: Antagonism of activator-induced calcium flux measuring 45Ca2+.
Gating inhibitors Click here for help
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Concentration range (M) Holding voltage (mV) Reference
resolvin D2 Small molecule or natural product Ligand is endogenous in the given species Immunopharmacology Ligand Mm Inhibition 8.7 pIC50 - -60.0 110
pIC50 8.7 [110]
Holding voltage: -60.0 mV
Description: Patch-clamp
Conditions: Mouse DRG neurons, mustard oil AITC (300 µM)
resolvin D1 Small molecule or natural product Ligand is endogenous in the given species Immunopharmacology Ligand Mm Inhibition 7.2 pIC50 - - 11,110
pIC50 7.2 [11,110]
Description: Calcium imaging, patch clamp
Conditions: Mouse DRG neurons, mustard oil AITC (300 µM); HEK293T cells transfected with mTRPs
AP18 Small molecule or natural product Hs Inhibition 5.5 pIC50 - - 113
pIC50 5.5 (IC50 3.1x10-6 M) [113]
Description: Fluorometric Imaging Plate Reader (FLIRP) calcium-influx assay
Conditions: CHO cells expressing human TRPA1
AP18 Small molecule or natural product Mm Inhibition 5.3 pIC50 - - 113
pIC50 5.3 (IC50 4.5x10-6 M) [113]
Description: Fluorometric Imaging Plate Reader (FLIRP) calcium-influx assay
gentamicin Small molecule or natural product Approved drug Mm Antagonist 5.2 pIC50 - -80.0 96
pIC50 5.2 [96]
Holding voltage: -80.0 mV
HC030031 Small molecule or natural product Hs Inhibition 5.2 pIC50 - - 90
pIC50 5.2 [90]
Description: Calcium imaging
Conditions: HEK293 cells expressing human TRPA1 loaded with Fluo-4
isopentenyl diphosphate Small molecule or natural product Ligand is endogenous in the given species Ligand has a PDB structure Mm Inhibition 5.1 pIC50 - - 11
pIC50 5.1 [11]
Description: Calcium imaging
Conditions: HEK-293 cells expressing TRPA1
TCS 5861528 Small molecule or natural product Hs Inhibition 4.8 pIC50 - - 149
pIC50 4.8 [149]
Description: Calcium imaging
Conditions: Human TRPA1-inducible HEK-293 cells (HEK-LacltrpA1 clone B22), Aallyl isothiocyanate as agonist
camphor Small molecule or natural product Click here for species-specific activity table Mm Antagonist 4.2 pIC50 - Physiological 85
pIC50 4.2 [85]
Holding voltage: Physiological
(-)-menthol Small molecule or natural product Approved drug Click here for species-specific activity table Mm Antagonist 4.2 pIC50 - Physiological 85
pIC50 4.2 [85]
Holding voltage: Physiological
View species-specific gating inhibitor tables
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
GDC-6599 Small molecule or natural product Hs Inhibition 8.0 pIC50 139
pIC50 8.0 (IC50 9.38x10-9 M) [139]
Channel Blockers
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Concentration range (M) Holding voltage (mV) Reference
GDC-0334 Small molecule or natural product Ligand has a PDB structure Hs Inhibition 8.8 pIC50 - - 8
pIC50 8.8 (IC50 1.69x10-9 M) [8]
AM-0902 Small molecule or natural product Hs Antagonist 7.7 pIC50 - - 122
pIC50 7.7 (IC50 2x10-8 M) [122]
Description: Antagonism of activator-induced calcium flux measuring 45Ca2+.
A-967079 Small molecule or natural product Hs Inhibition 7.2 pIC50 - - 32
pIC50 7.2 This compoud also acts as a gating inhibitor at the rat and mouse TRPA1. [32]
Description: Calcium imaging
Conditions: HEK-293F cells expressing TRPA1
Gd3+ Click here for species-specific activity table Mm Antagonist 7.0 pIC50 - -80.0 96
pIC50 7.0 [96]
Holding voltage: -80.0 mV
ruthenium red Click here for species-specific activity table Mm Inhibition 5.5 pIC50 - -80.0 96
pIC50 5.5 (IC50 3.55x10-6 M) [96]
Holding voltage: -80.0 mV
amiloride Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Mm Inhibition 3.3 pIC50 - -80.0 96
pIC50 3.3 [96]
Holding voltage: -80.0 mV
View species-specific channel blocker tables
Channel Blocker Comments
Blocking effects are modulated by divalent cations [96].
Immunopharmacology Comments
Several lines of evidence implicate TRPA1 in inflammation, inflammatory pain and inflammatory diseases [74,82,91,112,130,154].
Cell Type Associations
Immuno Cell Type:  Mast cells
Comment:  TRPA1 is reported to be involved mast cell secretory granule formation in rat.
References:  109
Tissue Distribution Click here for help
Brain, heart, small intestine, lung, skeletal muscle, and pancreas.
Species:  Human
Technique:  Northern Blot
References:  128
Gastrointestinal tissues (including stomach, intestine, epithelial cell, duodenal mucosa), enterochromaffin cells. NOTE: this pattern of expression is also reported in mouse.
Species:  Human
Technique:  RT-PCR, in situ hybridization, flow cytometoric analysis
References:  71,107,115,117
Skin cells (including fibroblasts, keratinocytes and melanocytes).
Species:  Human
Technique:  RT-PCR, Western blot, calcium imaging
References:  17,27,142
Urinary bladder (basal layers of the urothelium, urothelial cells and nerve fibres within the urothelium, suburothelial space, and muscle layer and around blood vessels). Note that this pattern of expression is also observed in the rat.
Species:  Human
Technique:  Immunohistochemistry, Western blot and RT-PCR.
References:  51,131
Odontoblast and dental pulp fibroblasts.
Species:  Human
Technique:  RT-PCR, immunohistochemistry, calcium imaging and Western blot.
References:  41-42
Synoviocyte
Species:  Human
Technique:  RT-PCR
References:  55
Respiratory system: including lung fibroblasts, airway epithelial and smooth muscle cells
Species:  Human
Technique:  RT-PCR, western blot, immunocytochemistry
References:  95,103
Dorsal root ganglia, sensory neurones (C-fibres), trigeminal ganglia, nodose ganglia, nociceptive neurones, inner ear (organ of Corti).
Species:  Mouse
Technique:  In situ hybridisation, northern blot, RT-PCR, immunohistochemistry
References:  15,33,62,68,96,129
Jugular/nodose ganglion neurons
Species:  Mouse
Technique:  RT-PCR
References:  99
Olfactory epithelium
Species:  Mouse
Technique:  Immunohistochemistry
References:  97
Nerve fibers innervating the vestibular sensory cells.
Species:  Mouse
Technique:  Immunohistochemistry
References:  134
Endothelial cells from cerebral arteries.
Species:  Rat
Technique:  RT-PCR
References:  38
Pancreatic beta cells.
Species:  Rat
Technique:  RT-PCR, immunocytochemistry, western blotting
References:  29
Tissue Distribution Comments
Note that expression is upregulated by de-ubiquitination by the tumor suppressor (ubiquitin hydrolase) CYLD.
Functional Assays Click here for help
Two-electrode voltage clamp, patch clamp, single channel analysis and Ca2+ imaging (reported in mouse, rat and human).
Species:  Mouse
Tissue:  Xenopus laevis oocytes injected with TRPA1 cDNA, transfection of HEK, CHO cells.
Response measured:  Activation by ligands and cold
References:  33,62,96,129
Physiological Functions Click here for help
Colitis
Species:  Mouse
Tissue:  Colon
References:  43
Senses various noxious stimuli: pungent natural compounds, noxious cold temperature, environmental irritants, inflammatory peptides, noxious mechanical stimuli.
Species:  Mouse
Tissue:  Sensory neurones.
References:  111
Sense hyperoxia and hypoxia
Species:  Mouse
Tissue:  Nodose ganglion and dorsal root ganglia neurons.
References:  132
Bladder overaction (due to spinal cord injury and bladder hyperreflexia, afferent transduction).
Species:  Rat
Tissue:  Bladder and dorsal root ganglion neurons.
References:  5,37
Mediates vasodilation and regulates blood flow. Note that this has also been reported in rat.
Species:  Mouse
Tissue:  Cardiovascular system including skin, blood vessels (ear, paw), mesenteric, carotid, cerebral and meningeal artery.
References:  38,75,102,116
Insulin release
Species:  Rat
Tissue:  Pancreatic beta cells
References:  29
Cough; observed in human, guinea pig and mouse.
Species:  Human
Tissue:  Vagus nerve
References:  7,22
Facilitating excitatory synaptic transmission.
Species:  Rat
Tissue:  Substantia gelatinosa neurons
References:  72
Regulation of gastrointestinal motility. Note that this has also been described in guinea pig.
Species:  Mouse
Tissue:  Ileum, colon and myenteric neurons.
References:  107,115
Itch
Species:  Mouse
Tissue:  Dorsal root ganglia neurons, skin
References:  46,79,81,150-151
Visceral nociception
Species:  Mouse
Tissue:  Dorsal root ganglia neurons innervating the colon.
References:  30
Pancreatic inflammation and pain
Species:  Mouse
Tissue:  Pancreatic nerve fibers and dorsal root ganglia neurons innervating the pancreas.
References:  31,124
Allergic asthma and non-allergic airway hyperreactivity. Observed in mouse and rat.
Species:  Mouse
Tissue:  Airway
References:  28,58,118
Melanin synthesis
Species:  Human
Tissue:  Skin
References:  17
Inflammatory and neuropathic pain (reported in rat and mouse)
Species:  Rat
Tissue: 
References:  23,34-35,40,104,108,140
Allergic contact dermatitis
Species:  Mouse
Tissue:  Dorsal root ganglion neurons
References:  79,125
Mechanosensation and mechanical transduction.
Species:  Mouse
Tissue:  Sensory neurons, skin, colon and nerve.
References:  24-25,77,145
Nociception and mediator of pro-algesic effects of bradykinin, receptor for noxious cold (disputed).
Species:  Mouse
Tissue:  Sensory neurons (nodose and dorsal root ganglion).
References:  14,35-36,45,64,76,129
Physiological Consequences of Altering Gene Expression Click here for help
Antisense knock down of TRPA1 alleviates cold hyperalgesia after spinal nerve ligation.
Species:  Rat
Tissue:  Spinal cord
Technique:  Antisense oligodeoxynucleotide gene knockdown.
References:  66
Reduced TRPA1 expression leads to normalized bladder spontaneous phasic activity, decreases the cinnamaldehyde-induced bladder contraction and the number of nonvoiding contractions in spinal cord injuried rat.
Species:  Rat
Tissue:  Spinal cord.
Technique:  Antisense oligodeoxynucleotide gene knockdown.
References:  5
Mice lacking TRPA1 gene show impaired detection of pungent natural compounds, noxious cold temperature, environmental irritants, inflammatory peptides, noxious mechanical stimuli (reported in human, mouse and rat).
Species:  Mouse
Tissue:  Dorsal root ganglion neurons
Technique:  Gene knockout
References:  111
Mice lacking TRPA1 gene show reduced inflammatory responses to certain chronic diseases, including chronic skin diseases, asthma, rheumatoid arthritis, colitis, etc. (reported in human, mouse and rat).
Species:  Mouse
Tissue:  Skin, colon, lung, dorsal root ganglion neurons
Technique: 
References:  16,18
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Trpa1+|Trpa1tm1Jul Trpa1tm1Jul/Trpa1+
involves: 129P2/OlaHsd * C57BL/6
MGI:3522699  MP:0002498 abnormal acute inflammation PMID: 16564016 
Trpa1tm1.1Bju Trpa1tm1.1Bju/Trpa1tm1.1Bju
involves: C57BL/6J
MGI:3522699  MP:0002330 abnormal bronchial provocation PMID: 19059884 
Trpa1+|Trpa1tm1Jul Trpa1tm1Jul/Trpa1+
involves: 129P2/OlaHsd * C57BL/6
MGI:3522699  MP:0002734 abnormal mechanical nociception PMID: 16564016 
Trpa1tm1Jul Trpa1tm1Jul/Trpa1tm1Jul
involves: 129P2/OlaHsd * C57BL/6
MGI:3522699  MP:0003633 abnormal nervous system physiology PMID: 16564016 
Trpa1+|Trpa1tm1Jul Trpa1tm1Jul/Trpa1+
involves: 129P2/OlaHsd * C57BL/6
MGI:3522699  MP:0003633 abnormal nervous system physiology PMID: 16564016 
Trpa1tm1.1Bju Trpa1tm1.1Bju/Trpa1tm1.1Bju
involves: C57BL/6J
MGI:3522699  MP:0004811 abnormal neuron physiology PMID: 18499726  19059884 
Trpa1tm1.1Bju Trpa1tm1.1Bju/Trpa1tm1.1Bju
involves: C57BL/6J
MGI:3522699  MP:0010055 abnormal sensory neuron physiology PMID: 18499726 
Trpa1tm1Kykw Trpa1tm1Kykw/Trpa1tm1Kykw
involves: 129P2/OlaHsd * C57BL/6J
MGI:3522699  MP:0001986 abnormal taste sensitivity PMID: 16630838 
Trpa1+|Trpa1tm1Jul Trpa1tm1Jul/Trpa1+
involves: 129P2/OlaHsd * C57BL/6
MGI:3522699  MP:0002733 abnormal thermal nociception PMID: 16564016 
Trpa1tm1Kykw Trpa1tm1Kykw/Trpa1tm1Kykw
involves: 129P2/OlaHsd * C57BL/6J
MGI:3522699  MP:0003663 abnormal thermosensation PMID: 16630838 
Trpa1tm1.1Bju Trpa1tm1.1Bju/Trpa1tm1.1Bju
involves: C57BL/6J
MGI:3522699  MP:0008874 decreased physiological sensitivity to xenobiotic PMID: 19059884 
Trpa1+|Trpa1tm1Jul Trpa1tm1Jul/Trpa1+
involves: 129P2/OlaHsd * C57BL/6
MGI:3522699  MP:0005407 hyperalgesia PMID: 16564016 
Trpa1tm1Kykw Trpa1tm1Kykw/Trpa1tm1Kykw
involves: 129P2/OlaHsd * C57BL/6J
MGI:3522699  MP:0005498 hyporesponsive to tactile stimuli PMID: 16630838 
Trpa1tm1Kykw Trpa1tm1Kykw/Trpa1tm1Kykw
involves: 129P2/OlaHsd * C57BL/6J
MGI:3522699  MP:0004764 increased brainstem auditory evoked potential PMID: 16630838 
Trpa1+|Trpa1tm1Jul Trpa1tm1Jul/Trpa1+
involves: 129P2/OlaHsd * C57BL/6
MGI:3522699  MP:0008531 increased chemical nociceptive threshold PMID: 16564016 
Trpa1tm1Kykw Trpa1tm1Kykw/Trpa1tm1Kykw
involves: 129P2/OlaHsd * C57BL/6J
MGI:3522699  MP:0001973 increased thermal nociceptive threshold PMID: 16630838 
Clinically-Relevant Mutations and Pathophysiology Click here for help
Disease:  Episodic pain syndrome, familial, 1; FEPS1
Description: An autosomal-dominant familial episodic pain syndrome characterized by episodes of debilitating upper body pain, triggered by fasting and physical stress.
Synonyms: Familial episodic pain syndrome [Orphanet: ORPHA391384]
Familial episodic pain syndrome with predominantly upper body involvement [Orphanet: ORPHA391389]
OMIM: 615040
Orphanet: ORPHA391389, ORPHA391384
References:  73
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Missense Human N855S c.2564A>G In the S4 transmembrane segment. 73
Gene Expression and Pathophysiology Click here for help
Upregulation
Tissue or cell type:  Spinal cord and dorsal root ganglia.
Pathophysiology:  CFA induced inflammatory pain.
Species:  Mouse
Technique: 
References:  34,65
Upregulation
Tissue or cell type:  Dorsal root ganglia
Pathophysiology:  Diabetes
Species:  Rat
Technique: 
References:  13
Upregulation
Tissue or cell type:  Dorsal root ganglia
Pathophysiology:  Spinal nerve ligation
Species:  Rat
Technique: 
References:  66
Overexpression, upregulation of the channel in sensory neurones following injury and inflammation contributes to cold hyperalgesia.
Tissue or cell type:  Nociceptory neurones.
Pathophysiology:  Hyperalgesia
Species:  Rat
Technique: 
References:  108
Downregulation
Tissue or cell type:  Dorsal root ganglion neurons.
Pathophysiology:  Neuropathic pain (spared nerve injury).
Species:  Rat
Technique: 
References:  127
Upregulation
Tissue or cell type:  Dorsal root ganglia and nodose ganglion neurons innervating the pancreas.
Pathophysiology:  Pancreatic pain
Species:  Mouse
Technique: 
References:  124
Upregulation
Tissue or cell type:  Bladder and dorsal root ganglia neurons.
Pathophysiology:  Spinal cord injury
Species:  Rat
Technique: 
References:  5
Upregulation
Tissue or cell type:  Dorsal root ganglia
Pathophysiology:  Oxaliplatin-induced peripheral neuropathy
Species:  Mouse
Technique: 
References:  100
Upregulation
Tissue or cell type:  Trigeminal ganglia
Pathophysiology:  Tooth injury, pulp exposure
Species:  Rat
Technique: 
References:  53
Upregulation
Tissue or cell type:  Synoviocytes
Pathophysiology:  Inflammation
Species:  Human
Technique: 
References:  55
Upregulation. Note that this is also observed in rat.
Tissue or cell type:  Colon, dorsal root ganglia.
Pathophysiology:  Colitis.
Species:  Mouse
Technique: 
References:  67,153
Upregulation
Tissue or cell type:  Lumbar dorsal root ganglia.
Pathophysiology:  Chronic constriction injury (CCI) of the sciatic nerve.
Species:  Rat
Technique: 
References:  47
Biologically Significant Variant Comments
A single nucleotide polymorphism (SNP), which results in the Glu179Lys substitution, has been found in pain patients who experience paradoxical heat sensation [21]. TRPA1 SNPs are associated with preference for mentholated cigarettes in heavy smokers [143].
General Comments
Note that Drs Liu and Fan contributed equally to the September 2013 update of this page.

References

Show »

1. Akopian AN, Ruparel NB, Patwardhan A, Hargreaves KM. (2008) Cannabinoids desensitize capsaicin and mustard oil responses in sensory neurons via TRPA1 activation. J Neurosci, 28 (5): 1064-75. [PMID:18234885]

2. Andersson DA, Gentry C, Alenmyr L, Killander D, Lewis SE, Andersson A, Bucher B, Galzi JL, Sterner O, Bevan S et al.. (2011) TRPA1 mediates spinal antinociception induced by acetaminophen and the cannabinoid Δ(9)-tetrahydrocannabiorcol. Nat Commun, 2: 551. [PMID:22109525]

3. Andersson DA, Gentry C, Moss S, Bevan S. (2008) Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress. J Neurosci, 28 (10): 2485-94. [PMID:18322093]

4. Andersson DA, Gentry C, Moss S, Bevan S. (2009) Clioquinol and pyrithione activate TRPA1 by increasing intracellular Zn2+. Proc Natl Acad Sci USA, 106 (20): 8374-9. [PMID:19416844]

5. Andrade EL, Forner S, Bento AF, Leite DF, Dias MA, Leal PC, Koepp J, Calixto JB. (2011) TRPA1 receptor modulation attenuates bladder overactivity induced by spinal cord injury. Am J Physiol Renal Physiol, 300 (5): F1223-34. [PMID:21367919]

6. Andrè E, Campi B, Materazzi S, Trevisani M, Amadesi S, Massi D, Creminon C, Vaksman N, Nassini R, Civelli M et al.. (2008) Cigarette smoke-induced neurogenic inflammation is mediated by alpha,beta-unsaturated aldehydes and the TRPA1 receptor in rodents. J Clin Invest, 118 (7): 2574-82. [PMID:18568077]

7. Andrè E, Gatti R, Trevisani M, Preti D, Baraldi PG, Patacchini R, Geppetti P. (2009) Transient receptor potential ankyrin receptor 1 is a novel target for pro-tussive agents. Br J Pharmacol, 158 (6): 1621-8. [PMID:19845671]

8. Balestrini A, Joseph V, Dourado M, Reese RM, Shields SD, Rougé L, Bravo DD, Chernov-Rogan T, Austin CD, Chen H et al.. (2021) A TRPA1 inhibitor suppresses neurogenic inflammation and airway contraction for asthma treatment. J Exp Med, 218 (4). [PMID:33620419]

9. Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, Earley TJ, Patapoutian A. (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron, 41 (6): 849-57. [PMID:15046718]

10. Bang S, Kim KY, Yoo S, Kim YG, Hwang SW. (2007) Transient receptor potential A1 mediates acetaldehyde-evoked pain sensation. Eur J Neurosci, 26 (9): 2516-23. [PMID:17970723]

11. Bang S, Yoo S, Yang TJ, Cho H, Kim YG, Hwang SW. (2010) Resolvin D1 attenuates activation of sensory transient receptor potential channels leading to multiple anti-nociception. Br J Pharmacol, 161 (3): 707-20. [PMID:20880407]

12. Baraldi PG, Preti D, Materazzi S, Geppetti P. (2010) Transient receptor potential ankyrin 1 (TRPA1) channel as emerging target for novel analgesics and anti-inflammatory agents. J Med Chem, 53 (14): 5085-107. [PMID:20356305]

13. Barrière DA, Rieusset J, Chanteranne D, Busserolles J, Chauvin MA, Chapuis L, Salles J, Dubray C, Morio B. (2012) Paclitaxel therapy potentiates cold hyperalgesia in streptozotocin-induced diabetic rats through enhanced mitochondrial reactive oxygen species production and TRPA1 sensitization. Pain, 153 (3): 553-61. [PMID:22177224]

14. Bautista DM, Jordt SE, Nikai T, Tsuruda PR, Read AJ, Poblete J, Yamoah EN, Basbaum AI, Julius D. (2006) TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell, 124 (6): 1269-82. [PMID:16564016]

15. Bautista DM, Movahed P, Hinman A, Axelsson HE, Sterner O, Högestätt ED, Julius D, Jordt SE, Zygmunt PM. (2005) Pungent products from garlic activate the sensory ion channel TRPA1. Proc Natl Acad Sci USA, 102 (34): 12248-52. [PMID:16103371]

16. Bautista DM, Pellegrino M, Tsunozaki M. (2013) TRPA1: A gatekeeper for inflammation. Annu Rev Physiol, 75: 181-200. [PMID:23020579]

17. Bellono NW, Kammel LG, Zimmerman AL, Oancea E. (2013) UV light phototransduction activates transient receptor potential A1 ion channels in human melanocytes. Proc Natl Acad Sci USA, 110 (6): 2383-8. [PMID:23345429]

18. Bessac BF, Jordt SE. (2010) Sensory detection and responses to toxic gases: mechanisms, health effects, and countermeasures. Proc Am Thorac Soc, 7 (4): 269-77. [PMID:20601631]

19. Bessac BF, Sivula M, von Hehn CA, Caceres AI, Escalera J, Jordt SE. (2009) Transient receptor potential ankyrin 1 antagonists block the noxious effects of toxic industrial isocyanates and tear gases. FASEB J, 23 (4): 1102-14. [PMID:19036859]

20. Bessac BF, Sivula M, von Hehn CA, Escalera J, Cohn L, Jordt SE. (2008) TRPA1 is a major oxidant sensor in murine airway sensory neurons. J Clin Invest, 118 (5): 1899-910. [PMID:18398506]

21. Binder A, May D, Baron R, Maier C, Tölle TR, Treede RD, Berthele A, Faltraco F, Flor H, Gierthmühlen J et al.. (2011) Transient receptor potential channel polymorphisms are associated with the somatosensory function in neuropathic pain patients. PLoS ONE, 6 (3): e17387. [PMID:21468319]

22. Birrell MA, Belvisi MG, Grace M, Sadofsky L, Faruqi S, Hele DJ, Maher SA, Freund-Michel V, Morice AH. (2009) TRPA1 agonists evoke coughing in guinea pig and human volunteers. Am J Respir Crit Care Med, 180 (11): 1042-7. [PMID:19729665]

23. Bonet IJ, Fischer L, Parada CA, Tambeli CH. (2013) The role of transient receptor potential A 1 (TRPA1) in the development and maintenance of carrageenan-induced hyperalgesia. Neuropharmacology, 65: 206-12. [PMID:23098993]

24. Brierley SM, Castro J, Harrington AM, Hughes PA, Page AJ, Rychkov GY, Blackshaw LA. (2011) TRPA1 contributes to specific mechanically activated currents and sensory neuron mechanical hypersensitivity. J Physiol (Lond.), 589 (Pt 14): 3575-93. [PMID:21558163]

25. Brierley SM, Hughes PA, Page AJ, Kwan KY, Martin CM, O'Donnell TA, Cooper NJ, Harrington AM, Adam B, Liebregts T et al.. (2009) The ion channel TRPA1 is required for normal mechanosensation and is modulated by algesic stimuli. Gastroenterology, 137 (6): 2084-2095.e3. [PMID:19632231]

26. Brône B, Peeters PJ, Marrannes R, Mercken M, Nuydens R, Meert T, Gijsen HJ. (2008) Tear gasses CN, CR, and CS are potent activators of the human TRPA1 receptor. Toxicol Appl Pharmacol, 231 (2): 150-6. [PMID:18501939]

27. Bíró T, Kovács L. (2009) An "ice-cold" TR(i)P to skin biology: the role of TRPA1 in human epidermal keratinocytes. J Invest Dermatol, 129 (9): 2096-9. [PMID:19809424]

28. Caceres AI, Brackmann M, Elia MD, Bessac BF, del Camino D, D'Amours M, Witek JS, Fanger CM, Chong JA, Hayward NJ et al.. (2009) A sensory neuronal ion channel essential for airway inflammation and hyperreactivity in asthma. Proc Natl Acad Sci USA, 106 (22): 9099-104. [PMID:19458046]

29. Cao DS, Zhong L, Hsieh TH, Abooj M, Bishnoi M, Hughes L, Premkumar LS. (2012) Expression of transient receptor potential ankyrin 1 (TRPA1) and its role in insulin release from rat pancreatic beta cells. PLoS ONE, 7 (5): e38005. [PMID:22701540]

30. Cattaruzza F, Spreadbury I, Miranda-Morales M, Grady EF, Vanner S, Bunnett NW. (2010) Transient receptor potential ankyrin-1 has a major role in mediating visceral pain in mice. Am J Physiol Gastrointest Liver Physiol, 298 (1): G81-91. [PMID:19875705]

31. Ceppa E, Cattaruzza F, Lyo V, Amadesi S, Pelayo JC, Poole DP, Vaksman N, Liedtke W, Cohen DM, Grady EF et al.. (2010) Transient receptor potential ion channels V4 and A1 contribute to pancreatitis pain in mice. Am J Physiol Gastrointest Liver Physiol, 299 (3): G556-71. [PMID:20539005]

32. Chen J, Joshi SK, DiDomenico S, Perner RJ, Mikusa JP, Gauvin DM, Segreti JA, Han P, Zhang XF, Niforatos W et al.. (2011) Selective blockade of TRPA1 channel attenuates pathological pain without altering noxious cold sensation or body temperature regulation. Pain, 152 (5): 1165-72. [PMID:21402443]

33. Corey DP, García-Añoveros J, Holt JR, Kwan KY, Lin SY, Vollrath MA, Amalfitano A, Cheung EL, Derfler BH, Duggan A et al.. (2004) TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature, 432 (7018): 723-30. [PMID:15483558]

34. da Costa DS, Meotti FC, Andrade EL, Leal PC, Motta EM, Calixto JB. (2010) The involvement of the transient receptor potential A1 (TRPA1) in the maintenance of mechanical and cold hyperalgesia in persistent inflammation. Pain, 148 (3): 431-7. [PMID:20056530]

35. del Camino D, Murphy S, Heiry M, Barrett LB, Earley TJ, Cook CA, Petrus MJ, Zhao M, D'Amours M, Deering N et al.. (2010) TRPA1 contributes to cold hypersensitivity. J Neurosci, 30 (45): 15165-74. [PMID:21068322]

36. Dhaka A, Viswanath V, Patapoutian A. (2006) Trp ion channels and temperature sensation. Annu Rev Neurosci, 29: 135-61. [PMID:16776582]

37. Du S, Araki I, Yoshiyama M, Nomura T, Takeda M. (2007) Transient receptor potential channel A1 involved in sensory transduction of rat urinary bladder through C-fiber pathway. Urology, 70 (4): 826-31. [PMID:17991581]

38. Earley S, Gonzales AL, Crnich R. (2009) Endothelium-dependent cerebral artery dilation mediated by TRPA1 and Ca2+-Activated K+ channels. Circ Res, 104 (8): 987-94. [PMID:19299646]

39. Eberhardt MJ, Filipovic MR, Leffler A, de la Roche J, Kistner K, Fischer MJ, Fleming T, Zimmermann K, Ivanovic-Burmazovic I, Nawroth PP et al.. (2012) Methylglyoxal activates nociceptors through transient receptor potential channel A1 (TRPA1): a possible mechanism of metabolic neuropathies. J Biol Chem, 287 (34): 28291-306. [PMID:22740698]

40. Eid SR, Crown ED, Moore EL, Liang HA, Choong KC, Dima S, Henze DA, Kane SA, Urban MO. (2008) HC-030031, a TRPA1 selective antagonist, attenuates inflammatory- and neuropathy-induced mechanical hypersensitivity. Mol Pain, 4: 48. [PMID:18954467]

41. El Karim IA, Linden GJ, Curtis TM, About I, McGahon MK, Irwin CR, Killough SA, Lundy FT. (2011) Human dental pulp fibroblasts express the "cold-sensing" transient receptor potential channels TRPA1 and TRPM8. J Endod, 37 (4): 473-8. [PMID:21419293]

42. El Karim IA, Linden GJ, Curtis TM, About I, McGahon MK, Irwin CR, Lundy FT. (2011) Human odontoblasts express functional thermo-sensitive TRP channels: implications for dentin sensitivity. Pain, 152 (10): 2211-23. [PMID:21168271]

43. Engel MA, Leffler A, Niedermirtl F, Babes A, Zimmermann K, Filipović MR, Izydorczyk I, Eberhardt M, Kichko TI, Mueller-Tribbensee SM et al.. (2011) TRPA1 and substance P mediate colitis in mice. Gastroenterology, 141 (4): 1346-58. [PMID:21763243]

44. Escalera J, von Hehn CA, Bessac BF, Sivula M, Jordt SE. (2008) TRPA1 mediates the noxious effects of natural sesquiterpene deterrents. J Biol Chem, 283 (35): 24136-44. [PMID:18550530]

45. Fajardo O, Meseguer V, Belmonte C, Viana F. (2008) TRPA1 channels mediate cold temperature sensing in mammalian vagal sensory neurons: pharmacological and genetic evidence. J Neurosci, 28 (31): 7863-75. [PMID:18667618]

46. Fernandes ES, Vong CT, Quek S, Cheong J, Awal S, Gentry C, Aubdool AA, Liang L, Bodkin JV, Bevan S et al.. (2013) Superoxide generation and leukocyte accumulation: key elements in the mediation of leukotriene B₄-induced itch by transient receptor potential ankyrin 1 and transient receptor potential vanilloid 1. FASEB J, 27 (4): 1664-73. [PMID:23271050]

47. Frederick J, Buck ME, Matson DJ, Cortright DN. (2007) Increased TRPA1, TRPM8, and TRPV2 expression in dorsal root ganglia by nerve injury. Biochem Biophys Res Commun, 358 (4): 1058-64. [PMID:17517374]

48. Fujita F, Moriyama T, Higashi T, Shima A, Tominaga M. (2007) Methyl p-hydroxybenzoate causes pain sensation through activation of TRPA1 channels. Br J Pharmacol, 151 (1): 153-60. [PMID:17351650]

49. Fujita F, Uchida K, Moriyama T, Shima A, Shibasaki K, Inada H, Sokabe T, Tominaga M. (2008) Intracellular alkalization causes pain sensation through activation of TRPA1 in mice. J Clin Invest, 118 (12): 4049-57. [PMID:19033673]

50. Gracheva EO, Ingolia NT, Kelly YM, Cordero-Morales JF, Hollopeter G, Chesler AT, Sánchez EE, Perez JC, Weissman JS, Julius D. (2010) Molecular basis of infrared detection by snakes. Nature, 464 (7291): 1006-11. [PMID:20228791]

51. Gratzke C, Streng T, Waldkirch E, Sigl K, Stief C, Andersson KE, Hedlund P. (2009) Transient receptor potential A1 (TRPA1) activity in the human urethra--evidence for a functional role for TRPA1 in the outflow region. Eur Urol, 55 (3): 696-704. [PMID:18468780]

52. Gregus AM, Doolen S, Dumlao DS, Buczynski MW, Takasusuki T, Fitzsimmons BL, Hua XY, Taylor BK, Dennis EA, Yaksh TL. (2012) Spinal 12-lipoxygenase-derived hepoxilin A3 contributes to inflammatory hyperalgesia via activation of TRPV1 and TRPA1 receptors. Proc Natl Acad Sci USA, 109 (17): 6721-6. [PMID:22493235]

53. Haas ET, Rowland K, Gautam M. (2011) Tooth injury increases expression of the cold sensitive TRP channel TRPA1 in trigeminal neurons. Arch Oral Biol, 56 (12): 1604-9. [PMID:21783172]

54. Hata T, Tazawa S, Ohta S, Rhyu MR, Misaka T, Ichihara K. (2012) Artepillin C, a major ingredient of Brazilian propolis, induces a pungent taste by activating TRPA1 channels. PLoS ONE, 7 (11): e48072. [PMID:23133611]

55. Hatano N, Itoh Y, Suzuki H, Muraki Y, Hayashi H, Onozaki K, Wood IC, Beech DJ, Muraki K. (2012) Hypoxia-inducible factor-1α (HIF1α) switches on transient receptor potential ankyrin repeat 1 (TRPA1) gene expression via a hypoxia response element-like motif to modulate cytokine release. J Biol Chem, 287 (38): 31962-72. [PMID:22843691]

56. Hatano N, Suzuki H, Muraki Y, Muraki K. (2013) Stimulation of human TRPA1 channels by clinical concentrations of the antirheumatic drug auranofin. Am J Physiol, Cell Physiol, 304 (4): C354-61. [PMID:23220116]

57. Hinman A, Chuang HH, Bautista DM, Julius D. (2006) TRP channel activation by reversible covalent modification. Proc Natl Acad Sci USA, 103 (51): 19564-8. [PMID:17164327]

58. Hox V, Vanoirbeek JA, Alpizar YA, Voedisch S, Callebaut I, Bobic S, Sharify A, De Vooght V, Van Gerven L, Devos F et al.. (2013) Crucial role of transient receptor potential ankyrin 1 and mast cells in induction of nonallergic airway hyperreactivity in mice. Am J Respir Crit Care Med, 187 (5): 486-93. [PMID:23262517]

59. Hu H, Bandell M, Petrus MJ, Zhu MX, Patapoutian A. (2009) Zinc activates damage-sensing TRPA1 ion channels. Nat Chem Biol, 5 (3): 183-90. [PMID:19202543]

60. Hu H, Tian J, Zhu Y, Wang C, Xiao R, Herz JM, Wood JD, Zhu MX. (2010) Activation of TRPA1 channels by fenamate nonsteroidal anti-inflammatory drugs. Pflugers Arch, 459 (4): 579-92. [PMID:19888597]

61. Jaquemar D, Schenker T, Trueb B. (1999) An ankyrin-like protein with transmembrane domains is specifically lost after oncogenic transformation of human fibroblasts. J Biol Chem, 274 (11): 7325-33. [PMID:10066796]

62. Jordt SE, Bautista DM, Chuang HH, McKemy DD, Zygmunt PM, Högestätt ED, Meng ID, Julius D. (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature, 427 (6971): 260-5. [PMID:14712238]

63. Karashima Y, Damann N, Prenen J, Talavera K, Segal A, Voets T, Nilius B. (2007) Bimodal action of menthol on the transient receptor potential channel TRPA1. J Neurosci, 27 (37): 9874-84. [PMID:17855602]

64. Karashima Y, Talavera K, Everaerts W, Janssens A, Kwan KY, Vennekens R, Nilius B, Voets T. (2009) TRPA1 acts as a cold sensor in vitro and in vivo. Proc Natl Acad Sci USA, 106 (4): 1273-8. [PMID:19144922]

65. Katsura H, Obata K, Mizushima T, Sakurai J, Kobayashi K, Yamanaka H, Dai Y, Fukuoka T, Sakagami M, Noguchi K. (2007) Activation of extracellular signal-regulated protein kinases 5 in primary afferent neurons contributes to heat and cold hyperalgesia after inflammation. J Neurochem, 102 (5): 1614-24. [PMID:17573825]

66. Katsura H, Obata K, Mizushima T, Yamanaka H, Kobayashi K, Dai Y, Fukuoka T, Tokunaga A, Sakagami M, Noguchi K. (2006) Antisense knock down of TRPA1, but not TRPM8, alleviates cold hyperalgesia after spinal nerve ligation in rats. Exp Neurol, 200 (1): 112-23. [PMID:16546170]

67. Kimball ES, Prouty SP, Pavlick KP, Wallace NH, Schneider CR, Hornby PJ. (2007) Stimulation of neuronal receptors, neuropeptides and cytokines during experimental oil of mustard colitis. Neurogastroenterol Motil, 19 (5): 390-400. [PMID:17509021]

68. Kobayashi K, Fukuoka T, Obata K, Yamanaka H, Dai Y, Tokunaga A, Noguchi K. (2005) Distinct expression of TRPM8, TRPA1, and TRPV1 mRNAs in rat primary afferent neurons with adelta/c-fibers and colocalization with trk receptors. J Comp Neurol, 493 (4): 596-606. [PMID:16304633]

69. Koivisto A, Hukkanen M, Saarnilehto M, Chapman H, Kuokkanen K, Wei H, Viisanen H, Akerman KE, Lindstedt K, Pertovaara A. (2012) Inhibiting TRPA1 ion channel reduces loss of cutaneous nerve fiber function in diabetic animals: sustained activation of the TRPA1 channel contributes to the pathogenesis of peripheral diabetic neuropathy. Pharmacol Res, 65 (1): 149-58. [PMID:22133672]

70. Kojima R, Nozawa K, Doihara H, Keto Y, Kaku H, Yokoyama T, Itou H. (2014) Effects of novel TRPA1 receptor agonist ASP7663 in models of drug-induced constipation and visceral pain. Eur J Pharmacol, 723: 288-93. [PMID:24291101]

71. Kono T, Kaneko A, Omiya Y, Ohbuchi K, Ohno N, Yamamoto M. (2013) Epithelial transient receptor potential ankyrin 1 (TRPA1)-dependent adrenomedullin upregulates blood flow in rat small intestine. Am J Physiol Gastrointest Liver Physiol, 304 (4): G428-36. [PMID:23275609]

72. Kosugi M, Nakatsuka T, Fujita T, Kuroda Y, Kumamoto E. (2007) Activation of TRPA1 channel facilitates excitatory synaptic transmission in substantia gelatinosa neurons of the adult rat spinal cord. J Neurosci, 27 (16): 4443-51. [PMID:17442829]

73. Kremeyer B, Lopera F, Cox JJ, Momin A, Rugiero F, Marsh S, Woods CG, Jones NG, Paterson KJ, Fricker FR et al.. (2010) A gain-of-function mutation in TRPA1 causes familial episodic pain syndrome. Neuron, 66 (5): 671-80. [PMID:20547126]

74. Kun J, Perkecz A, Knie L, Sétáló Jr G, Tornóczki T, Pintér E, Bán Á. (2017) TRPA1 receptor is upregulated in human oral lichen planus. Oral Dis, 23 (2): 189-198. [PMID:27718297]

75. Kunkler PE, Ballard CJ, Oxford GS, Hurley JH. (2011) TRPA1 receptors mediate environmental irritant-induced meningeal vasodilatation. Pain, 152 (1): 38-44. [PMID:21075522]

76. Kwan KY, Allchorne AJ, Vollrath MA, Christensen AP, Zhang DS, Woolf CJ, Corey DP. (2006) TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron, 50 (2): 277-89. [PMID:16630838]

77. Kwan KY, Glazer JM, Corey DP, Rice FL, Stucky CL. (2009) TRPA1 modulates mechanotransduction in cutaneous sensory neurons. J Neurosci, 29 (15): 4808-19. [PMID:19369549]

78. Lee SP, Buber MT, Yang Q, Cerne R, Cortés RY, Sprous DG, Bryant RW. (2008) Thymol and related alkyl phenols activate the hTRPA1 channel. Br J Pharmacol, 153 (8): 1739-49. [PMID:18334983]

79. Liu B, Escalera J, Balakrishna S, Fan L, Caceres AI, Robinson E, Sui A, McKay MC, McAlexander MA, Herrick CA et al.. (2013) TRPA1 controls inflammation and pruritogen responses in allergic contact dermatitis. FASEB J, 27 (9): 3549-63. [PMID:23722916]

80. Liu K, Samuel M, Ho M, Harrison RK, Paslay JW. (2010) NPPB structure-specifically activates TRPA1 channels. Biochem Pharmacol, 80 (1): 113-21. [PMID:20226176]

81. Liu T, Ji RR. (2012) Oxidative stress induces itch via activation of transient receptor potential subtype ankyrin 1 in mice. Neurosci Bull, 28 (2): 145-54. [PMID:22466125]

82. Lowin T, Apitz M, Anders S, Straub RH. (2015) Anti-inflammatory effects of N-acylethanolamines in rheumatoid arthritis synovial cells are mediated by TRPV1 and TRPA1 in a COX-2 dependent manner. Arthritis Res Ther, 17: 321. [PMID:26567045]

83. Macpherson LJ, Dubin AE, Evans MJ, Marr F, Schultz PG, Cravatt BF, Patapoutian A. (2007) Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature, 445 (7127): 541-5. [PMID:17237762]

84. Macpherson LJ, Geierstanger BH, Viswanath V, Bandell M, Eid SR, Hwang S, Patapoutian A. (2005) The pungency of garlic: activation of TRPA1 and TRPV1 in response to allicin. Curr Biol, 15 (10): 929-34. [PMID:15916949]

85. Macpherson LJ, Hwang SW, Miyamoto T, Dubin AE, Patapoutian A, Story GM. (2006) More than cool: promiscuous relationships of menthol and other sensory compounds. Mol Cell Neurosci, 32 (4): 335-43. [PMID:16829128]

86. Macpherson LJ, Xiao B, Kwan KY, Petrus MJ, Dubin AE, Hwang S, Cravatt B, Corey DP, Patapoutian A. (2007) An ion channel essential for sensing chemical damage. J Neurosci, 27 (42): 11412-5. [PMID:17942735]

87. Maher M, Ao H, Banke T, Nasser N, Wu NT, Breitenbucher JG, Chaplan SR, Wickenden AD. (2008) Activation of TRPA1 by farnesyl thiosalicylic acid. Mol Pharmacol, 73 (4): 1225-34. [PMID:18171730]

88. Materazzi S, Nassini R, Andrè E, Campi B, Amadesi S, Trevisani M, Bunnett NW, Patacchini R, Geppetti P. (2008) Cox-dependent fatty acid metabolites cause pain through activation of the irritant receptor TRPA1. Proc Natl Acad Sci USA, 105 (33): 12045-50. [PMID:18687886]

89. Matta JA, Cornett PM, Miyares RL, Abe K, Sahibzada N, Ahern GP. (2008) General anesthetics activate a nociceptive ion channel to enhance pain and inflammation. Proc Natl Acad Sci USA, 105 (25): 8784-9. [PMID:18574153]

90. McNamara CR, Mandel-Brehm J, Bautista DM, Siemens J, Deranian KL, Zhao M, Hayward NJ, Chong JA, Julius D, Moran MM et al.. (2007) TRPA1 mediates formalin-induced pain. Proc Natl Acad Sci USA, 104 (33): 13525-30. [PMID:17686976]

91. Meseguer V, Alpizar YA, Luis E, Tajada S, Denlinger B, Fajardo O, Manenschijn JA, Fernández-Peña C, Talavera A, Kichko T et al.. (2014) TRPA1 channels mediate acute neurogenic inflammation and pain produced by bacterial endotoxins. Nat Commun, 5: 3125. [PMID:24445575]

92. Meseguer V, Karashima Y, Talavera K, D'Hoedt D, Donovan-Rodríguez T, Viana F, Nilius B, Voets T. (2008) Transient receptor potential channels in sensory neurons are targets of the antimycotic agent clotrimazole. J Neurosci, 28 (3): 576-86. [PMID:18199759]

93. Miura S, Takahashi K, Imagawa T, Uchida K, Saito S, Tominaga M, Ohta T. (2013) Involvement of TRPA1 activation in acute pain induced by cadmium in mice. Mol Pain, 9: 7. [PMID:23448290]

94. Motter AL, Ahern GP. (2012) TRPA1 is a polyunsaturated fatty acid sensor in mammals. PLoS ONE, 7 (6): e38439. [PMID:22723860]

95. Mukhopadhyay I, Gomes P, Aranake S, Shetty M, Karnik P, Damle M, Kuruganti S, Thorat S, Khairatkar-Joshi N. (2011) Expression of functional TRPA1 receptor on human lung fibroblast and epithelial cells. J Recept Signal Transduct Res, 31 (5): 350-8. [PMID:21848366]

96. Nagata K, Duggan A, Kumar G, García-Añoveros J. (2005) Nociceptor and hair cell transducer properties of TRPA1, a channel for pain and hearing. J Neurosci, 25 (16): 4052-61. [PMID:15843607]

97. Nakashimo Y, Takumida M, Fukuiri T, Anniko M, Hirakawa K. (2010) Expression of transient receptor potential channel vanilloid (TRPV) 1&#x2013;4, melastin (TRPM) 5 and 8, and ankyrin (TRPA1) in the normal and methimazole-treated mouse olfactory epithelium. Acta Otolaryngol, 130 (11): 1278-86. [PMID:20586674]

98. Narukawa M, Koizumi K, Iwasaki Y, Kubota K, Watanabe T. (2010) Galangal pungent component, 1'-acetoxychavicol acetate, activates TRPA1. Biosci Biotechnol Biochem, 74 (8): 1694-6. [PMID:20699565]

99. Nassenstein C, Kwong K, Taylor-Clark T, Kollarik M, Macglashan DM, Braun A, Undem BJ. (2008) Expression and function of the ion channel TRPA1 in vagal afferent nerves innervating mouse lungs. J Physiol (Lond.), 586 (6): 1595-604. [PMID:18218683]

100. Nassini R, Gees M, Harrison S, De Siena G, Materazzi S, Moretto N, Failli P, Preti D, Marchetti N, Cavazzini A et al.. (2011) Oxaliplatin elicits mechanical and cold allodynia in rodents via TRPA1 receptor stimulation. Pain, 152 (7): 1621-31. [PMID:21481532]

101. Nassini R, Materazzi S, Andrè E, Sartiani L, Aldini G, Trevisani M, Carnini C, Massi D, Pedretti P, Carini M et al.. (2010) Acetaminophen, via its reactive metabolite N-acetyl-p-benzo-quinoneimine and transient receptor potential ankyrin-1 stimulation, causes neurogenic inflammation in the airways and other tissues in rodents. FASEB J, 24 (12): 4904-16. [PMID:20720158]

102. Nassini R, Materazzi S, Vriens J, Prenen J, Benemei S, De Siena G, la Marca G, Andrè E, Preti D, Avonto C et al.. (2012) The 'headache tree' via umbellulone and TRPA1 activates the trigeminovascular system. Brain, 135 (Pt 2): 376-90. [PMID:22036959]

103. Nassini R, Pedretti P, Moretto N, Fusi C, Carnini C, Facchinetti F, Viscomi AR, Pisano AR, Stokesberry S, Brunmark C et al.. (2012) Transient receptor potential ankyrin 1 channel localized to non-neuronal airway cells promotes non-neurogenic inflammation. PLoS ONE, 7 (8): e42454. [PMID:22905134]

104. Nativi C, Gualdani R, Dragoni E, Di Cesare Mannelli L, Sostegni S, Norcini M, Gabrielli G, la Marca G, Richichi B, Francesconi O et al.. (2013) A TRPA1 antagonist reverts oxaliplatin-induced neuropathic pain. Sci Rep, 3: 2005. [PMID:23774285]

105. Neely GG, Keene AC, Duchek P, Chang EC, Wang QP, Aksoy YA, Rosenzweig M, Costigan M, Woolf CJ, Garrity PA et al.. (2011) TrpA1 regulates thermal nociception in Drosophila. PLoS ONE, 6 (8): e24343. [PMID:21909389]

106. Niforatos W, Zhang XF, Lake MR, Walter KA, Neelands T, Holzman TF, Scott VE, Faltynek CR, Moreland RB, Chen J. (2007) Activation of TRPA1 channels by the fatty acid amide hydrolase inhibitor 3'-carbamoylbiphenyl-3-yl cyclohexylcarbamate (URB597). Mol Pharmacol, 71 (5): 1209-16. [PMID:17314320]

107. Nozawa K, Kawabata-Shoda E, Doihara H, Kojima R, Okada H, Mochizuki S, Sano Y, Inamura K, Matsushime H, Koizumi T et al.. (2009) TRPA1 regulates gastrointestinal motility through serotonin release from enterochromaffin cells. Proc Natl Acad Sci USA, 106 (9): 3408-13. [PMID:19211797]

108. Obata K, Katsura H, Mizushima T, Yamanaka H, Kobayashi K, Dai Y, Fukuoka T, Tokunaga A, Tominaga M, Noguchi K. (2005) TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury. J Clin Invest, 115 (9): 2393-401. [PMID:16110328]

109. Parenti A, De Logu F, Geppetti P, Benemei S. (2016) What is the evidence for the role of TRP channels in inflammatory and immune cells?. Br J Pharmacol, 173 (6): 953-69. [PMID:26603538]

110. Park CK, Xu ZZ, Liu T, Lü N, Serhan CN, Ji RR. (2011) Resolvin D2 is a potent endogenous inhibitor for transient receptor potential subtype V1/A1, inflammatory pain, and spinal cord synaptic plasticity in mice: distinct roles of resolvin D1, D2, and E1. J Neurosci, 31 (50): 18433-8. [PMID:22171045]

111. Patapoutian A, Macpherson L. (2006) Channeling pain. Nat Med, 12 (5): 506-7. [PMID:16675993]

112. Pereira I, Mendes SJ, Pereira DM, Muniz TF, Colares VL, Monteiro CR, Martins MM, Grisotto MA, Monteiro-Neto V, Monteiro SG et al.. (2017) Transient Receptor Potential Ankyrin 1 Channel Expression on Peripheral Blood Leukocytes from Rheumatoid Arthritic Patients and Correlation with Pain and Disability. Front Pharmacol, 8: 53. [PMID:28239353]

113. Petrus M, Peier AM, Bandell M, Hwang SW, Huynh T, Olney N, Jegla T, Patapoutian A. (2007) A role of TRPA1 in mechanical hyperalgesia is revealed by pharmacological inhibition. Mol Pain, 3: 40. [PMID:18086313]

114. Peyrot des Gachons C, Uchida K, Bryant B, Shima A, Sperry JB, Dankulich-Nagrudny L, Tominaga M, Smith 3rd AB, Beauchamp GK, Breslin PA. (2011) Unusual pungency from extra-virgin olive oil is attributable to restricted spatial expression of the receptor of oleocanthal. J Neurosci, 31 (3): 999-1009. [PMID:21248124]

115. Poole DP, Pelayo JC, Cattaruzza F, Kuo YM, Gai G, Chiu JV, Bron R, Furness JB, Grady EF, Bunnett NW. (2011) Transient receptor potential ankyrin 1 is expressed by inhibitory motoneurons of the mouse intestine. Gastroenterology, 141 (2): 565-75, 575.e1-4. [PMID:21689654]

116. Pozsgai G, Bodkin JV, Graepel R, Bevan S, Andersson DA, Brain SD. (2010) Evidence for the pathophysiological relevance of TRPA1 receptors in the cardiovascular system in vivo. Cardiovasc Res, 87 (4): 760-8. [PMID:20442136]

117. Purhonen AK, Louhivuori LM, Kiehne K, Kerman KE, Herzig KH. (2008) TRPA1 channel activation induces cholecystokinin release via extracellular calcium. FEBS Lett, 582 (2): 229-32. [PMID:18082143]

118. Raemdonck K, de Alba J, Birrell MA, Grace M, Maher SA, Irvin CG, Fozard JR, O'Byrne PM, Belvisi MG. (2012) A role for sensory nerves in the late asthmatic response. Thorax, 67 (1): 19-25. [PMID:21841185]

119. Ryckmans T, Aubdool AA, Bodkin JV, Cox P, Brain SD, Dupont T, Fairman E, Hashizume Y, Ishii N, Kato T et al.. (2011) Design and pharmacological evaluation of PF-4840154, a non-electrophilic reference agonist of the TrpA1 channel. Bioorg Med Chem Lett, 21 (16): 4857-9. [PMID:21741838]

120. Samanta A, Kiselar J, Pumroy RA, Han S, Moiseenkova-Bell VY. (2018) Structural insights into the molecular mechanism of mouse TRPA1 activation and inhibition. J Gen Physiol, 150 (5): 751-762. [PMID:29703838]

121. Sawada Y, Hosokawa H, Matsumura K, Kobayashi S. (2008) Activation of transient receptor potential ankyrin 1 by hydrogen peroxide. Eur J Neurosci, 27 (5): 1131-42. [PMID:18364033]

122. Schenkel LB, Olivieri PR, Boezio AA, Deak HL, Emkey R, Graceffa RF, Gunaydin H, Guzman-Perez A, Lee JH, Teffera Y et al.. (2016) Optimization of a Novel Quinazolinone-Based Series of Transient Receptor Potential A1 (TRPA1) Antagonists Demonstrating Potent in Vivo Activity. J Med Chem, 59 (6): 2794-809. [PMID:26942860]

123. Schulze A, Oehler B, Urban N, Schaefer M, Hill K. (2013) Apomorphine is a bimodal modulator of TRPA1 channels. Mol Pharmacol, 83 (2): 542-51. [PMID:23220749]

124. Schwartz ES, Christianson JA, Chen X, La JH, Davis BM, Albers KM, Gebhart GF. (2011) Synergistic role of TRPV1 and TRPA1 in pancreatic pain and inflammation. Gastroenterology, 140 (4): 1283-1291.e1-2. [PMID:21185837]

125. Shiba T, Maruyama T, Kurohane K, Iwasaki Y, Watanabe T, Imai Y. (2009) TRPA1 and TRPV1 activation is a novel adjuvant effect mechanism in contact hypersensitivity. J Neuroimmunol, 207 (1-2): 66-74. [PMID:19135264]

126. Sisignano M, Park CK, Angioni C, Zhang DD, von Hehn C, Cobos EJ, Ghasemlou N, Xu ZZ, Kumaran V, Lu R et al.. (2012) 5,6-EET is released upon neuronal activity and induces mechanical pain hypersensitivity via TRPA1 on central afferent terminals. J Neurosci, 32 (18): 6364-72. [PMID:22553041]

127. Staaf S, Oerther S, Lucas G, Mattsson JP, Ernfors P. (2009) Differential regulation of TRP channels in a rat model of neuropathic pain. Pain, 144 (1-2): 187-99. [PMID:19446956]

128. Stokes A, Wakano C, Koblan-Huberson M, Adra CN, Fleig A, Turner H. (2006) TRPA1 is a substrate for de-ubiquitination by the tumor suppressor CYLD. Cell Signal, 18 (10): 1584-94. [PMID:16500080]

129. Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, Earley TJ, Hergarden AC, Andersson DA, Hwang SW et al.. (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell, 112 (6): 819-29. [PMID:12654248]

130. Straub RH. (2014) TRPV1, TRPA1, and TRPM8 channels in inflammation, energy redirection, and water retention: role in chronic inflammatory diseases with an evolutionary perspective. J Mol Med, 92 (9): 925-37. [PMID:24871046]

131. Streng T, Axelsson HE, Hedlund P, Andersson DA, Jordt SE, Bevan S, Andersson KE, Högestätt ED, Zygmunt PM. (2008) Distribution and function of the hydrogen sulfide-sensitive TRPA1 ion channel in rat urinary bladder. Eur Urol, 53 (2): 391-9. [PMID:18031925]

132. Takahashi N, Kuwaki T, Kiyonaka S, Numata T, Kozai D, Mizuno Y, Yamamoto S, Naito S, Knevels E, Carmeliet P et al.. (2011) TRPA1 underlies a sensing mechanism for O2. Nat Chem Biol, 7 (10): 701-11. [PMID:21873995]

133. Takaya J, Mio K, Shiraishi T, Kurokawa T, Otsuka S, Mori Y, Uesugi M. (2015) A Potent and Site-Selective Agonist of TRPA1. J Am Chem Soc, 137 (50): 15859-64. [PMID:26630251]

134. Takumida M, Ishibashi T, Hamamoto T, Hirakawa K, Anniko M. (2009) Expression of transient receptor potential channel melastin (TRPM) 1-8 and TRPA1 (ankyrin) in mouse inner ear. Acta Otolaryngol, 129 (10): 1050-60. [PMID:19065290]

135. Talavera K, Gees M, Karashima Y, Meseguer VM, Vanoirbeek JA, Damann N, Everaerts W, Benoit M, Janssens A, Vennekens R et al.. (2009) Nicotine activates the chemosensory cation channel TRPA1. Nat Neurosci, 12 (10): 1293-9. [PMID:19749751]

136. Taylor-Clark TE, Ghatta S, Bettner W, Undem BJ. (2009) Nitrooleic acid, an endogenous product of nitrative stress, activates nociceptive sensory nerves via the direct activation of TRPA1. Mol Pharmacol, 75 (4): 820-9. [PMID:19171673]

137. Taylor-Clark TE, Undem BJ. (2010) Ozone activates airway nerves via the selective stimulation of TRPA1 ion channels. J Physiol (Lond.), 588 (Pt 3): 423-33. [PMID:20008466]

138. Taylor-Clark TE, Undem BJ, Macglashan Jr DW, Ghatta S, Carr MJ, McAlexander MA. (2008) Prostaglandin-induced activation of nociceptive neurons via direct interaction with transient receptor potential A1 (TRPA1). Mol Pharmacol, 73 (2): 274-81. [PMID:18000030]

139. Terrett JA, Chen H, Constantineau-Forget L, Larouch-Gauthier R, Lepissier L, Beumier F, Dery M, Grand-Maitre C, Sturino C, Volgraf M et al.. (2019) Oxadiazole transient receptor potential channel inhibitors. Patent number: WO2019182925A1. Priority date: 18/03/2019. Publication date: 26/09/2019.

140. Trevisan G, Materazzi S, Fusi C, Altomare A, Aldini G, Lodovici M, Patacchini R, Geppetti P, Nassini R. (2013) Novel therapeutic strategy to prevent chemotherapy-induced persistent sensory neuropathy by TRPA1 blockade. Cancer Res, 73 (10): 3120-31. [PMID:23477783]

141. Trevisani M, Siemens J, Materazzi S, Bautista DM, Nassini R, Campi B, Imamachi N, Andrè E, Patacchini R, Cottrell GS et al.. (2007) 4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1. Proc Natl Acad Sci USA, 104 (33): 13519-24. [PMID:17684094]

142. Tsutsumi M, Denda S, Ikeyama K, Goto M, Denda M. (2010) Exposure to low temperature induces elevation of intracellular calcium in cultured human keratinocytes. J Invest Dermatol, 130 (7): 1945-8. [PMID:20182444]

143. Uhl GR, Walther D, Behm FM, Rose JE. (2011) Menthol preference among smokers: association with TRPA1 variants. Nicotine Tob Res, 13 (12): 1311-5. [PMID:21719896]

144. Vandewauw I, De Clercq K, Mulier M, Held K, Pinto S, Van Ranst N, Segal A, Voet T, Vennekens R, Zimmermann K et al.. (2018) A TRP channel trio mediates acute noxious heat sensing. Nature, 555 (7698): 662-666. [PMID:29539642]

145. Vilceanu D, Stucky CL. (2010) TRPA1 mediates mechanical currents in the plasma membrane of mouse sensory neurons. PLoS ONE, 5 (8): e12177. [PMID:20808441]

146. Viswanath V, Story GM, Peier AM, Petrus MJ, Lee VM, Hwang SW, Patapoutian A, Jegla T. (2003) Opposite thermosensor in fruitfly and mouse. Nature, 423 (6942): 822-3. [PMID:12815418]

147. Wang YY, Chang RB, Allgood SD, Silver WL, Liman ER. (2011) A TRPA1-dependent mechanism for the pungent sensation of weak acids. J Gen Physiol, 137 (6): 493-505. [PMID:21576376]

148. Wang YY, Chang RB, Liman ER. (2010) TRPA1 is a component of the nociceptive response to CO2. J Neurosci, 30 (39): 12958-63. [PMID:20881114]

149. Wei H, Hämäläinen MM, Saarnilehto M, Koivisto A, Pertovaara A. (2009) Attenuation of mechanical hypersensitivity by an antagonist of the TRPA1 ion channel in diabetic animals. Anesthesiology, 111 (1): 147-54. [PMID:19512877]

150. Wilson SR, Gerhold KA, Bifolck-Fisher A, Liu Q, Patel KN, Dong X, Bautista DM. (2011) TRPA1 is required for histamine-independent, Mas-related G protein-coupled receptor-mediated itch. Nat Neurosci, 14 (5): 595-602. [PMID:21460831]

151. Wilson SR, Nelson AM, Batia L, Morita T, Estandian D, Owens DM, Lumpkin EA, Bautista DM. (2013) The ion channel TRPA1 is required for chronic itch. J Neurosci, 33 (22): 9283-94. [PMID:23719797]

152. Xiao B, Dubin AE, Bursulaya B, Viswanath V, Jegla TJ, Patapoutian A. (2008) Identification of transmembrane domain 5 as a critical molecular determinant of menthol sensitivity in mammalian TRPA1 channels. J Neurosci, 28 (39): 9640-51. [PMID:18815250]

153. Yang J, Li Y, Zuo X, Zhen Y, Yu Y, Gao L. (2008) Transient receptor potential ankyrin-1 participates in visceral hyperalgesia following experimental colitis. Neurosci Lett, 440 (3): 237-41. [PMID:18583045]

154. Zielińska M, Jarmuż A, Wasilewski A, Sałaga M, Fichna J. (2015) Role of transient receptor potential channels in intestinal inflammation and visceral pain: novel targets in inflammatory bowel diseases. Inflamm Bowel Dis, 21 (2): 419-27. [PMID:25437822]

Contributors

Show »

How to cite this page