Top ▲

α2C-adrenoceptor

Click here for help

Target not currently curated in GtoImmuPdb

Target id: 27

Nomenclature: α2C-adrenoceptor

Family: Adrenoceptors

Gene and Protein Information Click here for help
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 462 4p16.3 ADRA2C adrenoceptor alpha 2C 34
Mouse 7 458 5 18.09 cM Adra2c adrenergic receptor, alpha 2c 23
Rat 7 458 14q21 Adra2c adrenoceptor alpha 2C 12
Previous and Unofficial Names Click here for help
α2-C4 | ADRA2L2 | ADRA2RL2 | Adrenergic alpha2C- receptor class I | alpha-2 adrenergic receptor subtype C4 | alpha-2C adrenergic receptor | alpha-2C adrenoreceptor | Adra-2c | adrenergic receptor
Database Links Click here for help
Specialist databases
GPCRdb ada2c_human (Hs), ada2c_mouse (Mm), ada2c_rat (Rn)
Other databases
Alphafold
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Natural/Endogenous Ligands Click here for help
(-)-adrenaline
(-)-noradrenaline
Comments: Adrenaline exhibits greater relative potency than noradrenaline

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
dexmedetomidine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 7.0 – 9.3 pKi 18,28,30,33
pKi 7.0 – 9.3 [18,28,30,33]
apraclonidine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Agonist 7.5 pKi 27,33
pKi 7.5 (Ki 3x10-8 M) [27,33]
pergolide Small molecule or natural product Approved drug Click here for species-specific activity table Hs Partial agonist 7.2 pKi 26
pKi 7.2 [26]
lofexidine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Agonist 7.2 pKi 7
pKi 7.2 (Ki 6.92x10-8 M) [7]
Description: Calculated from [3H]RS-79948-197 radioligand competition binding to membrane preparations from CHO cells expressing human α2C-AR.
clonidine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Partial agonist 6.0 – 7.8 pKi 18,28,30
pKi 6.0 – 7.8 [18,28,30]
oxymetazoline Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Partial agonist 6.7 pKi 18,21,33,36
pKi 6.7 [18,21,33,36]
brimonidine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Immunopharmacology Ligand Hs Partial agonist 5.7 – 7.6 pKi 18,25,28,30,33
pKi 5.7 – 7.6 [18,25,28,30,33]
(-)-noradrenaline Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Hs Full agonist 5.7 – 6.8 pKi 18,21,30,33
pKi 5.7 – 6.8 [18,21,30,33]
(±)-adrenaline Small molecule or natural product Click here for species-specific activity table Hs Full agonist 5.8 – 6.2 pKi 18
pKi 5.8 – 6.2 [18]
(-)-adrenaline Small molecule or natural product Approved drug Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Immunopharmacology Ligand Hs Agonist 5.8 pKi 18,33
pKi 5.8 [18,33]
guanfacine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Partial agonist 5.4 – 6.2 pKi 18
pKi 5.4 – 6.2 [18]
xylazine Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 4.8 – 5.9 pKi 18
pKi 4.8 – 5.9 [18]
guanabenz Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Agonist 6.0 pIC50 1,33
pIC50 6.0 (IC50 1.106x10-6 M) [1,33]
moxonidine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Agonist - - 33
[33]
Agonist Comments
[125I]p-iodoclonidine binds to the human α2C receptor with a Kd of 1.3 nM [31].
Apraclonidine is an approved drug agonist of α2-adrenoceptors [27].
As an endogenous ligand, (-)-noradrenaline has intrinsic activity across the adrenoceptor family, but we've only tagged α2B and α2C subtypes as primary drug target as the drug has highest affinity at these isoforms.
Guanabenz order of affinity is α2A-AR>α2B-AR>α2C-AR [1].
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
JP1302 Small molecule or natural product Hs Antagonist 6.9 – 7.8 pKB 32,35
pKB 6.9 – 7.8 [32,35]
[3H]MK-912 Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Antagonist 10.1 pKd 36
pKd 10.1 (Kd 8.6x10-11 M) [36]
[3H]rauwolscine Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Antagonist 9.9 pKd 3,5
pKd 9.9 [3,5]
[3H]RX821002 Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Antagonist 8.2 – 9.2 pKd 5-6
pKd 8.2 – 9.2 [5-6]
MK-912 Small molecule or natural product Hs Antagonist 9.8 – 10.0 pKi 32
pKi 9.8 – 10.0 [32]
lisuride Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 9.3 – 9.9 pKi 25-26,32
pKi 9.3 – 9.9 [25-26,32]
terguride Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 9.1 pKi 26
pKi 9.1 [26]
rauwolscine Small molecule or natural product Click here for species-specific activity table Hs Antagonist 9.1 pKi 36
pKi 9.1 [36]
yohimbine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 8.5 – 9.5 pKi 3,6,32,36
pKi 8.5 – 9.5 [3,6,32,36]
spiroxatrine Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.7 – 9.0 pKi 32,36
pKi 8.7 – 9.0 [32,36]
roxindole Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.8 pKi 26
pKi 8.8 [26]
WB 4101 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.2 – 9.4 pKi 3,6,32,36
pKi 8.2 – 9.4 [3,6,32,36]
atipamezole Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.5 pKi 32
pKi 8.5 [32]
RX821002 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.1 – 8.7 pKi 32,35-36
pKi 8.1 – 8.7 [32,35-36]
lurasidone Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 8.0 pKi 17
pKi 8.0 (Ki 1.08x10-8 M) [17]
EGIS-11150 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.9 pKi 13
pKi 7.9 (Ki 1.3x10-8 M) [13]
phentolamine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 7.6 – 7.9 pKi 3,6
pKi 7.6 – 7.9 [3,6]
all-trans-4-oxo-retinoic acid Small molecule or natural product Primary target of this compound Click here for species-specific activity table Hs Antagonist 7.7 pKi 11
pKi 7.7 (Ki 1.8x10-8 M) [11]
mirtazapine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 7.7 pKi 11
pKi 7.7 (Ki 1.8x10-8 M) [11]
Description: Inhibition of [3H]rauwolscine binding.
cabergoline Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 7.7 pKi 26
pKi 7.7 [26]
bromocriptine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 7.6 pKi 26
pKi 7.6 [26]
ARC-239 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.7 – 8.4 pKi 3,6,36
pKi 6.7 – 8.4 [3,6,36]
apomorphine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 7.4 pKi 26
pKi 7.4 [26]
prazosin Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 6.7 – 8.0 pKi 3,6,36
pKi 6.7 – 8.0 [3,6,36]
piribedil Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.2 pKi 26
pKi 7.2 [26]
idazoxan Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.2 pKi 32
pKi 7.2 [32]
chlorpromazine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 6.9 – 7.4 pKi 3,6
pKi 6.9 – 7.4 [3,6]
BRL 44408 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.8 pKi 36
pKi 6.8 [36]
tolazoline Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 5.4 pKi 18
pKi 5.4 (Ki 3.715x10-6 M) [18]
Description: Inhibition of agonist-stimulated [35S]GTPγS binding
mirtazapine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 6.7 pIC50 20
pIC50 6.7 (IC50 1.995x10-7 M) [20]
Antagonist Comments
Mirtazapine is an antagonist of α2-adrenoceptors and serotonin 5-HT2a and 5-HT2c receptors.
Primary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gi/Go family Adenylyl cyclase inhibition
Potassium channel
Calcium channel
References:  4,22
Secondary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gs family Adenylyl cyclase stimulation
Comments:  The physiological significance of this mechanism is unknown.
References:  9
Tissue Distribution Click here for help
Brain = kidney > aorta = lung = skeletal muscle = heart = spleen.
Absent in the liver.
Species:  Human
Technique:  RNAse protection of mRNA.
References:  10,29
Brain >> kidney.
Absent in spleen, aorta, heart, liver, lung, skeletal muscle.
Species:  Human
Technique:  RNAse protection of mRNA.
References:  2,15
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays Click here for help
Measurment of adenylate cyclase activity. This assay is done intact cell preparations (either native or transfected) using the [3H]adenine prelabeling technique to measure cAMP accumulation.
Species:  Human
Tissue: 
Response measured:  Inhibition of cAMP accumulation.
References:  4
Isometric contraction is measured with rings of human saphenous veins (3–5 mm) attached to myograph transducers under 1 g tension in organ bath at 37 °C.
Species:  Human
Tissue:  Saphenous vein.
Response measured:  Contraction.
References:  8,14
Physiological Functions Click here for help
Presynaptic inhibition of noradrenaline release.
Species:  Mouse
Tissue:  Heart; central noradrenergic neurons.
References:  16,19
Physiological Consequences of Altering Gene Expression Click here for help
α2C-adrenoceptor knock-out mice show no change in cardiovascular and sedative effects with a non-selective adrenoceptor agonist.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  19
The development of α2B and α2C knock-out mice has shown that these two subtypes are not involved in the central hypotensive response to α2 agonists.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  24
α2C knockout mice exhibit disruption of presynaptic inhibition of noradrenaline release at low stimulation frequencies.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  16
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Adra2atm1Bkk|Adra2btm1Gsb|Adra2ctm1Gsb Adra2atm1Bkk/Adra2atm1Bkk,Adra2btm1Gsb/Adra2btm1Gsb,Adra2ctm1Gsb/Adra2ctm1Gsb
involves: 129S1/Sv * 129X1/SvJ * C57BL/6 * DBA/2J
MGI:87934  MGI:87935  MGI:87936  MP:0001712 abnormal placenta development PMID: 12068299 
Adra2ctm1Gsb Adra2ctm1Gsb/Adra2ctm1Gsb
involves: 129S1/Sv * 129X1/SvJ * C57BL/6 * DBA/2J
MGI:87936  MP:0008428 abnormal spatial working memory PMID: 10051760  11642653 
Adra2atm1Bkk|Adra2ctm1Gsb Adra2atm1Bkk/Adra2atm1Bkk,Adra2ctm1Gsb/Adra2ctm1Gsb
involves: 129S1/Sv * 129X1/SvJ * C57BL/6 * DBA/2J
MGI:87934  MGI:87936  MP:0005447 abnormal synaptic norepinephrine release PMID: 10647009 
Adra2atm1Bkk|Adra2btm1Gsb|Adra2ctm1Gsb Adra2atm1Bkk/Adra2atm1Bkk,Adra2btm1Gsb/Adra2btm1Gsb,Adra2ctm1Gsb/Adra2ctm1Gsb
involves: 129S1/Sv * 129X1/SvJ * C57BL/6 * DBA/2J
MGI:87934  MGI:87935  MGI:87936  MP:0001718 abnormal yolk sac morphology PMID: 12068299 
Adra2ctm1Gsb Adra2ctm1Gsb/Adra2ctm1Gsb
involves: 129S1/Sv * 129X1/SvJ * C57BL/6 * DBA/2J
MGI:87936  MP:0002573 behavioral despair PMID: 10523817 
Adra2atm1Bkk|Adra2ctm1Gsb Adra2atm1Bkk/Adra2atm1Bkk,Adra2ctm1Gsb/Adra2ctm1Gsb
involves: 129S1/Sv * 129X1/SvJ * C57BL/6 * DBA/2J
MGI:87934  MGI:87936  MP:0001625 cardiac hypertrophy PMID: 10647009 
Adra2atm1Bkk|Adra2btm1Gsb|Adra2ctm1Gsb Adra2atm1Bkk/Adra2atm1Bkk,Adra2btm1Gsb/Adra2btm1Gsb,Adra2ctm1Gsb/Adra2ctm1Gsb
involves: 129S1/Sv * 129X1/SvJ * C57BL/6 * DBA/2J
MGI:87934  MGI:87935  MGI:87936  MP:0005333 decreased heart rate PMID: 12068299 
Adra2atm1Bkk|Adra2btm1Gsb|Adra2ctm1Gsb Adra2atm1Bkk/Adra2atm1Bkk,Adra2btm1Gsb/Adra2btm1Gsb,Adra2ctm1Gsb/Adra2ctm1Gsb
involves: 129S1/Sv * 129X1/SvJ * C57BL/6 * DBA/2J
MGI:87934  MGI:87935  MGI:87936  MP:0006207 embryonic lethality during organogenesis PMID: 12068299 
Adra2ctm1Gsb Adra2ctm1Gsb/Adra2ctm1Gsb
involves: 129S1/Sv * 129X1/SvJ * C57BL/6 * DBA/2J
MGI:87936  MP:0001488 increased startle reflex PMID: 9526020 

References

Show »

1. Auerbach SS, DrugMatrix® and ToxFX® Coordinator National Toxicology Program. National Toxicology Program: Dept of Health and Human Services. Accessed on 02/05/2014. Modified on 02/05/2014. DrugMatrix, https://ntp.niehs.nih.gov/drugmatrix/index.html

2. Blaxall HS, Hass NA, Bylund DB. (1994) Expression of alpha 2-adrenergic receptor genes in rat tissues. Receptor, 4 (3): 191-9. [PMID:7812219]

3. Bylund DB, Blaxall HS, Iversen LJ, Caron MG, Lefkowitz RJ, Lomasney JW. (1992) Pharmacological characteristics of alpha 2-adrenergic receptors: comparison of pharmacologically defined subtypes with subtypes identified by molecular cloning. Mol Pharmacol, 42: 1-5. [PMID:1353247]

4. Bylund DB, Ray-Prenger C. (1989) Alpha-2A and alpha-2B adrenergic receptor subtypes: attenuation of cyclic AMP production in cell lines containing only one receptor subtype. J Pharmacol Exp Ther, 251 (2): 640-4. [PMID:2553931]

5. Deupree JD, Hinton KA, Cerutis DR, Bylund DB. (1996) Buffers differentially alter the binding of [3H]rauwolscine and [3H]RX821002 to the alpha-2 adrenergic receptor subtypes. J Pharmacol Exp Ther, 278 (3): 1215-27. [PMID:8819505]

6. Devedjian JC, Esclapez F, Denis-Pouxviel C, Paris H. (1994) Further characterization of human alpha 2-adrenoceptor subtypes: [3H]RX821002 binding and definition of additional selective drugs. Eur J Pharmacol, 252 (1): 43-9. [PMID:7908642]

7. Diamanti E, Del Bello F, Carbonara G, Carrieri A, Fracchiolla G, Giannella M, Mammoli V, Piergentili A, Pohjanoksa K, Quaglia W et al.. (2012) Might the observed α(2A)-adrenoreceptor agonism or antagonism of allyphenyline analogues be ascribed to different molecular conformations?. Bioorg Med Chem, 20 (6): 2082-90. [PMID:22341244]

8. Docherty JR. (1998) Subtypes of functional alpha1- and alpha2-adrenoceptors. Eur J Pharmacol, 361 (1): 1-15. [PMID:9851536]

9. Eason MG, Kurose H, Holt BD, Raymond JR, Liggett SB. (1992) Simultaneous coupling of alpha 2-adrenergic receptors to two G-proteins with opposing effects. Subtype-selective coupling of alpha 2C10, alpha 2C4, and alpha 2C2 adrenergic receptors to Gi and Gs. J Biol Chem, 267 (22): 15795-801. [PMID:1322406]

10. Eason MG, Liggett SB. (1993) Human alpha 2-adrenergic receptor subtype distribution: widespread and subtype-selective expression of alpha 2C10, alpha 2C4, and alpha 2C2 mRNA in multiple tissues. Mol Pharmacol, 44 (1): 70-5. [PMID:7688069]

11. Fernández J, Alonso JM, Andrés JI, Cid JM, Díaz A, Iturrino L, Gil P, Megens A, Sipido VK, Trabanco AA. (2005) Discovery of new tetracyclic tetrahydrofuran derivatives as potential broad-spectrum psychotropic agents. J Med Chem, 48 (6): 1709-12. [PMID:15771415]

12. Flordellis CS, Handy DE, Bresnahan MR, Zannis VI, Gavras H. (1991) Cloning and expression of a rat brain alpha 2B-adrenergic receptor. Proc Natl Acad Sci USA, 88 (3): 1019-23. [PMID:1704126]

13. Gacsályi I, Nagy K, Pallagi K, Lévay G, Hársing Jr LG, Móricz K, Kertész S, Varga P, Haller J, Gigler G et al.. (2013) Egis-11150: a candidate antipsychotic compound with procognitive efficacy in rodents. Neuropharmacology, 64: 254-63. [PMID:22824189]

14. Gavin KT, Colgan MP, Moore D, Shanik G, Docherty JR. (1997) Alpha 2C-adrenoceptors mediate contractile responses to noradrenaline in the human saphenous vein. Naunyn Schmiedebergs Arch Pharmacol, 355 (3): 406-11. [PMID:9089673]

15. Handy DE, Flordellis CS, Bogdanova NN, Bresnahan MR, Gavras H. (1993) Diverse tissue expression of rat alpha 2-adrenergic receptor genes. Hypertension, 21 (6 Pt 1): 861-5. [PMID:7684725]

16. Hein L, Altman JD, Kobilka BK. (1999) Two functionally distinct alpha2-adrenergic receptors regulate sympathetic neurotransmission. Nature, 402 (6758): 181-4. [PMID:10647009]

17. Ishibashi T, Horisawa T, Tokuda K, Ishiyama T, Ogasa M, Tagashira R, Matsumoto K, Nishikawa H, Ueda Y, Toma S et al.. (2010) Pharmacological profile of lurasidone, a novel antipsychotic agent with potent 5-hydroxytryptamine 7 (5-HT7) and 5-HT1A receptor activity. J Pharmacol Exp Ther, 334 (1): 171-81. [PMID:20404009]

18. Jasper JR, Lesnick JD, Chang LK, Yamanishi SS, Chang TK, Hsu SA, Daunt DA, Bonhaus DW, Eglen RM. (1998) Ligand efficacy and potency at recombinant alpha2 adrenergic receptors: agonist-mediated [35S]GTPgammaS binding. Biochem Pharmacol, 55 (7): 1035-43. [PMID:9605427]

19. Kable JW, Murrin LC, Bylund DB. (2000) In vivo gene modification elucidates subtype-specific functions of alpha(2)-adrenergic receptors. J Pharmacol Exp Ther, 293 (1): 1-7. [PMID:10734146]

20. Kennis LE, Bischoff FP, Mertens CJ, Love CJ, Van den Keybus FA, Pieters S, Braeken M, Megens AA, Leysen JE. (2000) New 2-substituted 1,2,3,4-tetrahydrobenzofuro[3,2-c]pyridine having highly active and potent central alpha 2-antagonistic activity as potential antidepressants. Bioorg Med Chem Lett, 10 (1): 71-4. [PMID:10636247]

21. Kurko D, Kapui Z, Nagy J, Lendvai B, Kolok S. (2014) Analysis of functional selectivity through G protein-dependent and -independent signaling pathways at the adrenergic α(2C) receptor. Brain Res Bull, 107: 89-101. [PMID:25080296]

22. Limbird LE. (1988) Receptors linked to inhibition of adenylate cyclase: additional signaling mechanisms. FASEB J, 2 (11): 2686-95. [PMID:2840317]

23. Link R, Daunt D, Barsh G, Chruscinski A, Kobilka B. (1992) Cloning of two mouse genes encoding alpha 2-adrenergic receptor subtypes and identification of a single amino acid in the mouse alpha 2-C10 homolog responsible for an interspecies variation in antagonist binding. Mol Pharmacol, 42 (1): 16-27. [PMID:1353249]

24. Link RE, Desai K, Hein L, Stevens ME, Chruscinski A, Bernstein D, Barsh GS, Kobilka BK. (1996) Cardiovascular regulation in mice lacking alpha2-adrenergic receptor subtypes b and c. Science, 273 (5276): 803-5. [PMID:8670422]

25. MacDonald E, Kobilka BK, Scheinin M. (1997) Gene targeting--homing in on alpha 2-adrenoceptor-subtype function. Trends Pharmacol Sci, 18 (6): 211-9. [PMID:9227000]

26. Millan MJ, Maiofiss L, Cussac D, Audinot V, Boutin JA, Newman-Tancredi A. (2002) Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor. I. A multivariate analysis of the binding profiles of 14 drugs at 21 native and cloned human receptor subtypes. J Pharmacol Exp Ther, 303 (2): 791-804. [PMID:12388666]

27. Munk SA, Harcourt D, Ambrus G, Denys L, Gluchowski C, Burke JA, Kharlamb AB, Manlapaz CA, Padillo EU, Runde E et al.. (1996) Synthesis and evaluation of 2-[(5-methylbenz-1-ox-4-azin-6-yl)imino]imidazoline, a potent, peripherally acting alpha 2 adrenoceptor agonist. J Med Chem, 39 (18): 3533-8. [PMID:8784451]

28. Peltonen JM, Pihlavisto M, Scheinin M. (1998) Subtype-specific stimulation of [35S]GTPgammaS binding by recombinant alpha2-adrenoceptors. Eur J Pharmacol, 355 (2-3): 275-9. [PMID:9760042]

29. Perälä M, Hirvonen H, Kalimo H, Ala-Uotila S, Regan JW, Akerman KE, Scheinin M. (1992) Differential expression of two alpha 2-adrenergic receptor subtype mRNAs in human tissues. Brain Res Mol Brain Res, 16 (1-2): 57-63. [PMID:1334200]

30. Pihlavisto M, Sjöholm B, Scheinin M, Wurster S. (1998) Modulation of agonist binding to recombinant human alpha2-adrenoceptors by sodium ions. Biochim Biophys Acta, 1448 (1): 135-46. [PMID:9824686]

31. Piletz JE, Zhu H, Chikkala DN. (1996) Comparison of ligand binding affinities at human I1-imidazoline binding sites and the high affinity state of alpha-2 adrenoceptor subtypes. J Pharmacol Exp Ther, 279 (2): 694-702. [PMID:8930173]

32. Proudman RGW, Akinaga J, Baker JG. (2022) The affinity and selectivity of α-adrenoceptor antagonists, antidepressants and antipsychotics for the human α2A, α2B, and α2C-adrenoceptors and comparison with human α1 and β-adrenoceptors. Pharmacol Res Perspect, 10 (2): e00936. [PMID:35224877]

33. Proudman RGW, Akinaga J, Baker JG. (2022) The signaling and selectivity of α-adrenoceptor agonists for the human α2A, α2B and α2C-adrenoceptors and comparison with human α1 and β-adrenoceptors. Pharmacol Res Perspect, 10 (5): e01003. [PMID:36101495]

34. Regan JW, Kobilka TS, Yang-Feng TL, Caron MG, Lefkowitz RJ, Kobilka BK. (1988) Cloning and expression of a human kidney cDNA for an alpha 2-adrenergic receptor subtype. Proc Natl Acad Sci USA, 85 (17): 6301-5. [PMID:2842764]

35. Sallinen J, Höglund I, Engström M, Lehtimäki J, Virtanen R, Sirviö J, Wurster S, Savola JM, Haapalinna A. (2007) Pharmacological characterization and CNS effects of a novel highly selective alpha2C-adrenoceptor antagonist JP-1302. Br J Pharmacol, 150 (4): 391-402. [PMID:17220913]

36. Uhlén S, Porter AC, Neubig RR. (1994) The novel alpha-2 adrenergic radioligand [3H]-MK912 is alpha-2C selective among human alpha-2A, alpha-2B and alpha-2C adrenoceptors. J Pharmacol Exp Ther, 271 (3): 1558-65. [PMID:7996470]

Contributors

Show »

How to cite this page