Top ▲

regulator of G-protein signaling 5

Click here for help

Target not currently curated in GtoImmuPdb

Target id: 2812

Nomenclature: regulator of G-protein signaling 5

Abbreviated Name: RGS5

Family: R4 family

Gene and Protein Information Click here for help
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human - 181 1q23.3 RGS5 regulator of G protein signaling 5 65
Mouse - 181 1 76.84 cM Rgs5 regulator of G-protein signaling 5 68
Rat - 181 13q24 Rgs5 regulator of G-protein signaling 5
Database Links Click here for help
Alphafold
CATH/Gene3D
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Associated Proteins Click here for help
G Proteins
Name References
Gαi/0
Gαq/11
Interacting Proteins
Name Effect References
regulator of G-protein signaling 5 Homo dimerization confers protein stabilization. 82
14-3-3 epsilon, 14-3-3 beta Uncertain 2
phosphoinositide-3-kinase regulatory subunit 1 Uncertain 46
G-protein-signaling modulator 3 (GPSM3) Augments RGS5 GAP activity 89
SMO Represses Hedgehog (Hh) signaling. 53
Amino-terminal cysteine dioxygenase (ADO) ADO catalyzes the conversion of an amino-terminal cysteine (C2) in RGS5 to cysteine sulfinic acid, inhibiting accumulation of RGS5 in response to hypoxia 54,77
mitogen-activated protein kinase kinase kinase 7 RGS5 binds directly to TGF-β-activated kinase 1 (TAK1), preventing TAK1 phosphorylation and the activation of the downstream JNK/p38 signaling pathway 75
AT1 receptor Involved in AT1R mechanoactivation in skeletal muscle arteries 30
Tissue Distribution Click here for help
Normal parathyroid tissue, with increased expression in parathyroid tumors.
Species:  Human
Technique:  Immunohistochemistry.
References:  40
Heart, lung, skeletal muscle, and small intestine, and at low levels in brain, placenta, liver, colon, and leukocytes.
Species:  Human
Technique:  Northern blot and RT-PCR.
References:  42,56,65
Eye
Species:  Human
Technique:  RT-PCR.
References:  47
Airway smooth muscle.
Species:  Human
Technique:  RT-PCR.
References:  10,80-81
Pericytes, vascular smooth muscle.
Species:  Mouse
Technique:  In situ hybridisation and RT-PCR.
References:  3,11-12,15-16,23,27,38,44,49,51,55,58,84,86
Chondrocytes
Species:  Mouse
Technique:  RT-PCR.
References:  6
Brain endothelium, tumor endothelium, dermal endothelial cells.
Species:  Rat
Technique:  In situ hybridisation and immunofluorescence.
References:  39,69,71
Brain
Species:  Rat
Technique:  In situ hybridisation.
References:  22
Cardiac myocytes.
Species:  Rat
Technique:  Northern blot and RT-PCR.
References:  19,25,34,36,61,87
Functional Assays Click here for help
Accelerate GTP hydrolysis by Gαi.
Species:  Human
Tissue:  Recombinant proteins.
Response measured:  Increased GTP hydrolysis.
References:  89
Physiological Functions Click here for help
Inhibits hedgehog signaling by Smo and osteogenesis in vitro.
Species:  Mouse
Tissue:  C3H10T1/2 cells.
References:  53
Regulation of endothelial cell apoptosis, p38 MAPK activation in vitro.
Species:  Human
Tissue:  HUVEC cells.
References:  35
Regulation of S1P-induced inhibition of cAMP.
Species:  Human
Tissue:  Vascular sommth muscle cells (VSMCs).
References:  27
Regulates angiotension 1 mediated IP3 production, MAP kinase activation.
Species:  Rat
Tissue:  Aortic smooth muscle cells.
References:  76
Supresses angiotensin II- and endothelin (ET)-1-induced intracellular Ca2+ transients.
Species:  Human
Tissue:  HEK-293T cells.
References:  90
Regulation of glutaminergic signalling: Increased glutamate-induced Ca2+, RhoA activation, myosin light chain phosphorylation, and nitric oxide synthase (eNOS) phosphorylation observed in Rgs5 KO or knockdown endothelial cells
Species:  Mouse
Tissue: 
References:  70
RGS5 overexpression in vascular smooth muscle cells from human antigen R (HuR)-knockout mice suppresses phenylephrine-induced Ca2+ flux
Species:  Human
Tissue: 
References:  50
RGS5 overexpression in mouse primary cortical neurons inhibits neurite outgrowth and active neuronal firing (FM4-64 uptake) in response to Sonic hedgehog (Shh) exposure
Species:  Mouse
Tissue: 
References:  48
Physiological Consequences of Altering Gene Expression Click here for help
Overexpression in human lung cancer cells induces apoptosis.
Species:  Human
Tissue:  A549, Calu-3 tumor cells.
Technique:  Gene over-expression.
References:  79
Acceleration of disease in atherosclerosis-prone ApoE-/- mice.
Species:  Mouse
Tissue:  Endothelium.
Technique:  Gene knockout.
References:  14
RGS5-null mice suffer enhanced carbon tetrachloride (CCl4)-induced liver injury, leading to liver fibrosis.
Species:  Human
Tissue:  Liver.
Technique:  Gene knockout.
References:  14
RGS5 knockout mice have spontaneous airway constriction in the absence of inflammation.
Species:  Mouse
Tissue:  Lung (bronchial smooth muscle).
Technique:  Gene knockout.
References:  10,81
Knockdown of RGS5 impairs growth and activation of vascular smooth muscle cells (VSMCs).
Species:  Human
Tissue:  Vascular smooth muscle cells (VSMCs).
Technique:  Antisense/siRNA.
References:  8
RGS-null mice are hypertensive and have impaired collateral arteriogenesis following arterial occlusion.
Species:  Mouse
Tissue:  Arteries.
Technique:  Gene knockout.
References:  8
Knockdown of RGS5 inhibits liver cancer cell migration and invasion; over-expression of RGS5 induces epithelial-mesenchymal transition in epithelial liver cancer cells and promotes tumor metastasis.
Species:  Human
Tissue:  Liver cancer cell lines.
Technique:  Antisense/siRNA, overexpression.
References:  32
RGS5-null mice have hypertension correlating with arterial hyper-responsiveness to vasoconstrictors and vascular stiffening.
Species:  Mouse
Tissue: 
Technique:  Gene knockout.
References:  29
RGS5 knockout mice have enhanced susceptibility to atrial and ventricular tachyarrhythmias.
Species:  Mouse
Tissue:  Heart.
Technique:  Gene knockout.
References:  62-63
Xenograft tumors in Rgs5-deficient mice display vascular normalization which enhances immune destruction of tumour cells. This effect enhances survival.
Species:  Mouse
Tissue:  Insulinomas, ovarian cancer xenograft.
Technique:  Gene knockout.
References:  4,24
Knockout mice are more susceptible to pressure overload induced cardiac hypertrophy and fibrosis. Overexpressing transgenic mice are protected from this response.
Species:  Mouse
Tissue:  Haert.
Technique:  Gene knockout or overexpression.
References:  43
Loss of Rgs5 in mice increases pericyte numbers and coverage of endothelial cells, which is associated with higher capillary density and length and less blood-brain barrier damage after stroke
Species:  Mouse
Tissue: 
Technique: 
References:  91
Hepatocyte-specific deletion of Rgs5 in mice exacerbates development of non-alcoholic fatty liver disease
Species:  Mouse
Tissue: 
Technique: 
References:  75
RGS5 deletion in mice promoted an anxiety-like symptoms at baseline and angiotensin II-associated depressive symptoms
Species:  Mouse
Tissue: 
Technique: 
References:  20
Global and endothelial-specific deletion of Rgs5 in mice was associated with increased infarct size and neurological deficits in a model of ischemic stroke in association with increased blood endothelial permeability
Species:  Mouse
Tissue: 
Technique: 
References:  70
Rgs5 gene deletion in mice lead to enhanced vascular remodeling and protection from vascular leakage in the blood brain barrier post stroke due to increased number and redistribution of perivascular pericytes
Species:  Mouse
Tissue: 
Technique: 
References:  64
Parathyroid-specific overexpression of Rgs5 in mice lead to development of hyperparathyroidism reflected by changes in bone density and elevated PTH and parathyroid neoplasia. RGS5 overexpression in normal human parathyroid cells inhibits signaling induced by the Ca2+-sensing receptor (CASR) and its negative feedback on PTH secretion
Species:  Mouse
Tissue: 
Technique: 
References:  9
RGS5 is expressed in human and mouse neutrophils, and Rgs5 gene deletion enhanced chemokine-induced neutrophil chemotaxis and adhesion compared to controls. Rgs5 KO mice had increased neutrophilic lung inflammation and chemical-induced neutrophilic peritonitis compared to wild type mice
Species:  Mouse
Tissue: 
Technique: 
References:  13
Rgs5 KO mice had a decreased post-MI survival rate and left ventricular (LV) function and increased infarct size induced by coronary artery ligation compared to WT. This was associated with increased infarct size, ventricular remodeling, and hyper-activation of NF-κB and MAPK pathways
Species:  Mouse
Tissue: 
Technique: 
References:  17
Increased aortic stiffness was observed in Rgs5 KO mice compared to controls using optical coherence elastography
Species:  Mouse
Tissue: 
Technique: 
References:  78
Rgs5 gene deletion did not affect baseline blood pressure in an experimental model of hypertension but prevented associated vascular remodeling due to acquisition of a proliferative, contractile phenotype in arterial vascular smooth muscle cells, which was associated with decreased RhoA activity
Species:  Mouse
Tissue: 
Technique: 
References:  7
Xenobiotics Influencing Gene Expression Click here for help
The Notch 2/3 neutralizing antibody, tarextumab, downregulates RGS5 expression in xenograft solid tumors.
Species:  Human
Tissue:  Xenograft solid tumors.
Technique:  Quantitative RT-PCR.
References:  83
The hypoxia mimics, dimethyloxalylglycine (DMOG), cobalt chloride (CoCl2) and 3,4-dihydroxybenzoate (3,4-DHB) upregulate RGS5 expression.
Species:  Human
Tissue:  HUVEC cells.
Technique:  Western blot, northern blot.
References:  35
Statins downregulate RGS5 expression.
Species:  Human
Tissue:  Stenotic aortic valves.
Technique:  Quantitative RT-PCR and immunohistochemistry.
References:  5
Korean ginseng water extract increases RGS5 expression in LPS-activated macrophages.
Species:  Human
Tissue:  RAW264.7 macrophages.
Technique:  Quantitative RT-PCR.
References:  33
The PPARβ /δ agonist GW0742 upregulates RGS5 expression (in rat and mouse experiments)
Species:  Rat
Tissue:  Aorta.
Technique:  Quantitative RT-PCR.
References:  84-85
Dacarbazine and IFNα downregulate RGS5 expression in B16 (melanoma) tumor bearing mice.
Species:  Mouse
Tissue:  Tumor vessels.
Technique:  Quantitative RT-PCR, western blot, immunofluorescence.
References:  49
Recombinant human endostatin induces tumor vascular normalization and improves tissue hypoxia in mouse xenograft tumor models, which is accompanied by the reduction in RGS5 expression
Species:  Human
Tissue: 
Technique: 
References:  26
Chronic intermittent ethanol exposure for 7 days followed by 24h withdrawal did not affect RGS5 expression but increased expression of other RGS isoforms in rat prefrontal cortex
Species:  Rat
Tissue: 
Technique: 
References:  52
Clinically-Relevant Mutations and Pathophysiology Click here for help
Disease:  Lymphoma, non-hodgkin, familial
Description: A lymphoma that is characterized as any kind of lymphoma except Hodgkin's lymphoma. Symptoms include enlarged lymph nodes, fever, night sweats, weight loss, and lethargy.
Synonyms: Non-Hodgkin lymphoma [Disease Ontology: DOID:0060060]
Disease Ontology: DOID:0060060
OMIM: 605027
Comments: 
References:  66
Disease:  Preeclampsia
Description: Pregnancy-induced hypertension presenting after 20 weeks' gestation with clinically relevant proteinuria.
Synonyms: eclampsia 1
PEE1
OMIM: 189800
Comments: 
References:  28
Gene Expression and Pathophysiology Click here for help
RGS5 expression in liver biopsies predicts portal vein invasion in hepatocellular carcinoma
Tissue or cell type: 
Pathophysiology: 
Species:  Human
Technique: 
References:  67
High RGS5 expression in renal cell carcinoma tumors correlates with survival while RGS5 expression decreases with the histological tumor grade
Tissue or cell type: 
Pathophysiology: 
Species:  Human
Technique: 
References:  72
RGS5 expression is decreased in diabetic wounds in a mouse model
Tissue or cell type: 
Pathophysiology: 
Species:  Mouse
Technique: 
References:  59
RGS5 expression increased in cardiomyocytes from mice chronically fed low dose alcohol in tandem with a high fat diet, with expression that correlated with less adverse effects induced by a high-fat diet, such as hepatic lipid accumulation, cardiac dysfunction, hypertrophy and fibrosis
Tissue or cell type: 
Pathophysiology: 
Species:  Mouse
Technique: 
References:  57
Expression of RGS5 was decreased in liver tissue from individuals with non-alcoholic steatohepatitis (NASH) versus healthy liver
Tissue or cell type: 
Pathophysiology: 
Species:  Human
Technique: 
References:  75
Human antigen R (HuR) binds to and enhances the stability of RGS5 mRNA. Administration of RGS5 adenovirus to human antigen R (HuR)-knockout mice reverses hypertension
Tissue or cell type: 
Pathophysiology: 
Species:  Human
Technique: 
References:  50
RGS5 expression was downregulated in cytomegalovirus (CMV)-infected human umbilical vein endothelial cells (HUVECs). RGS5 overexpression inhibited CMV-induced HUVEC proliferation
Tissue or cell type: 
Pathophysiology: 
Species:  Human
Technique: 
References:  88
RGS5 expression is related to tumor invasion and epithelial-to-mesenchymal transition (EMT) in squamous cell carcinoma of the tongue and may predict postoperative early lymph node metastasis
Tissue or cell type: 
Pathophysiology: 
Species:  Human
Technique: 
References:  1
RGS5 is expressed in human epithelial ovarian tumors, with expression that negatively correlates with metastasis. Hypoxia increased RGS5 expression in ovarian cancer-derived endothelial cell lines (ODMECs) whereas siRNA knockdown of RGS5 increased ODMEC proliferation
Tissue or cell type: 
Pathophysiology: 
Species:  Human
Technique: 
References:  74
Ectopic expression of the zinc finger protein 750 (ZNF750) in cancer cell lines suppressed RGS5 expression
Tissue or cell type: 
Pathophysiology: 
Species:  None
Technique: 
References:  60
Elevated expression of RGS5 was observed in human hepatocellular carcinoma tissue compared to non-cancerous tissue, and expression was significantly associated with portal vein invasion and tended to be associated with intrahepatic metastasis
Tissue or cell type: 
Pathophysiology: 
Species:  Human
Technique: 
References:  73
Gene Expression and Pathophysiology Comments
RGS5 identified as a susceptibility gene for genetic resistance to Marek's disease virus in chickens [18]. Higher RGS5 expression was associated with a high weight gain-low feed intake phenotype in Angus x Hereford beef steers [37].
Biologically Significant Variants Click here for help
Type:  Naturally occurring SNP
Species:  Human
Description:  The SNP rs10917, in the first intron of RGS5 is associated with a poor bronchodiltor response in children with asthma.
Nucleotide change:  C696T
SNP accession: 
References:  41
Type:  Naturally occurring SNP
Species:  Human
Description:  The intronic SNP, rs2815272 is associated with hypertension in African-Americans.
SNP accession: 
References:  21
Type:  Single nucleotide polymorphism
Species:  Human
Description:  RGS5 SNP rs4657251 is an independent risk factor for single vessel occlusion stroke in a Taiwan Chinese population
SNP accession: 
References:  31
Type:  Single nucleotide polymorphism
Species:  Human
Description:  RGS5 SNP rs1056515 was associated with coronary artery disease in a GWAS of Han Chinese population. RGS5 knockdown in HUVECs upregulated NF-κB-dependent pro-inflammatory gene expression whereas RGS5 overexpression inhibited the activation of canonical NF-κB signalling and attenuated endothelial cell inflammation and vascular remodeling. Administration of RGS5 shRNA to mice exacerbated a partial carotid ligation model of atherosclerosis
SNP accession: 
References:  45

References

Show »

1. Abe Y, Ogasawara S, Akiba J, Naito Y, Kondo R, Nakamura K, Kusukawa J, Yano H. (2019) Expression and role of regulator of G-protein signaling 5 in squamous cell carcinoma of the tongue. Clin Exp Dent Res, 5 (2): 160-169. [PMID:31049219]

2. Abramow-Newerly M, Ming H, Chidiac P. (2006) Modulation of subfamily B/R4 RGS protein function by 14-3-3 proteins. Cell Signal, 18 (12): 2209-22. [PMID:16839744]

3. Adams LD, Geary RL, Li J, Rossini A, Schwartz SM. (2006) Expression profiling identifies smooth muscle cell diversity within human intima and plaque fibrous cap: loss of RGS5 distinguishes the cap. Arterioscler Thromb Vasc Biol, 26 (2): 319-25. [PMID:16293795]

4. Altman MK, Nguyen DT, Patel SB, Fambrough JM, Beedle AM, Hardman WJ, Murph MM. (2012) Regulator of G-Protein Signaling 5 Reduces HeyA8 Ovarian Cancer Cell Proliferation and Extends Survival in a Murine Tumor Model. Biochem Res Int, 2012: 518437. [PMID:22792465]

5. Anger T, El-Chafchak J, Habib A, Stumpf C, Weyand M, Daniel WG, Hombach V, Hoeher M, Garlichs CD. (2008) Statins stimulate RGS-regulated ERK 1/2 activation in human calcified and stenotic aortic valves. Exp Mol Pathol, 85 (2): 101-11. [PMID:18671964]

6. Appleton CT, James CG, Beier F. (2006) Regulator of G-protein signaling (RGS) proteins differentially control chondrocyte differentiation. J Cell Physiol, 207 (3): 735-45. [PMID:16489565]

7. Arnold C, Demirel E, Feldner A, Genové G, Zhang H, Sticht C, Wieland T, Hecker M, Heximer S, Korff T. (2018) Hypertension-evoked RhoA activity in vascular smooth muscle cells requires RGS5. FASEB J, 32 (4): 2021-2035. [PMID:29208700]

8. Arnold C, Feldner A, Pfisterer L, Hödebeck M, Troidl K, Genové G, Wieland T, Hecker M, Korff T. (2014) RGS5 promotes arterial growth during arteriogenesis. EMBO Mol Med, 6 (8): 1075-89. [PMID:24972930]

9. Balenga N, Koh J, Azimzadeh P, Hogue J, Gabr M, Stains JP, Olson Jr JA. (2019) Parathyroid-Targeted Overexpression of Regulator of G-Protein Signaling 5 (RGS5) Causes Hyperparathyroidism in Transgenic Mice. J Bone Miner Res, 34 (5): 955-963. [PMID:30690792]

10. Balenga NA, Jester W, Jiang M, Panettieri Jr RA, Druey KM. (2014) Loss of regulator of G protein signaling 5 promotes airway hyperresponsiveness in the absence of allergic inflammation. J Allergy Clin Immunol, 134 (2): 451-9. [PMID:24666695]

11. Berger M, Bergers G, Arnold B, Hämmerling GJ, Ganss R. (2005) Regulator of G-protein signaling-5 induction in pericytes coincides with active vessel remodeling during neovascularization. Blood, 105 (3): 1094-101. [PMID:15459006]

12. Bondjers C, Kalén M, Hellström M, Scheidl SJ, Abramsson A, Renner O, Lindahl P, Cho H, Kehrl J, Betsholtz C. (2003) Transcription profiling of platelet-derived growth factor-B-deficient mouse embryos identifies RGS5 as a novel marker for pericytes and vascular smooth muscle cells. Am J Pathol, 162 (3): 721-9. [PMID:12598306]

13. Chan EC, Ren C, Xie Z, Jude J, Barker T, Koziol-White CA, Ma M, Panettieri Jr RA, Wu D, Rosenberg HF et al.. (2018) Regulator of G protein signaling 5 restricts neutrophil chemotaxis and trafficking. J Biol Chem, 293 (33): 12690-12702. [PMID:29929985]

14. Cheng WL, Wang PX, Wang T, Zhang Y, Du C, Li H, Ji Y. (2015) Regulator of G-protein signalling 5 protects against atherosclerosis in apolipoprotein E-deficient mice. Br J Pharmacol, 172 (23): 5676-89. [PMID:25363362]

15. Cho H, Kozasa T, Bondjers C, Betsholtz C, Kehrl JH. (2003) Pericyte-specific expression of Rgs5: implications for PDGF and EDG receptor signaling during vascular maturation. FASEB J, 17 (3): 440-2. [PMID:12514120]

16. Cho H, Park C, Hwang IY, Han SB, Schimel D, Despres D, Kehrl JH. (2008) Rgs5 targeting leads to chronic low blood pressure and a lean body habitus. Mol Cell Biol, 28 (8): 2590-7. [PMID:18268011]

17. Ding HS, Huang Y, Chen Z, Tang YH, Wang DD, Fan D, Huang CX. (2018) Regulator of G-protein signalling 5 deficiency impairs ventricular remodelling after myocardial infarction by promoting NF-κB and MAPK signalling in mice. Biochem Biophys Res Commun, 499 (2): 143-149. [PMID:29534968]

18. Dong K, Chang S, Xie Q, Zhao P, Zhang H. (2019) RNA Sequencing revealed differentially expressed genes functionally associated with immunity and tumor suppression during latent phase infection of a vv + MDV in chickens. Sci Rep, 9 (1): 14182. [PMID:31578366]

19. Doupnik CA, Xu T, Shinaman JM. (2001) Profile of RGS expression in single rat atrial myocytes. Biochim Biophys Acta, 1522 (2): 97-107. [PMID:11750060]

20. DʼSouza MS, Guisinger TC, Norman H, Seeley SL, Chrissobolis S. (2019) Regulator of G-protein signaling 5 protein protects against anxiety- and depression-like behavior. Behav Pharmacol, 30 (8): 712-721. [PMID:31625976]

21. Faruque MU, Chen G, Doumatey A, Huang H, Zhou J, Dunston GM, Rotimi CN, Adeyemo AA. (2011) Association of ATP1B1, RGS5 and SELE polymorphisms with hypertension and blood pressure in African-Americans. J Hypertens, 29 (10): 1906-12. [PMID:21881522]

22. Gold SJ, Ni YG, Dohlman HG, Nestler EJ. (1997) Regulators of G-protein signaling (RGS) proteins: region-specific expression of nine subtypes in rat brain. J Neurosci, 17 (20): 8024-37. [PMID:9315921]

23. Gunaje JJ, Bahrami AJ, Schwartz SM, Daum G, Mahoney Jr WM. (2011) PDGF-dependent regulation of regulator of G protein signaling-5 expression and vascular smooth muscle cell functionality. Am J Physiol, Cell Physiol, 301 (2): C478-89. [PMID:21593453]

24. Hamzah J, Jugold M, Kiessling F, Rigby P, Manzur M, Marti HH, Rabie T, Kaden S, Gröne HJ, Hämmerling GJ et al.. (2008) Vascular normalization in Rgs5-deficient tumours promotes immune destruction. Nature, 453 (7193): 410-4. [PMID:18418378]

25. Hao J, Michalek C, Zhang W, Zhu M, Xu X, Mende U. (2006) Regulation of cardiomyocyte signaling by RGS proteins: differential selectivity towards G proteins and susceptibility to regulation. J Mol Cell Cardiol, 41 (1): 51-61. [PMID:16756988]

26. He L, Zhao C, Li Y, Du G, Liu K, Cui D, Tang L, Wu X, Wen S, Chen H. (2018) Antiangiogenic effects of recombinant human endostatin in lung cancers. Mol Med Rep, 17 (1): 79-86. [PMID:29115591]

27. Hendriks-Balk MC, van Loenen PB, Hajji N, Michel MC, Peters SL, Alewijnse AE. (2008) S1P receptor signalling and RGS proteins; expression and function in vascular smooth muscle cells and transfected CHO cells. Eur J Pharmacol, 600 (1-3): 1-9. [PMID:18854184]

28. Holobotovskyy V, Chong YS, Burchell J, He B, Phillips M, Leader L, Murphy TV, Sandow SL, McKitrick DJ, Charles AK et al.. (2015) Regulator of G protein signaling 5 is a determinant of gestational hypertension and preeclampsia. Sci Transl Med, 7 (290): 290ra88. [PMID:26041705]

29. Holobotovskyy V, Manzur M, Tare M, Burchell J, Bolitho E, Viola H, Hool LC, Arnolda LF, McKitrick DJ, Ganss R. (2013) Regulator of G-protein signaling 5 controls blood pressure homeostasis and vessel wall remodeling. Circ Res, 112 (5): 781-91. [PMID:23303165]

30. Hong K, Li M, Nourian Z, Meininger GA, Hill MA. (2017) Angiotensin II Type 1 Receptor Mechanoactivation Involves RGS5 (Regulator of G Protein Signaling 5) in Skeletal Muscle Arteries: Impaired Trafficking of RGS5 in Hypertension. Hypertension, 70 (6): 1264-1272. [PMID:29061726]

31. Hsu LC, Hsu LS, Lee TH. (2020) RGS5 rs4657251 polymorphism is associated with small vessel occlusion stroke in Taiwan Han Chinese. J Chin Med Assoc, 83 (3): 251-254. [PMID:32080025]

32. Hu M, Chen X, Zhang J, Wang D, Fang X, Wang X, Wang G, Chen G, Jiang X, Xia H et al.. (2013) Over-expression of regulator of G protein signaling 5 promotes tumor metastasis by inducing epithelial-mesenchymal transition in hepatocellular carcinoma cells. J Surg Oncol, 108 (3): 192-6. [PMID:23868206]

33. Im EJ, Yayeh T, Park SJ, Kim SH, Goo YK, Hong SB, Son YM, Kim SD, Rhee MH. (2014) Antiatherosclerotic effect of korean red ginseng extract involves regulator of g-protein signaling 5. Evid Based Complement Alternat Med, 2014: 985174. [PMID:25610490]

34. Jean-Baptiste G, Li X, Yang Z, Heubach J, Gaudio S, Khoury C, Ravens U, Greenwood MT. (2005) Beta adrenergic receptor-mediated atrial specific up-regulation of RGS5. Life Sci, 76 (13): 1533-45. [PMID:15680317]

35. Jin Y, An X, Ye Z, Cully B, Wu J, Li J. (2009) RGS5, a hypoxia-inducible apoptotic stimulator in endothelial cells. J Biol Chem, 284 (35): 23436-43. [PMID:19564336]

36. Kardestuncer T, Wu H, Lim AL, Neer EJ. (1998) Cardiac myocytes express mRNA for ten RGS proteins: changes in RGS mRNA expression in ventricular myocytes and cultured atria. FEBS Lett, 438 (3): 285-8. [PMID:9827562]

37. Kern RJ, Zarek CM, Lindholm-Perry AK, Kuehn LA, Snelling WM, Freetly HC, Cunningham HC, Meyer AM. (2017) Ruminal expression of the NQO1, RGS5, and ACAT1 genes may be indicators of feed efficiency in beef steers. Anim Genet, 48 (1): 90-92. [PMID:27611366]

38. Ketsawatsomkron P, Lorca RA, Keen HL, Weatherford ET, Liu X, Pelham CJ, Grobe JL, Faraci FM, England SK, Sigmund CD. (2012) PPARγ regulates resistance vessel tone through a mechanism involving RGS5-mediated control of protein kinase C and BKCa channel activity. Circ Res, 111 (11): 1446-58. [PMID:22962432]

39. Kirsch T, Wellner M, Luft FC, Haller H, Lippoldt A. (2001) Altered gene expression in cerebral capillaries of stroke-prone spontaneously hypertensive rats. Brain Res, 910 (1-2): 106-15. [PMID:11489260]

40. Koh J, Dar M, Untch BR, Dixit D, Shi Y, Yang Z, Adam MA, Dressman H, Wang X, Gesty-Palmer D et al.. (2011) Regulator of G protein signaling 5 is highly expressed in parathyroid tumors and inhibits signaling by the calcium-sensing receptor. Mol Endocrinol, 25 (5): 867-76. [PMID:21393447]

41. Labuda M, Laberge S, Brière J, Bérubé D, Krajinovic M. (2013) RGS5 gene and therapeutic response to short acting bronchodilators in paediatric asthma patients. Pediatr Pulmonol, 48 (10): 970-5. [PMID:23193110]

42. Larminie C, Murdock P, Walhin JP, Duckworth M, Blumer KJ, Scheideler MA, Garnier M. (2004) Selective expression of regulators of G-protein signaling (RGS) in the human central nervous system. Brain Res Mol Brain Res, 122 (1): 24-34. [PMID:14992813]

43. Li H, He C, Feng J, Zhang Y, Tang Q, Bian Z, Bai X, Zhou H, Jiang H, Heximer SP et al.. (2010) Regulator of G protein signaling 5 protects against cardiac hypertrophy and fibrosis during biomechanical stress of pressure overload. Proc Natl Acad Sci USA, 107 (31): 13818-23. [PMID:20643937]

44. Li J, Adams LD, Wang X, Pabon L, Schwartz SM, Sane DC, Geary RL. (2004) Regulator of G protein signaling 5 marks peripheral arterial smooth muscle cells and is downregulated in atherosclerotic plaque. J Vasc Surg, 40 (3): 519-28. [PMID:15337883]

45. Li Y, Yan H, Guo J, Han Y, Zhang C, Liu X, Du J, Tian XL. (2021) Down-regulated RGS5 by genetic variants impairs endothelial cell function and contributes to coronary artery disease. Cardiovasc Res, 117 (1): 240-255. [PMID:31605122]

46. Liang G, Bansal G, Xie Z, Druey KM. (2009) RGS16 inhibits breast cancer cell growth by mitigating phosphatidylinositol 3-kinase signaling. J Biol Chem, 284 (32): 21719-27. [PMID:19509421]

47. Liang Y, Li C, Guzman VM, Chang WW, Evinger 3rd AJ, Sao D, Woodward DF. (2005) Identification of a novel alternative splicing variant of RGS5 mRNA in human ocular tissues. FEBS J, 272 (3): 791-9. [PMID:15670159]

48. Liu C, Hu Q, Jing J, Zhang Y, Jin J, Zhang L, Mu L, Liu Y, Sun B, Zhang T et al.. (2017) Regulator of G protein signaling 5 (RGS5) inhibits sonic hedgehog function in mouse cortical neurons. Mol Cell Neurosci, 83: 65-73. [PMID:28684360]

49. Liu P, Zhang C, Chen J, Zhang R, Ren J, Huang Y, Zhu F, Li Z, Wu G. (2011) Combinational therapy of interferon-α and chemotherapy normalizes tumor vasculature by regulating pericytes including the novel marker RGS5 in melanoma. J Immunother, 34 (3): 320-6. [PMID:21389866]

50. Liu S, Jiang X, Lu H, Xing M, Qiao Y, Zhang C, Zhang W. (2020) HuR (Human Antigen R) Regulates the Contraction of Vascular Smooth Muscle and Maintains Blood Pressure. Arterioscler Thromb Vasc Biol, 40 (4): 943-957. [PMID:32075416]

51. Lovschall H, Mitsiadis TA, Poulsen K, Jensen KH, Kjeldsen AL. (2007) Coexpression of Notch3 and Rgs5 in the pericyte-vascular smooth muscle cell axis in response to pulp injury. Int J Dev Biol, 51 (8): 715-21. [PMID:17939118]

52. Luessen DJ, Sun H, McGinnis MM, McCool BA, Chen R. (2017) Chronic intermittent ethanol exposure selectively alters the expression of Gα subunit isoforms and RGS subtypes in rat prefrontal cortex. Brain Res, 1672: 106-112. [PMID:28736108]

53. Mahoney Jr WM, Gunaje J, Daum G, Dong XR, Majesky MW. (2013) Regulator of G-protein signaling - 5 (RGS5) is a novel repressor of hedgehog signaling. PLoS ONE, 8 (4): e61421. [PMID:23637832]

54. Masson N, Keeley TP, Giuntoli B, White MD, Puerta ML, Perata P, Hopkinson RJ, Flashman E, Licausi F, Ratcliffe PJ. (2019) Conserved N-terminal cysteine dioxygenases transduce responses to hypoxia in animals and plants. Science, 365 (6448): 65-69. [PMID:31273118]

55. Mitchell TS, Bradley J, Robinson GS, Shima DT, Ng YS. (2008) RGS5 expression is a quantitative measure of pericyte coverage of blood vessels. Angiogenesis, 11 (2): 141-51. [PMID:18038251]

56. Mittmann C, Chung CH, Höppner G, Michalek C, Nose M, Schüler C, Schuh A, Eschenhagen T, Weil J, Pieske B et al.. (2002) Expression of ten RGS proteins in human myocardium: functional characterization of an upregulation of RGS4 in heart failure. Cardiovasc Res, 55 (4): 778-86. [PMID:12176127]

57. Nie J, Ngokana LD, Kou J, Zhao Y, Tu J, Ji H, Tan P, Zhao T, Cao Y, Wu Z et al.. (2020) Low-dose ethanol intake prevents high-fat diet-induced adverse cardiovascular events in mice. Food Funct, 11 (4): 3549-3562. [PMID:32270151]

58. Nisancioglu MH, Mahoney Jr WM, Kimmel DD, Schwartz SM, Betsholtz C, Genové G. (2008) Generation and characterization of rgs5 mutant mice. Mol Cell Biol, 28 (7): 2324-31. [PMID:18212066]

59. Okonkwo UA, Chen L, Ma D, Haywood VA, Barakat M, Urao N, DiPietro LA. (2020) Compromised angiogenesis and vascular Integrity in impaired diabetic wound healing. PLoS One, 15 (4): e0231962. [PMID:32324828]

60. Pan L, Yang H, Xu C, Chen S, Meng Z, Li K, Chen H. (2018) ZNF750 inhibited the malignant progression of oral squamous cell carcinoma by regulating tumor vascular microenvironment. Biomed Pharmacother, 105: 566-572. [PMID:29890464]

61. Park-Windhol C, Zhang P, Zhu M, Su J, Chaves Jr L, Maldonado AE, King ME, Rickey L, Cullen D, Mende U. (2012) Gq/11-mediated signaling and hypertrophy in mice with cardiac-specific transgenic expression of regulator of G-protein signaling 2. PLoS ONE, 7 (7): e40048. [PMID:22802950]

62. Qin M, Huang H, Wang T, Hu H, Liu Y, Cao H, Li H, Huang C. (2012) Absence of Rgs5 prolongs cardiac repolarization and predisposes to ventricular tachyarrhythmia in mice. J Mol Cell Cardiol, 53 (6): 880-90. [PMID:23079193]

63. Qin M, Huang H, Wang T, Hu H, Liu Y, Gu Y, Cao H, Li H, Huang C. (2012) Atrial tachyarrhythmia in Rgs5-null mice. PLoS ONE, 7 (11): e46856. [PMID:23144791]

64. Roth M, Gaceb A, Enström A, Padel T, Genové G, Özen I, Paul G. (2019) Regulator of G-protein signaling 5 regulates the shift from perivascular to parenchymal pericytes in the chronic phase after stroke. FASEB J, 33 (8): 8990-8998. [PMID:31039042]

65. Seki N, Sugano S, Suzuki Y, Nakagawara A, Ohira M, Muramatsu M, Saito T, Hori T. (1998) Isolation, tissue expression, and chromosomal assignment of human RGS5, a novel G-protein signaling regulator gene. J Hum Genet, 43 (3): 202-5. [PMID:9747037]

66. Sethakorn N, Dulin NO. (2013) RGS expression in cancer: oncomining the cancer microarray data. J Recept Signal Transduct Res, 33 (3): 166-71. [PMID:23464602]

67. Shioga T, Kondo R, Ogasawara S, Akiba J, Mizuochi S, Kusano H, Mihara Y, Tanigawa M, Kinjyo Y, Naito Y et al.. (2020) Usefulness of Tumor Tissue Biopsy for Predicting the Biological Behavior of Hepatocellular Carcinoma. Anticancer Res, 40 (7): 4105-4113. [PMID:32620659]

68. Sierra DA, Gilbert DJ, Householder D, Grishin NV, Yu K, Ukidwe P, Barker SA, He W, Wensel TG, Otero G et al.. (2002) Evolution of the regulators of G-protein signaling multigene family in mouse and human. Genomics, 79 (2): 177-85. [PMID:11829488]

69. Silini A, Ghilardi C, Figini S, Sangalli F, Fruscio R, Dahse R, Pedley RB, Giavazzi R, Bani M. (2012) Regulator of G-protein signaling 5 (RGS5) protein: a novel marker of cancer vasculature elicited and sustained by the tumor's proangiogenic microenvironment. Cell Mol Life Sci, 69 (7): 1167-78. [PMID:22130514]

70. Sladojevic N, Yu B, Liao JK. (2020) Regulator of G-Protein Signaling 5 Maintains Brain Endothelial Cell Function in Focal Cerebral Ischemia. J Am Heart Assoc, 9 (18): e017533. [PMID:32875943]

71. Stiles JM, Rowntree RK, Amaya C, Diaz D, Kokta V, Mitchell DC, Bryan BA. (2013) Gene expression analysis reveals marked differences in the transcriptome of infantile hemangioma endothelial cells compared to normal dermal microvascular endothelial cells. Vasc Cell, 5 (1): 6. [PMID:23531100]

72. Su S, Shahriyari L. (2020) RGS5 plays a significant role in renal cell carcinoma. R Soc Open Sci, 7 (4): 191422. [PMID:32431860]

73. Umeno Y, Ogasawara S, Akiba J, Hattori S, Kusano H, Nakashima O, Koga H, Torimura T, Yamakawa R, Yano H. (2018) Regulator of G-protein signaling 5 enhances portal vein invasion in hepatocellular carcinoma. Oncol Lett, 15 (2): 1763-1770. [PMID:29434872]

74. Wang D, Xu Y, Feng L, Yin P, Song SS, Wu F, Yan P, Liang Z. (2019) RGS5 decreases the proliferation of human ovarian carcinoma‑derived primary endothelial cells through the MAPK/ERK signaling pathway in hypoxia. Oncol Rep, 41 (1): 165-177. [PMID:30365142]

75. Wang J, Ma J, Nie H, Zhang XJ, Zhang P, She ZG, Li H, Ji YX, Cai J. (2021) Hepatic Regulator of G Protein Signaling 5 Ameliorates Nonalcoholic Fatty Liver Disease by Suppressing Transforming Growth Factor Beta-Activated Kinase 1-c-Jun-N-Terminal Kinase/p38 Signaling. Hepatology, 73 (1): 104-125. [PMID:32191345]

76. Wang Q, Liu M, Mullah B, Siderovski DP, Neubig RR. (2002) Receptor-selective effects of endogenous RGS3 and RGS5 to regulate mitogen-activated protein kinase activation in rat vascular smooth muscle cells. J Biol Chem, 277 (28): 24949-58. [PMID:12006602]

77. Wang Y, Davis I, Chan Y, Naik SG, Griffith WP, Liu A. (2020) Characterization of the nonheme iron center of cysteamine dioxygenase and its interaction with substrates. J Biol Chem, 295 (33): 11789-11802. [PMID:32601061]

78. Wijesinghe P, Johansen NJ, Curatolo A, Sampson DD, Ganss R, Kennedy BF. (2017) Ultrahigh-Resolution Optical Coherence Elastography Images Cellular-Scale Stiffness of Mouse Aorta. Biophys J, 113 (11): 2540-2551. [PMID:29212007]

79. Xu Z, Zuo Y, Wang J, Yu Z, Peng F, Chen Y, Dong Y, Hu X, Zhou Q, Ma H et al.. (2015) Overexpression of the regulator of G-protein signaling 5 reduces the survival rate and enhances the radiation response of human lung cancer cells. Oncol Rep, 33 (6): 2899-907. [PMID:25891540]

80. Yang Z, Balenga N, Cooper PR, Damera G, Edwards R, Brightling CE, Panettieri Jr RA, Druey KM. (2012) Regulator of G-protein signaling-5 inhibits bronchial smooth muscle contraction in severe asthma. Am J Respir Cell Mol Biol, 46 (6): 823-32. [PMID:22281988]

81. Yang Z, Cooper PR, Damera G, Mukhopadhyay I, Cho H, Kehrl JH, Panettieri Jr RA, Druey KM. (2011) Beta-agonist-associated reduction in RGS5 expression promotes airway smooth muscle hyper-responsiveness. J Biol Chem, 286 (13): 11444-55. [PMID:21278382]

82. Yang Z, Gaudio S, Song W, Greenwood M, Jean-Baptiste G, Greenwood MT. (2007) Evidence for the dimerization of human regulator of G-protein signalling 5 (RGS5). Cell Physiol Biochem, 20 (5): 303-10. [PMID:17762159]

83. Yen WC, Fischer MM, Axelrod F, Bond C, Cain J, Cancilla B, Henner WR, Meisner R, Sato A, Shah J et al.. (2015) Targeting Notch signaling with a Notch2/Notch3 antagonist (tarextumab) inhibits tumor growth and decreases tumor-initiating cell frequency. Clin Cancer Res, 21 (9): 2084-95. [PMID:25934888]

84. Zarzuelo MJ, Gómez-Guzmán M, Jiménez R, Quintela AM, Romero M, Sánchez M, Zarzuelo A, Tamargo J, Pérez-Vizcaíno F, Duarte J. (2013) Effects of peroxisome proliferator-activated receptor-β activation in endothelin-dependent hypertension. Cardiovasc Res, 99 (4): 622-31. [PMID:23752977]

85. Zarzuelo MJ, Jiménez R, Galindo P, Sánchez M, Nieto A, Romero M, Quintela AM, López-Sepúlveda R, Gómez-Guzmán M, Bailón E et al.. (2011) Antihypertensive effects of peroxisome proliferator-activated receptor-β activation in spontaneously hypertensive rats. Hypertension, 58 (4): 733-43. [PMID:21825230]

86. Zhang H, Gu S, Al-Sabeq B, Wang S, He J, Tam A, Cifelli C, Mathalone N, Tirgari S, Boyd S et al.. (2012) Origin-specific epigenetic program correlates with vascular bed-specific differences in Rgs5 expression. FASEB J, 26 (1): 181-91. [PMID:21965603]

87. Zhang W, Anger T, Su J, Hao J, Xu X, Zhu M, Gach A, Cui L, Liao R, Mende U. (2006) Selective loss of fine tuning of Gq/11 signaling by RGS2 protein exacerbates cardiomyocyte hypertrophy. J Biol Chem, 281 (9): 5811-20. [PMID:16380388]

88. Zhang X, Tang N, Xi D, Feng Q, Liu Y, Wang L, Tang Y, Zhong H, He F. (2020) Human cytomegalovirus promoting endothelial cell proliferation by targeting regulator of G-protein signaling 5 hypermethylation and downregulation. Sci Rep, 10 (1): 2252. [PMID:32041970]

89. Zhao P, Chidiac P. (2015) Regulation of RGS5 GAP activity by GPSM3. Mol Cell Biochem, 405 (1-2): 33-40. [PMID:25842189]

90. Zhou J, Moroi K, Nishiyama M, Usui H, Seki N, Ishida J, Fukamizu A, Kimura S. (2001) Characterization of RGS5 in regulation of G protein-coupled receptor signaling. Life Sci, 68 (13): 1457-69. [PMID:11253162]

91. Özen I, Roth M, Barbariga M, Gaceb A, Deierborg T, Genové G, Paul G. (2018) Loss of Regulator of G-Protein Signaling 5 Leads to Neurovascular Protection in Stroke. Stroke, 49 (9): 2182-2190. [PMID:30354999]

Contributors

Show »

How to cite this page