Top ▲

A1 receptor

Click here for help

Immunopharmacology Ligand  Target has curated data in GtoImmuPdb

Target id: 18

Nomenclature: A1 receptor

Family: Adenosine receptors

Gene and Protein Information Click here for help
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 326 1q32.1 ADORA1 adenosine A1 receptor 86,117,141
Mouse 7 326 1 E4 Adora1 adenosine A1 receptor 95,152
Rat 7 326 13q13 Adora1 adenosine A1 receptor 94
Previous and Unofficial Names Click here for help
RDC7 | adenosine receptor A1 | A1-AR | A1R
Database Links Click here for help
Specialist databases
GPCRdb aa1r_human (Hs), aa1r_mouse (Mm), aa1r_rat (Rn)
Other databases
Alphafold
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Selected 3D Structures Click here for help
Image of receptor 3D structure from RCSB PDB
Description:  Crystal structure of the human adenosine A1 receptor A1AR-bRIL in complex with the covalent antagonist DU172 at 3.2A resolution
PDB Id:  5UEN
Ligand:  DU172
Resolution:  3.2Å
Species:  Human
References:  49
Image of receptor 3D structure from RCSB PDB
Description:  Crystal structure of stabilized A1 receptor in complex with PSB36
PDB Id:  5N2S
Ligand:  PSB36
Resolution:  3.3Å
Species:  Human
References:  18
Image of receptor 3D structure from RCSB PDB
Description:  Structure of the adenosine-bound human adenosine A1 receptor–Gi complex
PDB Id:  6D9H
Ligand:  adenosine
Resolution:  3.6Å
Species:  Human
References:  30
Natural/Endogenous Ligands Click here for help
adenosine

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[3H]CCPA Small molecule or natural product Ligand is labelled Ligand is radioactive Hs Full agonist 9.2 pKd 78,120
pKd 9.2 (Kd 6.31x10-10 M) [78,120]
5-Cl-5-deoxy-(±)-ENBA Small molecule or natural product Hs Full agonist 9.3 pKi 36
pKi 9.3 (Ki 5.1x10-10 M) [36]
N(6)-cyclohexyladenosine Small molecule or natural product Click here for species-specific activity table Rn Agonist 9.1 pKi 24
pKi 9.1 (Ki 8.5x10-10 M) [24]
(R)-PIA Small molecule or natural product Click here for species-specific activity table Rn Agonist 8.9 pKi 24
pKi 8.9 (Ki 1.2x10-9 M) [24]
CCPA Small molecule or natural product Click here for species-specific activity table Rn Agonist 8.9 pKi 85
pKi 8.9 (Ki 1.3x10-9 M) [85]
(R,S)-PHPNECA Small molecule or natural product Click here for species-specific activity table Hs Full agonist 8.6 pKi 148
pKi 8.6 [148]
TCPA Small molecule or natural product Click here for species-specific activity table Hs Agonist 8.6 pKi 9
pKi 8.6 (Ki 2.8x10-9 M) [9]
GR79236 Small molecule or natural product Rn Agonist 8.5 pKi 63
pKi 8.5 (Ki 3.1x10-9 M) [63]
NECA Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Rn Agonist 8.3 pKi 90
pKi 8.3 (Ki 5.1x10-9 M) [90]
tecadenoson Small molecule or natural product Primary target of this compound Click here for species-specific activity table Pig Agonist 8.2 pKi 63,105
pKi 8.2 (Ki 6.5x10-9 M) [63,105]
2-chloroadenosine Small molecule or natural product Click here for species-specific activity table Rn Agonist 8.2 pKi 24
pKi 8.2 (Ki 6.7x10-9 M) [24]
compound 10 [PMID: 31306001] Small molecule or natural product Click here for species-specific activity table Hs Inverse agonist 8.1 pKi 8
pKi 8.1 (Ki 7.22x10-9 M) [8]
Description: Binding affinity calculated by measuring displacement of specific [3H]DPCPX binding at hA1ARs expressed in CHO cells.
cyclopentyladenosine Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 6.5 – 9.4 pKi 22,25,41,54,63-64,120
pKi 6.5 – 9.4 [22,25,41,54,63-64,120]
CCPA Small molecule or natural product Click here for species-specific activity table Hs Full agonist 7.7 – 8.1 pKi 63,110
pKi 7.7 – 8.1 [63,110]
MRS3558 Small molecule or natural product Click here for species-specific activity table Mm Agonist 7.8 pKi 85
pKi 7.8 (Ki 1.58x10-8 M) [85]
LUF5831 Small molecule or natural product Hs Partial agonist 7.7 pKi 54
pKi 7.7 [54]
(R)-PIA Small molecule or natural product Click here for species-specific activity table Hs Full agonist 6.4 – 8.7 pKi 41,64,78,120,140
pKi 6.4 – 8.7 [41,64,78,120,140]
Cl-IB-MECA Small molecule or natural product Click here for species-specific activity table Mm Agonist 7.5 pKi 85
pKi 7.5 (Ki 3.5x10-8 M) [85]
piclidenoson Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Immunopharmacology Ligand Hs Agonist 7.3 pKi 63
pKi 7.3 (Ki 5.1x10-8 M) [63]
GS9667 Small molecule or natural product Click here for species-specific activity table Hs Agonist 7.3 pKi 34
pKi 7.3 (Ki 5.5x10-8 M) [34]
2-hexynyl-NECA Small molecule or natural product Click here for species-specific activity table Hs Full agonist 7.2 pKi 148
pKi 7.2 [148]
adenosine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Rn Agonist 7.1 pKi 155
pKi 7.1 (Ki 7.3x10-8 M) [155]
apadenoson Small molecule or natural product Click here for species-specific activity table Hs Agonist 7.1 pKi 63
pKi 7.1 (Ki 7.7x10-8 M) [63]
adenosine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Hs Agonist ~7.0 pKi 155
pKi ~7.0 (Ki ~1x10-7 M) [155]
MRS3558 Small molecule or natural product Click here for species-specific activity table Rn Agonist 7.0 pKi 85
pKi 7.0 (Ki 1.05x10-7 M) [85]
NECA Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 5.3 – 8.2 pKi 41,64,120,140,155
pKi 5.3 – 8.2 [41,64,120,140,155]
Cl-IB-MECA Small molecule or natural product Click here for species-specific activity table Hs Agonist 6.7 pKi 63
pKi 6.7 (Ki 2.2x10-7 M) [63]
MRS3558 Small molecule or natural product Click here for species-specific activity table Hs Agonist 6.6 pKi 63
pKi 6.6 (Ki 2.6x10-7 M) [63]
Cl-IB-MECA Small molecule or natural product Click here for species-specific activity table Rn Agonist 6.6 pKi 85
pKi 6.6 (Ki 2.8x10-7 M) [85]
HEMADO Small molecule or natural product Click here for species-specific activity table Hs Agonist 6.5 pKi 77,148
pKi 6.5 (Ki 3.3x10-7 M) [77,148]
PENECA Small molecule or natural product Click here for species-specific activity table Hs Full agonist 6.2 pKi 148
pKi 6.2 [148]
CGS 21680 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 5.8 – 6.4 pKi 41,63
pKi 5.8 – 6.4 [41,63]
CGS 21680 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Rn Agonist 5.7 pKi 85
pKi 5.7 (Ki 1.8x10-6 M) [85]
2-chloroadenosine Small molecule or natural product Click here for species-specific activity table Hs Full agonist 5.2 – 5.6 pKi 64,120
pKi 5.2 – 5.6 [64,120]
(S)-PIA Small molecule or natural product Click here for species-specific activity table Hs Full agonist 4.6 – 6.0 pKi 64,140
pKi 4.6 – 6.0 [64,140]
CP608,039 Small molecule or natural product Click here for species-specific activity table Hs Agonist 5.1 pKi 63
pKi 5.1 (Ki 7.3x10-6 M) [63]
BAY 60-6583 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Agonist <5.0 pKi 81
pKi <5.0 (Ki >1x10-5 M) [81]
regadenoson Small molecule or natural product Approved drug Click here for species-specific activity table Hs Agonist <5.0 pKi 63
pKi <5.0 (Ki >1x10-5 M) [63]
MRS5151 Small molecule or natural product Click here for species-specific activity table Mm Agonist 5.0 pKi 99
pKi 5.0 (Ki 1.05x10-5 M) [99]
MRS5151 Small molecule or natural product Click here for species-specific activity table Hs Agonist 4.8 pKi 99
pKi 4.8 (Ki 1.49x10-5 M) [99]
binodenoson Small molecule or natural product Click here for species-specific activity table Hs Agonist 4.3 pKi 63
pKi 4.3 (Ki 4.8x10-5 M) [63]
capadenoson Small molecule or natural product Hs Partial agonist 10.0 pEC50 2
pEC50 10.0 (EC50 1x10-10 M) [2]
neladenoson Small molecule or natural product Hs Partial agonist 10.0 pEC50 98
pEC50 10.0 (EC50 1x10-10 M) [98]
MRS7469 Small molecule or natural product Hs Agonist - - 139
[139]
View species-specific agonist tables
Agonist Comments
The role for adenosine as endogenous ligand for the A1 receptor is described in [37] and [38].

The role for adenosine as endogenous ligand for the A1 receptor is described in [38] and [39].

Capadenoson and neladenoson have been evaluated in phase 2 clinical trials for heart failure, but failed to meet expectations [149].

Primary target mapping: we have tagged the adenosine A1 receptor as the primary target for this endogenous ligand as the affinity is marginally higher at this receptor isoform. However, adenosine is likely to exert clinical effects via other adenosine receptor family members.
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[3H]DPCPX Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Antagonist 8.4 – 9.2 pKd 22,35,78,112,120,140
pKd 8.4 – 9.2 (Kd 1.2x10-9 – 6x10-10 M) [22,35,78,112,120,140]
xanthine amine congener Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 7.5 pKd 36
pKd 7.5 [36]
PSB36 Small molecule or natural product Click here for species-specific activity table Rn Antagonist 9.9 pKi 1
pKi 9.9 (Ki 1.24x10-10 M) [1]
DPCPX Small molecule or natural product Click here for species-specific activity table Rn Antagonist 9.0 – 9.7 pKi 74,79,151
pKi 9.0 – 9.7 (Ki 1x10-9 – 1.8x10-10 M) [74,79,151]
CPFPX Small molecule or natural product Click here for species-specific activity table Rn Antagonist 9.2 pKi 57
pKi 9.2 (Ki 6.3x10-10 M) [57]
LUF5981 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 9.1 pKi 17
pKi 9.1 (Ki 9x10-10 M) [17]
derenofylline Small molecule or natural product Click here for species-specific activity table Hs Antagonist 9.0 pKi 68
pKi 9.0 (Ki 1x10-9 M) [68]
FR194921 Small molecule or natural product Hs Antagonist 8.9 pKi 93
pKi 8.9 [93]
CPFPX Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.9 pKi 57
pKi 8.9 (Ki 1.26x10-9 M) [57]
tonapofylline Small molecule or natural product Click here for species-specific activity table Rn Antagonist 8.9 pKi 73
pKi 8.9 (Ki 1.3x10-9 M) [73]
rolofylline Small molecule or natural product Click here for species-specific activity table Rn Antagonist 7.9 – 9.7 pKi 115
pKi 7.9 – 9.7 (Ki 1.26x10-8 – 1.9x10-10 M) [115]
WRC-0571 Small molecule or natural product Hs Antagonist 8.8 pKi 96
pKi 8.8 [96]
rolofylline Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.1 – 9.1 pKi 73,115
pKi 8.1 – 9.1 (Ki 8x10-9 – 7.2x10-10 M) [73,115]
derenofylline Small molecule or natural product Click here for species-specific activity table Rn Antagonist 8.6 pKi 68
pKi 8.6 (Ki 2.51x10-9 M) [68]
CGS 15943 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 8.5 pKi 112
pKi 8.5 (Ki 3.5x10-9 M) [112]
DPCPX Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.4 – 9.2 pKi 25,60,110,120,151
pKi 7.4 – 9.2 (Ki 3.98x10-8 – 6.3x10-10 M) [25,60,110,120,151]
CGS 15943 Small molecule or natural product Ligand has a PDB structure Rn Antagonist 8.2 pKi 89
pKi 8.2 (Ki 6.4x10-9 M) [89]
tonapofylline Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.1 pKi 73
pKi 8.1 (Ki 7.4x10-9 M) [73]
MRS1754 Small molecule or natural product Click here for species-specific activity table Rn Antagonist 7.8 pKi 75
pKi 7.8 (Ki 1.68x10-8 M) [75]
8-cyclopentyltheophylline Small molecule or natural product Hs Antagonist 7.5 – 8.0 pKi 22
pKi 7.5 – 8.0 [22]
FK-453 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.7 pKi 63
pKi 7.7 (Ki 1.8x10-8 M) [63]
xanthine amine congener Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 7.6 pKi 64
pKi 7.6 [64]
DU172 Small molecule or natural product Ligand has a PDB structure Hs Antagonist 7.4 pKi 49
pKi 7.4 [49]
vipadenant Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Immunopharmacology Ligand Hs Antagonist 7.2 pKi 46
pKi 7.2 (Ki 6.8x10-8 M) [46]
ST-1535 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.1 pKi 102
pKi 7.1 (Ki 7.18x10-8 M) [102]
imaradenant Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Immunopharmacology Ligand Hs Antagonist 6.8 pKi 12
pKi 6.8 (Ki 1.6x10-7 M) [12]
Description: Binding affinity of AZD4635 determined in a radioligand binding competition assays with membranes prepared from CHO cells stably expressing human A1R.
MRE 2029F20 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.7 pKi 7,144
pKi 6.7 [7,144]
istradefylline Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Rn Antagonist 6.6 pKi 39
pKi 6.6 (Ki 2.3x10-7 M) [39]
AS70 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.6 pKi 144
pKi 6.6 [144]
AS100 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.5 pKi 144
pKi 6.5 [144]
ATL802 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.4 pKi 75
pKi 6.4 (Ki 3.69x10-7 M) [75]
MRS1754 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.4 pKi 75
pKi 6.4 (Ki 4.03x10-7 M) [75]
PSB-11 Small molecule or natural product Click here for species-specific activity table Rn Antagonist 6.4 pKi 113
pKi 6.4 (Ki 4.4x10-7 M) [113]
ZM-241385 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 6.1 – 6.6 pKi 63,112
pKi 6.1 – 6.6 [63,112]
MRS928 Small molecule or natural product Rn Antagonist 6.3 pKi 72
pKi 6.3 [72]
L-97-1 Small molecule or natural product Hs Antagonist 6.2 pKi 110
pKi 6.2 [110]
MRS1041 Small molecule or natural product Rn Antagonist 6.2 pKi 72
pKi 6.2 [72]
SCH 58261 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.1 – 6.3 pKi 63,112,140
pKi 6.1 – 6.3 [63,112,140]
mefloquine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Guide to Malaria Pharmacology Ligand Hs Antagonist 6.2 pKi 150
pKi 6.2 (Ki 6.75x10-7 M) [150]
Description: Binding affinity determined by displacement of [3H]-DPCPX from human A1 receptors by increasing concentrations of racemic mefloquine.
AS99 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.1 pKi 144
pKi 6.1 [144]
galangin Small molecule or natural product Ligand has a PDB structure Rn Antagonist 6.1 pKi 72
pKi 6.1 [72]
LUF7602 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.1 pKi 157
pKi 6.1 (Ki 7.94x10-7 M) [157]
Description: Affinity determined from the displacement of specific [3H]DPCPX binding on CHO cell membranes stably expressing human adenosine A1 receptors at 25 °C during 2 h of incubation.
PSB-10 Small molecule or natural product Click here for species-specific activity table Rn Antagonist 6.1 pKi 107
pKi 6.1 (Ki 8.05x10-7 M) [107]
istradefylline Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 6.1 pKi 39
pKi 6.1 (Ki 8.41x10-7 M) [39]
MSX-2 Small molecule or natural product Click here for species-specific activity table Rn Antagonist 6.1 pKi 125
pKi 6.1 (Ki 9x10-7 M) [125]
MRS1042 Small molecule or natural product Rn Antagonist 6.0 pKi 72
pKi 6.0 [72]
preladenant Small molecule or natural product Click here for species-specific activity table Immunopharmacology Ligand Hs Antagonist <6.0 pKi 104
pKi <6.0 (Ki >1x10-6 M) [104]
MRE 3008F20 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 5.9 – 6.0 pKi 63,144-145
pKi 5.9 – 6.0 [63,144-145]
SCH442416 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 5.9 pKi 63
pKi 5.9 (Ki 1.11x10-6 M) [63]
PSB-11 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 5.8 pKi 113
pKi 5.8 (Ki 1.64x10-6 M) [113]
PSB-10 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 5.8 pKi 113
pKi 5.8 (Ki 1.7x10-6 M) [113]
KF26777 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 5.7 pKi 121
pKi 5.7 (Ki 1.8x10-6 M) [121]
CVT-6883 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 5.7 pKi 33
pKi 5.7 (Ki 1.94x10-6 M) [33]
MRS1093 Small molecule or natural product Rn Antagonist 5.7 pKi 72
pKi 5.7 [72]
PSB1115 Small molecule or natural product Click here for species-specific activity table Immunopharmacology Ligand Rn Antagonist 5.7 pKi 106
pKi 5.7 (Ki 2.2x10-6 M) [106]
MRS1132 Small molecule or natural product Rn Antagonist 5.6 pKi 72
pKi 5.6 [72]
MSX-2 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 5.6 pKi 125
pKi 5.6 (Ki 2.5x10-6 M) [125]
LAS38096 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 5.6 pKi 32,146
pKi 5.6 (Ki 2.821x10-6 M) [32,146]
flavone Small molecule or natural product Ligand has a PDB structure Rn Antagonist 5.5 pKi 72
pKi 5.5 [72]
isobutylmethylxanthine Small molecule or natural product Ligand has a PDB structure Hs Antagonist 5.1 pKi 64
pKi 5.1 [64]
sakuranetin Small molecule or natural product Ligand has a PDB structure Rn Antagonist 5.1 pKi 72
pKi 5.1 [72]
theophylline Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Immunopharmacology Ligand Hs Antagonist 4.9 – 5.2 pKi 35,64,78,144
pKi 4.9 – 5.2 [35,64,78,144]
ATL802 Small molecule or natural product Click here for species-specific activity table Mm Antagonist 5.0 pKi 75
pKi 5.0 (Ki 9.583x10-6 M) [75]
MRS1191 Small molecule or natural product Click here for species-specific activity table Hs Antagonist <5.0 pKi 85
pKi <5.0 (Ki >1x10-5 M) [85]
MRS1523 Small molecule or natural product Click here for species-specific activity table Hs Antagonist <5.0 pKi 85
pKi <5.0 (Ki >1x10-5 M) [85]
VUF5574 Small molecule or natural product Click here for species-specific activity table Rn Antagonist >5.0 pKi 143
pKi >5.0 (Ki <1x10-5 M) [143]
PSB603 Small molecule or natural product Click here for species-specific activity table Hs Antagonist <5.0 pKi 13
pKi <5.0 (Ki >1x10-5 M) [13]
PSB603 Small molecule or natural product Click here for species-specific activity table Rn Antagonist <5.0 pKi 13
pKi <5.0 (Ki >1x10-5 M) [13]
PSB1115 Small molecule or natural product Click here for species-specific activity table Immunopharmacology Ligand Hs Antagonist <5.0 pKi 53
pKi <5.0 (Ki >1x10-5 M) [53]
theophylline Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Immunopharmacology Ligand Rn Antagonist 4.8 – 5.1 pKi 61,106
pKi 4.8 – 5.1 (Ki 1.4x10-5 – 8.74x10-6 M) [61,106]
morin Small molecule or natural product Ligand has a PDB structure Rn Antagonist 4.9 pKi 72
pKi 4.9 [72]
MRS1523 Small molecule or natural product Click here for species-specific activity table Rn Antagonist 4.8 pKi 85
pKi 4.8 (Ki 1.56x10-5 M) [85]
caffeine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 4.3 – 5.0 pKi 1,27,61
pKi 4.3 – 5.0 (Ki 4.49x10-5 – 1.07x10-5 M) [1,27,61]
MRS923 Small molecule or natural product Rn Antagonist 4.6 pKi 72
pKi 4.6 [72]
CSC Small molecule or natural product Click here for species-specific activity table Rn Antagonist 4.6 pKi 62
pKi 4.6 (Ki 2.8x10-5 M) [62]
MRS1065 Small molecule or natural product Rn Antagonist 4.5 pKi 72
pKi 4.5 [72]
MRS1086 Small molecule or natural product Rn Antagonist 4.5 pKi 72
pKi 4.5 [72]
flavanone Small molecule or natural product Rn Antagonist 4.5 pKi 72
pKi 4.5 [72]
MRS1066 Small molecule or natural product Rn Antagonist 4.4 pKi 72
pKi 4.4 [72]
MRS1084 Small molecule or natural product Rn Antagonist 4.4 pKi 72
pKi 4.4 [72]
MRS1191 Small molecule or natural product Click here for species-specific activity table Rn Antagonist 4.4 pKi 85
pKi 4.4 (Ki 4.01x10-5 M) [85]
caffeine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Rn Antagonist 4.4 – 4.4 pKi 23,51
pKi 4.4 – 4.4 (Ki 4.4x10-5 – 4.1x10-5 M) [23,51]
MRS1062 Small molecule or natural product Rn Antagonist 4.3 pKi 72
pKi 4.3 [72]
LUF5962 Small molecule or natural product Hs Antagonist 7.1 pIC50 52
pIC50 7.1 [52]
View species-specific antagonist tables
Antagonist Comments
Reference [27] does not use a transfected cell system but measures binding to the human hippocampus.

Istradefylline pKi values are derived from unpublished data (Müller et al.).
Allosteric Modulators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
VPC171 Small molecule or natural product Primary target of this compound Hs Positive - - 6,59
[6,59]
PD81723 Small molecule or natural product Hs Positive - - 15
[15]
Allosteric Modulator Comments
In vitro, VPC171 enhances A1R agonist ((R)-PIA)-induced ERK1/2 phosphorylation with a 2.4-fold positive cooperativity, and enhances [35S]GTPγS binding with a 6.9-fold positive cooperativity under the same conditions [59].
Immunopharmacology Comments
Adenosine exerts anti-inflammatory effects on a number of immune cells types. These effects are mediated by the adenosine G portein-coupled receptors. All four adenosine receptors are expressed on the surface of mouse invariant NKT (iNKT) cells. The specific role of the A1 receptor in adenosine-mediated anti-inflammatory effects is not fully understood.
Cell Type Associations
Immuno Cell Type:  T cells
Cell Ontology Term:   type I NK T cell (CL:0000921)
Comment:  A1 receptor is expressed by mouse iNKT cells.
References:  108
Immuno Process Associations
Immuno Process:  Inflammation
Immuno Process:  Immune regulation
Immuno Process:  Chemotaxis & migration
Primary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gi/Go family Adenylyl cyclase inhibition
References:  20,64
Secondary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gs family
Gq/G11 family
Adenylyl cyclase stimulation
Phospholipase C stimulation
References:  20
Tissue Distribution Click here for help
Brain > heart, kidney, lung.
Species:  Human
Technique:  Northern blotting.
References:  123
Spermatozoa.
Species:  Human
Technique:  immunocytochemistry.
References:  100
Adopicytes.
Species:  Human
Technique:  Northern blotting.
References:  16
Jejunum, ileum, colon.
Species:  Human
Technique:  RT-PCR.
References:  19
Brain (cerebral cortex, hippocampus), spinal cord and trigeminal ganglia.
Species:  Human
Technique:  Immunohistochemistry.
References:  127
Kidney: medullary tubular structures.
Species:  Mouse
Technique:  RNAse protection and RT-PCR.
References:  147
Jejunum.
Species:  Mouse
Technique:  RT-PCR.
References:  44
Brain: cerebral cortex.
Species:  Mouse
Technique:  Autoradiography.
References:  88
Brain: cortex, cerebellum, hippocampus > olfactory bulb, mesencephalon, striatum.
Species:  Rat
Technique:  Northern blotting.
References:  94
Kidney: medullary tubular structures.
Species:  Rat
Technique:  RNAse protection and RT-PCR.
References:  147
CNS: spinal cord lumbar dorsal horn.
Species:  Rat
Technique:  Immunohistochemistry.
References:  132
Testes: Sertoli cells >> spermatogonia, spermatocytes.
Species:  Rat
Technique:  in situ hybridisation.
References:  119
Spermatozoa.
Species:  Rat
Technique:  immunocytochemistry.
References:  100
Spleen, stomach, heart, testis.
Species:  Rat
Technique:  Northern blotting.
References:  94
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays Click here for help
Measurement of cAMP levels in CHO cells transfected with the mouse A1 receptor.
Species:  Mouse
Tissue:  CHO cells.
Response measured:  Inhibition of cAMP accumulation.
References:  152
Measurement of cAMP levels in CHO.K1 cells transfected with the human A1 receptor.
Species:  Human
Tissue:  CHO.K1 cells.
Response measured:  Inhibition of cAMP accumulation.
References:  141
Measurement of cAMP levels in CHO cells transfected with the rat A1 receptor.
Species:  Rat
Tissue:  CHO cells.
Response measured:  Inhibition of cAMP accumulation.
References:  94
Measurement of extracellular-regulated kinase 1/2 (ERK1/2) phosphorylation in CHO cells transfected with the human A1 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Phosphorylation of ERK1/2.
References:  131
Measurement of PKB activity in cardiomyocytes endogenously expressing the A1 receptor.
Species:  Rat
Tissue:  Cardiomyocytes.
Response measured:  PKB phosphorylation via Gi/o.
References:  43
Physiological Functions Click here for help
Antinociception.
Species:  Rat
Tissue:  In vivo.
References:  71,91,116
Inhibition of renin release.
Species:  Rat
Tissue:  In vivo.
References:  103,114
Hypothermia and sedation.
Species:  Mouse
Tissue:  In vivo.
References:  4
Analgesia.
Species:  Rat
Tissue:  In vivo.
References:  40,134,154
Neuronal excitation of the superficial grey layer of the superior colliculus.
Species:  Rat
Tissue:  In vivo (superior colliculus).
References:  55
Antinociception.
Species:  Human
Tissue:  In vivo.
References:  45
Antinociception.
Species:  Mouse
Tissue:  In vivo.
References:  153
Macula densa control of renal vascular tone.
Species:  Mouse
Tissue:  In vivo (kidney).
References:  137
Mediation of tubuloglomerular feedback (TGF).
Species:  Rat
Tissue:  In vivo (kidney).
References:  128,138
Mediation of tubuloglomerular feedback (TGF).
Species:  Mouse
Tissue:  In vivo (kidney).
References:  14
Role in spermatozoa capacitation.
Species:  Human
Tissue:  Sperm.
References:  3
Presynaptic modulation of ACh release from the neuromuscular junction.
Species:  Mouse
Tissue:  Diaphragm muscle.
References:  26
Regulation of leptin production.
Species:  Rat
Tissue:  In vivo.
References:  118
Induction of chloride secretion.
Species:  Mouse
Tissue:  Jejunum.
References:  44
Inhibition of renin release.
Species:  Mouse
Tissue:  Kidney.
References:  133
Hypotension and bradycardia.
Species:  Rat
Tissue:  In vivo.
References:  11
Preconditioning.
Species:  Rat
Tissue:  Cardiomyocytes.
References:  42-43
Modulation of myenteric reflex.
Species:  Rat
Tissue:  Ileum.
References:  136
Chemotaxis.
Species:  Human
Tissue:  Immature plasmacytoid dendritic cells.
References:  129
Ca2+-mediated glycogenolysis.
Species:  Rat
Tissue:  Hepatocytes.
References:  50
Edema and leukocyte infiltration.
Species:  Rat
Tissue:  In vivo (pancreas).
References:  124
Regulation of glutamate release.
Species:  Rat
Tissue:  Cerebellar neurones.
References:  28
Regulation of glutamate release.
Species:  Rat
Tissue:  Hippocampal pyramidal neurons.
References:  130
Anticonvulsant activity.
Species:  Rat
Tissue:  Neocortex slices.
References:  109
Regulation of glutamate release and cell excitability.
Species:  Rat
Tissue:  Hippocampal slices.
References:  31
Neuroprotection.
Species:  Rat
Tissue:  Hippocampus.
References:  92
Arteriolar constriction.
Species:  Rat
Tissue:  Kidney.
References:  103
Physiological Consequences of Altering Gene Expression Click here for help
Transgenic mice overexpressing adipocyte A1 receptors exhibit protection from developing insulin-resistance.
Species:  Mouse
Tissue: 
Technique:  Transgenesis.
References:  29
A1 receptor knockout mice exhibit increased anxiety when compared to the wild-type. Thermal hyperalgaesia is also observed and the antinociceptive effect of adenosine receptor agonists is abolished.
In vitro hippocampal slices from the knockout mice have altered excitatory glutamatergic neurotransmission in response to adenosine, theophylline and hypoxia.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  65
A1 receptor knockout mice lack the normal tubuloglomerular feedback exhibited by wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  14,137
A1 receptor knockout mice exhibit reduced activity and exploratory behaviour and increased anxiety and aggressiveness.
Species:  Mouse
Tissue: 
Technique: 
References:  47
A1 receptor knockout mice exhibit emotional instability.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  82
A1 receptor knockout mice have reduced fertility when compared to wild-type mice due to reduced spermatozoa capacitation.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  101
Transgenic mice overexpressing the A1 receptor exhibit additional cardioprotection during ischemia.
Species:  Mouse
Tissue: 
Technique:  Transgenesis.
References:  21,97
A1 receptor knockout mice exhibit reduced hypoxia-induced ventriculomegaly (enlargement of the ventricles in the brain) and loss of white matter.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  142
The effect of adenosine on chloride secretion is abolished in the jejunum of A1 receptor knockout mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  44
A1 receptor knockout mice exhibit heat hypersensitivity and hyperalgesia when compared to the wild-type.
In addition, the antinociceptive effect of intrathecally administered morphine was reduced.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  153
A1 receptor knockout mice exhibit reduced habituation to an environment.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  48
Wlid-type and A1 receptor knockout mice were subjected to renal ischemia and reperfusion. The mice lacking the A1 receptor exhibited greater renal injury.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  84
Transgenic mice overexpressing the A1 receptor exhibit sinus and atrioventricular node dysfunction and supraventricular arrhythmias.
Species:  Mouse
Tissue: 
Technique:  Transgenesis.
References:  76
A1 receptor knockout mice develop status epilepticus following controlled cortical impact.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  80
A1 receptor knockout mice exhibit no increase in brain damage following ischemia. However, wild-type mice do show increased damage with DPCPX application, implying that some compensatory mechanism may be recruited in the knockout mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  111
Focal deletion of the A1 receptor from specific hippocampal regions results in impaired recovery of synaptic transmission following hypoxia.
Species:  Mouse
Tissue: 
Technique:  Focal viral-mediated elimination.
References:  5
Focal deletion of the A1 receptor from CA3 hippocampal neurons results in elimination of the postsynaptic response to adenosine. Deletion from the CA1 region has no effect, showing that adenosine inhibits signalling between CA3 and CA1 in a presynaptic manner.
Species:  Mouse
Tissue: 
Technique:  Focal viral-mediated elimination.
References:  126
In A1 receptor KO mice pulses of insulin release are unmasked and those of glucagon and somatostatin prolonged.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  122
In A1 receptor KO mice an increase in fat mass and higher levels of free fatty acids, glycerol and triglycerides are observed.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  66
Adenosine modulation of CB1 receptor function is absent in A1 receptor KO mice
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells
References:  56
Fat cells prepared from A1 KO mice show increased lipolysis, both basal and stimulated.
Species:  Mouse
Tissue:  Adipose tissue, fat cells
Technique:  Gene targeting in embryonic stem cells.
References:  67
Conditional CNS knockout of the A1 receptor causes attenuation of the slow-wave activity rebound response to restricted sleep, but not sleep duration. But global A1 KO does not alter sleep-wakefulness.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  10,58,135
A1 receptor KO mice had a slightly elevated heart rate compared to WT, particularly in males. Body temperature was higher in A1 receptor KO males and females; locomotor activity was higher in A1 receptor KO females, but not in males.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  156
A1 receptor KO mice show increased renal blood flow, absence of tubuloglomerular feedback and increased renin secretion.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  14,137
A1 KO mice show decreased osteoclast activity and increased bone mass.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  69-70
A1 KO mice show altered respiratory drive.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells
References:  65
A1 KO mice show hyperalgesia
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells
References:  65,153
A1 KO mice show reduced sperm motility and fertility
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells
References:  101
A1 receptor KO mice show reduced capacity for preconditioning.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  83
A1 receptor knockout mice exhibit an increased blood pressure and plasma renin activity when compared to wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  14
A1 receptor deletion inhibits tumour development in vivo in immune-deficient xenografts.
Species:  Mouse
Tissue:  Human melanoma cell lines.
Technique:  CRISPR editing.
References:  87
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Adora1tm1Bbf Adora1tm1Bbf/Adora1tm1Bbf
involves: 129P2/OlaHsd * C57BL
MGI:99401  MP:0001777 abnormal body temperature regulation PMID: 11470917 
Adora1tm1Bbf Adora1tm1Bbf/Adora1tm1Bbf
involves: 129P2/OlaHsd * C57BL
MGI:99401  MP:0002206 abnormal CNS synaptic transmission PMID: 11470917 
Adora1tm1Bbf Adora1tm1Bbf/Adora1tm1Bbf
involves: 129P2/OlaHsd * C57BL
MGI:99401  MP:0002910 abnormal excitatory postsynaptic currents PMID: 11470917 
Adora1tm1Bbf Adora1tm1Bbf/Adora1tm1Bbf
involves: 129P2/OlaHsd * C57BL
MGI:99401  MP:0002912 abnormal excitatory postsynaptic potential PMID: 11470917 
Adora1tm1Rgrn Adora1tm1Rgrn/Adora1tm1Rgrn
involves: 129S4/SvJae * C57BL/6
MGI:99401  MP:0002912 abnormal excitatory postsynaptic potential PMID: 12843280 
Adora1tm1Rgrn Adora1tm1Rgrn/Adora1tm1Rgrn
involves: 129S4/SvJae * C57BL/6
MGI:99401  MP:0002272 abnormal nervous system electrophysiology PMID: 12843280 
Adora1tm1Bbf Adora1tm1Bbf/Adora1tm1Bbf
involves: 129P2/OlaHsd * C57BL
MGI:99401  MP:0002314 abnormal respiratory mechanics PMID: 11470917 
Adora1tm1Jgsc Adora1tm1Jgsc/Adora1tm1Jgsc
involves: 129S1/Sv * 129X1/SvJ
MGI:99401  MP:0003638 abnormal response/metabolism to endogenous compounds PMID: 15343381 
Adora1tm1Bbf Adora1tm1Bbf/Adora1tm1Bbf
involves: 129P2/OlaHsd * C57BL
MGI:99401  MP:0002917 decreased synaptic depression PMID: 11470917 
Adora1tm1Bbf Adora1tm1Bbf/Adora1tm1Bbf
involves: 129P2/OlaHsd * C57BL
MGI:99401  MP:0003998 decreased thermal nociceptive threshold PMID: 11470917 
Adora1tm1Bbf Adora1tm1Bbf/Adora1tm1Bbf
involves: 129P2/OlaHsd * C57BL
MGI:99401  MP:0005407 hyperalgesia PMID: 11470917 
Adora1tm1Bbf Adora1tm1Bbf/Adora1tm1Bbf
involves: 129P2/OlaHsd * C57BL
MGI:99401  MP:0001363 increased anxiety-related response PMID: 11470917 
Adora1tm1Jgsc Adora1tm1Jgsc/Adora1tm1Jgsc
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:99401  MP:0005553 increased circulating creatinine level PMID: 17928414 
Adora1tm1Jgsc Adora1tm1Jgsc/Adora1tm1Jgsc
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:99401  MP:0004041 increased susceptibility to kidney reperfusion injury PMID: 17928414 
Adora1tm1Rgrn Adora1tm1Rgrn/Adora1tm1Rgrn
involves: 129S4/SvJae * C57BL/6
MGI:99401  MP:0002169 no abnormal phenotype detected PMID: 12843280 
General Comments
For a review of the effects of adenosine receptor knockout on nervous system function see reference [38].

References

Show »

1. Abo-Salem OM, Hayallah AM, Bilkei-Gorzo A, Filipek B, Zimmer A, Müller CE. (2004) Antinociceptive effects of novel A2B adenosine receptor antagonists. J Pharmacol Exp Ther, 308 (1): 358-66. [PMID:14563788]

2. Albrecht-Küpper BE, Leineweber K, Nell PG. (2012) Partial adenosine A1 receptor agonists for cardiovascular therapies. Purinergic Signal, 8 (Suppl 1): 91-9. [PMID:22081230]

3. Allegrucci C, Liguori L, Minelli A. (2001) Stimulation by n6-cyclopentyladenosine of A1 adenosine receptors, coupled to galphai2 protein subunit, has a capacitative effect on human spermatozoa. Biol Reprod, 64 (6): 1653-9. [PMID:11369591]

4. Anderson R, Sheehan MJ, Strong P. (1994) Characterization of the adenosine receptors mediating hypothermia in the conscious mouse. Br J Pharmacol, 113 (4): 1386-90. [PMID:7889296]

5. Arrigoni E, Crocker AJ, Saper CB, Greene RW, Scammell TE. (2005) Deletion of presynaptic adenosine A1 receptors impairs the recovery of synaptic transmission after hypoxia. Neuroscience, 132 (3): 575-80. [PMID:15837119]

6. Aurelio L, Valant C, Flynn BL, Sexton PM, Christopoulos A, Scammells PJ. (2009) Allosteric modulators of the adenosine A1 receptor: synthesis and pharmacological evaluation of 4-substituted 2-amino-3-benzoylthiophenes. J Med Chem, 52 (14): 4543-7. [PMID:19514747]

7. Baraldi PG, Tabrizi MA, Preti D, Bovero A, Romagnoli R, Fruttarolo F, Zaid NA, Moorman AR, Varani K, Gessi S et al.. (2004) Design, synthesis, and biological evaluation of new 8-heterocyclic xanthine derivatives as highly potent and selective human A2B adenosine receptor antagonists. J Med Chem, 47 (6): 1434-47. [PMID:14998332]

8. Betti M, Catarzi D, Varano F, Falsini M, Varani K, Vincenzi F, Pasquini S, di Cesare Mannelli L, Ghelardini C, Lucarini E et al.. (2019) Modifications on the Amino-3,5-dicyanopyridine Core To Obtain Multifaceted Adenosine Receptor Ligands with Antineuropathic Activity. J Med Chem, 62 (15): 6894-6912. [PMID:31306001]

9. Beukers MW, Wanner MJ, Von Frijtag Drabbe Künzel JK, Klaasse EC, IJzerman AP, Koomen GJ. (2003) N6-cyclopentyl-2-(3-phenylaminocarbonyltriazene-1-yl)adenosine (TCPA), a very selective agonist with high affinity for the human adenosine A1 receptor. J Med Chem, 46 (8): 1492-503. [PMID:12672250]

10. Bjorness TE, Kelly CL, Gao T, Poffenberger V, Greene RW. (2009) Control and function of the homeostatic sleep response by adenosine A1 receptors. J Neurosci, 29 (5): 1267-76. [PMID:19193874]

11. Bonizzoni E, Milani S, Ongini E, Casati C, Monopoli A. (1995) Modeling hemodynamic profiles by telemetry in the rat. A study with A1 and A2a adenosine agonists. Hypertension, 25 (4 Pt 1): 564-9. [PMID:7721399]

12. Borodovsky A, Barbon CM, Wang Y, Ye M, Prickett L, Chandra D, Shaw J, Deng N, Sachsenmeier K, Clarke JD et al.. (2020) Small molecule AZD4635 inhibitor of A 2A R signaling rescues immune cell function including CD103 + dendritic cells enhancing anti-tumor immunity. J Immunother Cancer, 8 (2): e000417. DOI: 10.1136/jitc-2019-000417 [PMID:32727810]

13. Borrmann T, Hinz S, Bertarelli DC, Li W, Florin NC, Scheiff AB, Müller CE. (2009) 1-alkyl-8-(piperazine-1-sulfonyl)phenylxanthines: development and characterization of adenosine A2B receptor antagonists and a new radioligand with subnanomolar affinity and subtype specificity. J Med Chem, 52 (13): 3994-4006. [PMID:19569717]

14. Brown R, Ollerstam A, Johansson B, Skøtt O, Gebre-Medhin S, Fredholm B, Persson AE. (2001) Abolished tubuloglomerular feedback and increased plasma renin in adenosine A1 receptor-deficient mice. Am J Physiol Regul Integr Comp Physiol, 281 (5): R1362-7. [PMID:11641103]

15. Bruns RF, Fergus JH. (1990) Allosteric enhancement of adenosine A1 receptor binding and function by 2-amino-3-benzoylthiophenes. Mol Pharmacol, 38 (6): 939-49. [PMID:2174510]

16. Børglum JD, Vassaux G, Richelsen B, Gaillard D, Darimont C, Ailhaud G, Négrel R. (1996) Changes in adenosine A1- and A2-receptor expression during adipose cell differentiation. Mol Cell Endocrinol, 117 (1): 17-25. [PMID:8734470]

17. Chang LC, von Frijtag Drabbe Künzel JK, Mulder-Krieger T, Westerhout J, Spangenberg T, Brussee J, Ijzerman AP. (2007) 2,6,8-trisubstituted 1-deazapurines as adenosine receptor antagonists. J Med Chem, 50 (4): 828-34. [PMID:17300165]

18. Cheng RKY, Segala E, Robertson N, Deflorian F, Doré AS, Errey JC, Fiez-Vandal C, Marshall FH, Cooke RM. (2017) Structures of Human A1 and A2A Adenosine Receptors with Xanthines Reveal Determinants of Selectivity. Structure, 25 (8): 1275-1285.e4. [PMID:28712806]

19. Christofi FL, Zhang H, Yu JG, Guzman J, Xue J, Kim M, Wang YZ, Cooke HJ. (2001) Differential gene expression of adenosine A1, A2a, A2b, and A3 receptors in the human enteric nervous system. J Comp Neurol, 439 (1): 46-64. [PMID:11579381]

20. Cordeaux Y, Ijzerman AP, Hill SJ. (2004) Coupling of the human A1 adenosine receptor to different heterotrimeric G proteins: evidence for agonist-specific G protein activation. Br J Pharmacol, 143 (6): 705-14. [PMID:15302686]

21. Crawford M, Ford S, Henry M, Matherne GP, Lankford A. (2005) Myocardial function following cold ischemic storage is improved by cardiac-specific overexpression of A1-adenosine receptors. Can J Physiol Pharmacol, 83 (6): 493-8. [PMID:16049549]

22. Dalpiaz A, Townsend-Nicholson A, Beukers MW, Schofield PR, IJzerman AP. (1998) Thermodynamics of full agonist, partial agonist, and antagonist binding to wild-type and mutant adenosine A1 receptors. Biochem Pharmacol, 56 (11): 1437-45. [PMID:9827575]

23. Daly JW, Hide I, Müller CE, Shamim M. (1991) Caffeine analogs: structure-activity relationships at adenosine receptors. Pharmacology, 42 (6): 309-21. [PMID:1658821]

24. Daly JW, Padgett WL, Secunda SI, Thompson RD, Olsson RA. (1993) Structure-activity relationships for 2-substituted adenosines at A1 and A2 adenosine receptors. Pharmacology, 46 (2): 91-100. [PMID:8441759]

25. de Ligt RA, Rivkees SA, Lorenzen A, Leurs R, IJzerman AP. (2005) A "locked-on," constitutively active mutant of the adenosine A1 receptor. Eur J Pharmacol, 510 (1-2): 1-8. [PMID:15740718]

26. De Lorenzo S, Veggetti M, Muchnik S, Losavio A. (2004) Presynaptic inhibition of spontaneous acetylcholine release induced by adenosine at the mouse neuromuscular junction. Br J Pharmacol, 142 (1): 113-24. [PMID:15066904]

27. Deckert J, Berger W, Kleopa K, Heckers S, Ransmayr G, Heinsen H, Beckmann H, Riederer P. (1993) Adenosine A1 receptors in human hippocampus: inhibition of [3H]8-cyclopentyl-1,3-dipropylxanthine binding by antagonist drugs. Neurosci Lett, 150 (2): 191-4. [PMID:8469419]

28. Dolphin AC, Prestwich SA. (1985) Pertussis toxin reverses adenosine inhibition of neuronal glutamate release. Nature, 316 (6024): 148-50. [PMID:2861569]

29. Dong Q, Ginsberg HN, Erlanger BF. (2001) Overexpression of the A1 adenosine receptor in adipose tissue protects mice from obesity-related insulin resistance. Diabetes Obes Metab, 3 (5): 360-6. [PMID:11703426]

30. Draper-Joyce CJ, Khoshouei M, Thal DM, Liang YL, Nguyen ATN, Furness SGB, Venugopal H, Baltos JA, Plitzko JM, Danev R et al.. (2018) Structure of the adenosine-bound human adenosine A1 receptor-Gi complex. Nature, 558 (7711): 559-563. [PMID:29925945]

31. Dulla CG, Dobelis P, Pearson T, Frenguelli BG, Staley KJ, Masino SA. (2005) Adenosine and ATP link PCO2 to cortical excitability via pH. Neuron, 48 (6): 1011-23. [PMID:16364904]

32. Eastwood P, Gonzalez J, Paredes S, Nueda A, Domenech T, Alberti J, Vidal B. (2010) Discovery of N-(5,6-diarylpyridin-2-yl)amide derivatives as potent and selective A(2B) adenosine receptor antagonists. Bioorg Med Chem Lett, 20 (5): 1697-700. [PMID:20137946]

33. Elzein E, Kalla RV, Li X, Perry T, Gimbel A, Zeng D, Lustig D, Leung K, Zablocki J. (2008) Discovery of a novel A2B adenosine receptor antagonist as a clinical candidate for chronic inflammatory airway diseases. J Med Chem, 51 (7): 2267-78. [PMID:18321039]

34. Elzein E, Zablocki J. (2008) A1 adenosine receptor agonists and their potential therapeutic applications. Expert Opin Investig Drugs, 17 (12): 1901-10. [PMID:19012505]

35. Feoktistov I, Garland EM, Goldstein AE, Zeng D, Belardinelli L, Wells JN, Biaggioni I. (2001) Inhibition of human mast cell activation with the novel selective adenosine A(2B) receptor antagonist 3-isobutyl-8-pyrrolidinoxanthine (IPDX)(2). Biochem Pharmacol, 62 (9): 1163-73. [PMID:11705449]

36. Franchetti P, Cappellacci L, Vita P, Petrelli R, Lavecchia A, Kachler S, Klotz KN, Marabese I, Luongo L, Maione S et al.. (2009) N6-Cycloalkyl- and N6-bicycloalkyl-C5'(C2')-modified adenosine derivatives as high-affinity and selective agonists at the human A1 adenosine receptor with antinociceptive effects in mice. J Med Chem, 52 (8): 2393-406. [PMID:19317449]

37. Fredholm BB. (1995) Astra Award Lecture. Adenosine, adenosine receptors and the actions of caffeine. Pharmacol Toxicol, 76 (2): 93-101. [PMID:7746802]

38. Fredholm BB, Chen JF, Masino SA, Vaugeois JM. (2005) Actions of adenosine at its receptors in the CNS: insights from knockouts and drugs. Annu Rev Pharmacol Toxicol, 45: 385-412. [PMID:15822182]

39. Fredholm BB, IJzerman AP, Jacobson KA, Linden J, Müller CE. (2011) International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors--an update. Pharmacol Rev, 63 (1): 1-34. [PMID:21303899]

40. Furuta S, Onodera K, Kumagai M, Honma I, Miyazaki S, Sato T, Sakurada S. (2003) Involvement of adenosine A1 receptors in forced walking stress-induced analgesia in mice. Methods Find Exp Clin Pharmacol, 25 (10): 793-6. [PMID:14735226]

41. Gao ZG, Mamedova LK, Chen P, Jacobson KA. (2004) 2-Substituted adenosine derivatives: affinity and efficacy at four subtypes of human adenosine receptors. Biochem Pharmacol, 68 (10): 1985-93. [PMID:15476669]

42. Germack R, Dickenson JM. (2005) Adenosine triggers preconditioning through MEK/ERK1/2 signalling pathway during hypoxia/reoxygenation in neonatal rat cardiomyocytes. J Mol Cell Cardiol, 39 (3): 429-42. [PMID:16005018]

43. Germack R, Griffin M, Dickenson JM. (2004) Activation of protein kinase B by adenosine A1 and A3 receptors in newborn rat cardiomyocytes. J Mol Cell Cardiol, 37 (5): 989-99. [PMID:15522276]

44. Ghanem E, Lövdahl C, Daré E, Ledent C, Fredholm BB, Boeynaems JM, Van Driessche W, Beauwens R. (2005) Luminal adenosine stimulates chloride secretion through A1 receptor in mouse jejunum. Am J Physiol Gastrointest Liver Physiol, 288 (5): G972-7. [PMID:15637180]

45. Giffin NJ, Kowacs F, Libri V, Williams P, Goadsby PJ, Kaube H. (2003) Effect of the adenosine A1 receptor agonist GR79236 on trigeminal nociception with blink reflex recordings in healthy human subjects. Cephalalgia, 23 (4): 287-92. [PMID:12716347]

46. Gillespie RJ, Bamford SJ, Botting R, Comer M, Denny S, Gaur S, Griffin M, Jordan AM, Knight AR, Lerpiniere J et al.. (2009) Antagonists of the human A(2A) adenosine receptor. 4. Design, synthesis, and preclinical evaluation of 7-aryltriazolo[4,5-d]pyrimidines. J Med Chem, 52 (1): 33-47. [PMID:19072055]

47. Giménez-Llort L, Fernández-Teruel A, Escorihuela RM, Fredholm BB, Tobeña A, Pekny M, Johansson B. (2002) Mice lacking the adenosine A1 receptor are anxious and aggressive, but are normal learners with reduced muscle strength and survival rate. Eur J Neurosci, 16: 547-550. [PMID:12193199]

48. Giménez-Llort L, Masino SA, Diao L, Fernández-Teruel A, Tobeña A, Halldner L, Fredholm BB. (2005) Mice lacking the adenosine A1 receptor have normal spatial learning and plasticity in the CA1 region of the hippocampus, but they habituate more slowly. Synapse, 57 (1): 8-16. [PMID:15858837]

49. Glukhova A, Thal DM, Nguyen AT, Vecchio EA, Jörg M, Scammells PJ, May LT, Sexton PM, Christopoulos A. (2017) Structure of the Adenosine A1 Receptor Reveals the Basis for Subtype Selectivity. Cell, 168 (5): 867-877.e13. [PMID:28235198]

50. González-Benítez E, Guinzberg R, Díaz-Cruz A, Piña E. (2002) Regulation of glycogen metabolism in hepatocytes through adenosine receptors. Role of Ca2+ and cAMP. Eur J Pharmacol, 437 (3): 105-11. [PMID:11890897]

51. Grahner B, Winiwarter S, Lanzner W, Müller CE. (1994) Synthesis and structure-activity relationships of deazaxanthines: analogs of potent A1- and A2-adenosine receptor antagonists. J Med Chem, 37 (10): 1526-34. [PMID:8182711]

52. Guo D, Peletier LA, Bridge L, Keur W, de Vries H, Zweemer A, Heitman LH, IJzerman AP. (2018) A two-state model for the kinetics of competitive radioligand binding. Br J Pharmacol, 175 (10): 1719-1730. [PMID:29486053]

53. Hayallah AM, Sandoval-Ramírez J, Reith U, Schobert U, Preiss B, Schumacher B, Daly JW, Müller CE. (2002) 1,8-disubstituted xanthine derivatives: synthesis of potent A2B-selective adenosine receptor antagonists. J Med Chem, 45 (7): 1500-10. [PMID:11906291]

54. Heitman LH, Mulder-Krieger T, Spanjersberg RF, von Frijtag Drabbe Künzel JK, Dalpiaz A, IJzerman AP. (2006) Allosteric modulation, thermodynamics and binding to wild-type and mutant (T277A) adenosine A1 receptors of LUF5831, a novel nonadenosine-like agonist. Br J Pharmacol, 147 (5): 533-41. [PMID:16444290]

55. Hirai H, Okada Y. (1995) Adenosine facilitates in vivo neurotransmission in the superior colliculus of the rat. J Neurophysiol, 74 (3): 950-60. [PMID:7500164]

56. Hoffman AF, Laaris N, Kawamura M, Masino SA, Lupica CR. (2010) Control of cannabinoid CB1 receptor function on glutamate axon terminals by endogenous adenosine acting at A1 receptors. J Neurosci, 30 (2): 545-55. [PMID:20071517]

57. Holschbach MH, Olsson RA, Bier D, Wutz W, Sihver W, Schüller M, Palm B, Coenen HH. (2002) Synthesis and evaluation of no-carrier-added 8-cyclopentyl-3-(3-[(18)F]fluoropropyl)-1-propylxanthine ([(18)F]CPFPX): a potent and selective A(1)-adenosine receptor antagonist for in vivo imaging. J Med Chem, 45 (23): 5150-6. [PMID:12408725]

58. Huang ZL, Qu WM, Eguchi N, Chen JF, Schwarzschild MA, Fredholm BB, Urade Y, Hayaishi O. (2005) Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nat Neurosci, 8 (7): 858-9. [PMID:15965471]

59. Imlach WL, Bhola RF, May LT, Christopoulos A, Christie MJ. (2015) A Positive Allosteric Modulator of the Adenosine A1 Receptor Selectively Inhibits Primary Afferent Synaptic Transmission in a Neuropathic Pain Model. Mol Pharmacol, 88 (3): 460-8. [PMID:26104547]

60. Iredale PA, Alexander SP, Hill SJ. (1994) Coupling of a transfected human brain A1 adenosine receptor in CHO-K1 cells to calcium mobilisation via a pertussis toxin-sensitive mechanism. Br J Pharmacol, 111 (4): 1252-6. [PMID:8032613]

61. Jacobson KA IJzerman AP, Linden J. (1999) 1,3-Dialkylxanthine derivatives having high potency as antagonists at human A2B adenosine receptors. Drug Dev Res, (47): 45-53.

62. Jacobson KA, Gallo-Rodriguez C, Melman N, Fischer B, Maillard M, van Bergen A, van Galen PJ, Karton Y. (1993) Structure-activity relationships of 8-styrylxanthines as A2-selective adenosine antagonists. J Med Chem, 36 (10): 1333-42. [PMID:8496902]

63. Jacobson KA, Gao ZG. (2006) Adenosine receptors as therapeutic targets. Nat Rev Drug Discov, 5 (3): 247-64. [PMID:16518376]

64. Jockers R, Linder ME, Hohenegger M, Nanoff C, Bertin B, Strosberg AD, Marullo S, Freissmuth M. (1994) Species difference in the G protein selectivity of the human and bovine A1-adenosine receptor. J Biol Chem, 269 (51): 32077-84. [PMID:7798201]

65. Johansson B, Halldner L, Dunwiddie TV, Masino SA, Poelchen W, Giménez-Llort L, Escorihuela RM, Fernández-Teruel A, Wiesenfeld-Hallin Z, Xu XJ et al.. (2001) Hyperalgesia, anxiety, and decreased hypoxic neuroprotection in mice lacking the adenosine A1 receptor. Proc Natl Acad Sci USA, 98 (16): 9407-12. [PMID:11470917]

66. Johansson SM, Lindgren E, Yang JN, Herling AW, Fredholm BB. (2008) Adenosine A1 receptors regulate lipolysis and lipogenesis in mouse adipose tissue-interactions with insulin. Eur J Pharmacol, 597 (1-3): 92-101. [PMID:18789919]

67. Johansson SM, Yang JN, Lindgren E, Fredholm BB. (2007) Eliminating the antilipolytic adenosine A1 receptor does not lead to compensatory changes in the antilipolytic actions of PGE2 and nicotinic acid. Acta Physiol (Oxf), 190 (1): 87-96. [PMID:17428236]

68. Kalk P, Eggert B, Relle K, Godes M, Heiden S, Sharkovska Y, Fischer Y, Ziegler D, Bielenberg GW, Hocher B. (2007) The adenosine A1 receptor antagonist SLV320 reduces myocardial fibrosis in rats with 5/6 nephrectomy without affecting blood pressure. Br J Pharmacol, 151 (7): 1025-32. [PMID:17558436]

69. Kara FM, Chitu V, Sloane J, Axelrod M, Fredholm BB, Stanley ER, Cronstein BN. (2010) Adenosine A1 receptors (A1Rs) play a critical role in osteoclast formation and function. FASEB J, 24 (7): 2325-33. [PMID:20181934]

70. Kara FM, Doty SB, Boskey A, Goldring S, Zaidi M, Fredholm BB, Cronstein BN. (2010) Adenosine A(1) receptors regulate bone resorption in mice: adenosine A(1) receptor blockade or deletion increases bone density and prevents ovariectomy-induced bone loss in adenosine A(1) receptor-knockout mice. Arthritis Rheum, 62 (2): 534-41. [PMID:20112380]

71. Karlsten R, Gordh Jr T, Hartvig P, Post C. (1990) Effects of intrathecal injection of the adenosine receptor agonists R-phenylisopropyl-adenosine and N-ethylcarboxamide-adenosine on nociception and motor function in the rat. Anesth Analg, 71 (1): 60-4. [PMID:2363530]

72. Karton Y, Jiang JL, Ji XD, Melman N, Olah ME, Stiles GL, Jacobson KA. (1996) Synthesis and biological activities of flavonoid derivatives as A3 adenosine receptor antagonists. J Med Chem, 39 (12): 2293-301. [PMID:8691424]

73. Kiesman WF, Zhao J, Conlon PR, Dowling JE, Petter RC, Lutterodt F, Jin X, Smits G, Fure M, Jayaraj A et al.. (2006) Potent and orally bioavailable 8-bicyclo[2.2.2]octylxanthines as adenosine A1 receptor antagonists. J Med Chem, 49 (24): 7119-31. [PMID:17125264]

74. Kim SA, Marshall MA, Melman N, Kim HS, Müller CE, Linden J, Jacobson KA. (2002) Structure-activity relationships at human and rat A2B adenosine receptors of xanthine derivatives substituted at the 1-, 3-, 7-, and 8-positions. J Med Chem, 45 (11): 2131-8. [PMID:12014951]

75. Kim YC, Ji X, Melman N, Linden J, Jacobson KA. (2000) Anilide derivatives of an 8-phenylxanthine carboxylic congener are highly potent and selective antagonists at human A(2B) adenosine receptors. J Med Chem, 43 (6): 1165-72. [PMID:10737749]

76. Kirchhof P, Fabritz L, Fortmuller L, Matherne GP, Lankford A, Baba HA, Schmitz W, Breithardt G, Neumann J, Boknik P. (2003) Altered sinus nodal and atrioventricular nodal function in freely moving mice overexpressing the A1 adenosine receptor. Am J Physiol Heart Circ Physiol, 285 (1): H145-53. [PMID:12637351]

77. Klotz KN, Falgner N, Kachler S, Lambertucci C, Vittori S, Volpini R, Cristalli G. (2007) [3H]HEMADO--a novel tritiated agonist selective for the human adenosine A3 receptor. Eur J Pharmacol, 556 (1-3): 14-8. [PMID:17126322]

78. Klotz KN, Hessling J, Hegler J, Owman C, Kull B, Fredholm BB, Lohse MJ. (1998) Comparative pharmacology of human adenosine receptor subtypes - characterization of stably transfected receptors in CHO cells. Naunyn Schmiedebergs Arch Pharmacol, 357 (1): 1-9. [PMID:9459566]

79. Klotz KN, Vogt H, Tawfik-Schlieper H. (1991) Comparison of A1 adenosine receptors in brain from different species by radioligand binding and photoaffinity labelling. Naunyn Schmiedebergs Arch Pharmacol, 343 (2): 196-201. [PMID:2067592]

80. Kochanek PM, Vagni VA, Janesko KL, Washington CB, Crumrine PK, Garman RH, Jenkins LW, Clark RS, Homanics GE, Dixon CE et al.. (2006) Adenosine A1 receptor knockout mice develop lethal status epilepticus after experimental traumatic brain injury. J Cereb Blood Flow Metab, 26 (4): 565-75. [PMID:16121125]

81. Kuno A, Critz SD, Cui L, Solodushko V, Yang XM, Krahn T, Albrecht B, Philipp S, Cohen MV, Downey JM. (2007) Protein kinase C protects preconditioned rabbit hearts by increasing sensitivity of adenosine A2b-dependent signaling during early reperfusion. J Mol Cell Cardiol, 43 (3): 262-71. [PMID:17632123]

82. Lang UE, Lang F, Richter K, Vallon V, Lipp HP, Schnermann J, Wolfer DP. (2003) Emotional instability but intact spatial cognition in adenosine receptor 1 knock out mice. Behav Brain Res, 145 (1-2): 179-88. [PMID:14529816]

83. Lankford AR, Yang JN, Rose'Meyer R, French BA, Matherne GP, Fredholm BB, Yang Z. (2006) Effect of modulating cardiac A1 adenosine receptor expression on protection with ischemic preconditioning. Am J Physiol Heart Circ Physiol, 290 (4): H1469-73. [PMID:16299262]

84. Lee HT, Xu H, Nasr SH, Schnermann J, Emala CW. (2004) A1 adenosine receptor knockout mice exhibit increased renal injury following ischemia and reperfusion. Am J Physiol Renal Physiol, 286 (2): F298-306. [PMID:14600029]

85. Liang BT, Urso R, Sambraski E, Jacobson KA. (2010) . In A3 Adenosine Receptors from Cell Biology to Pharmacology and Therapeutics. Edited by Borea PA (Springer) . [ISBN:9789048131440]

86. Libert F, Van Sande J, Lefort A, Czernilofsky A, Dumont JE, Vassart G, Ensinger HA, Mendla KD. (1992) Cloning and functional characterization of a human A1 adenosine receptor. Biochem Biophys Res Commun, 187 (2): 919-26. [PMID:1530647]

87. Liu H, Kuang X, Zhang Y, Ye Y, Li J, Liang L, Xie Z, Weng L, Guo J, Li H et al.. (2020) ADORA1 Inhibition Promotes Tumor Immune Evasion by Regulating the ATF3-PD-L1 Axis. Cancer Cell, 37 (3): 324-339.e8. [PMID:32183950]

88. Lopes LV, Halldner L, Rebola N, Johansson B, Ledent C, Chen JF, Fredholm BB, Cunha RA. (2004) Binding of the prototypical adenosine A(2A) receptor agonist CGS 21680 to the cerebral cortex of adenosine A(1) and A(2A) receptor knockout mice. Br J Pharmacol, 141: 1006-1014. [PMID:14993095]

89. Müller CE. (2000) A2A Adenosine receptor antagonists—future drugs for Parkinson’s disease?. Drugs Future, (25): 1043-1052.

90. Müller CE, Stein B. (1996) Adenosine receptor antagonists: structures and potential therapeutic applications. Curr Pharm Des, 2: 501-530.

91. Ma HC, Wang YF, Feng CS, Zhao H, Dohi S. (2005) Effects of adenosine agonist R-phenylisopropyl-adenosine on halothane anesthesia and antinociception in rats. Acta Pharmacol Sin, 26 (2): 181-5. [PMID:15663896]

92. MacGregor DG, Miller WJ, Stone TW. (1993) Mediation of the neuroprotective action of R-phenylisopropyl-adenosine through a centrally located adenosine A1 receptor. Br J Pharmacol, 110 (1): 470-6. [PMID:8220909]

93. Maemoto T, Tada M, Mihara T, Ueyama N, Matsuoka H, Harada K, Yamaji T, Shirakawa K, Kuroda S, Akahane A et al.. (2004) Pharmacological characterization of FR194921, a new potent, selective, and orally active antagonist for central adenosine A1 receptors. J Pharmacol Sci, 96 (1): 42-52. [PMID:15351792]

94. Mahan LC, McVittie LD, Smyk-Randall EM, Nakata H, Monsma Jr FJ, Gerfen CR, Sibley DR. (1991) Cloning and expression of an A1 adenosine receptor from rat brain. Mol Pharmacol, 40 (1): 1-7. [PMID:1857334]

95. Marquardt DL, Walker LL, Heinemann S. (1994) Cloning of two adenosine receptor subtypes from mouse bone marrow-derived mast cells. J Immunol, 152 (9): 4508-15. [PMID:8157966]

96. Martin PL, Wysocki Jr RJ, Barrett RJ, May JM, Linden J. (1996) Characterization of 8-(N-methylisopropyl)amino-N6-(5'-endohydroxy- endonorbornyl)-9-methyladenine (WRC-0571), a highly potent and selective, non-xanthine antagonist of A1 adenosine receptors. J Pharmacol Exp Ther, 276 (2): 490-9. [PMID:8632314]

97. Matherne GP, Linden J, Byford AM, Gauthier NS, Headrick JP. (1997) Transgenic A1 adenosine receptor overexpression increases myocardial resistance to ischemia. Proc Natl Acad Sci USA, 94 (12): 6541-6. [PMID:9177254]

98. Meibom D, Albrecht-Küpper B, Diedrichs N, Hübsch W, Kast R, Krämer T, Krenz U, Lerchen HG, Mittendorf J, Nell PG et al.. (2017) Neladenoson Bialanate Hydrochloride: A Prodrug of a Partial Adenosine A1 Receptor Agonist for the Chronic Treatment of Heart Diseases. ChemMedChem, 12 (10): 728-737. [PMID:28488817]

99. Melman A, Gao ZG, Kumar D, Wan TC, Gizewski E, Auchampach JA, Jacobson KA. (2008) Design of (N)-methanocarba adenosine 5'-uronamides as species-independent A3 receptor-selective agonists. Bioorg Med Chem Lett, 18 (9): 2813-9. [PMID:18424135]

100. Minelli A, Allegrucci C, Piomboni P, Mannucci R, Lluis C, Franco R. (2000) Immunolocalization of A1 adenosine receptors in mammalian spermatozoa. J Histochem Cytochem, 48 (9): 1163-71. [PMID:10950874]

101. Minelli A, Liguori L, Bellazza I, Mannucci R, Johansson B, Fredholm BB. (2004) Involvement of A1 adenosine receptors in the acquisition of fertilizing capacity. J Androl, 25 (2): 286-92. [PMID:14760015]

102. Minetti P, Tinti MO, Carminati P, Castorina M, Di Cesare MA, Di Serio S, Gallo G, Ghirardi O, Giorgi F, Giorgi L et al.. (2005) 2-n-Butyl-9-methyl-8-[1,2,3]triazol-2-yl-9H-purin-6-ylamine and analogues as A2A adenosine receptor antagonists. Design, synthesis, and pharmacological characterization. J Med Chem, 48 (22): 6887-96. [PMID:16250647]

103. Murray RD, Churchill PC. (1984) Effects of adenosine receptor agonists in the isolated, perfused rat kidney. Am J Physiol, 247 (3 Pt 2): H343-8. [PMID:6089592]

104. Müller CE, Ferré S. (2007) Blocking striatal adenosine A2A receptors: a new strategy for basal ganglia disorders. Recent Pat CNS Drug Discov, 2 (1): 1-21. [PMID:18221214]

105. Müller CE, Jacobson KA. (2011) Recent developments in adenosine receptor ligands and their potential as novel drugs. Biochim Biophys Acta, 1808 (5): 1290-308. [PMID:21185259]

106. Müller CE, Shi D, Manning M, Daly JW. (1993) Synthesis of paraxanthine analogs (1,7-disubstituted xanthines) and other xanthines unsubstituted at the 3-position: structure-activity relationships at adenosine receptors. J Med Chem, 36 (22): 3341-9. [PMID:8230124]

107. Müller CE, Thorand M, Qurishi R, Diekmann M, Jacobson KA, Padgett WL, Daly JW. (2002) Imidazo[2,1-i]purin-5-ones and related tricyclic water-soluble purine derivatives: potent A(2A)- and A(3)-adenosine receptor antagonists. J Med Chem, 45 (16): 3440-50. [PMID:12139454]

108. Nowak M, Lynch L, Yue S, Ohta A, Sitkovsky M, Balk SP, Exley MA. (2010) The A2aR adenosine receptor controls cytokine production in iNKT cells. Eur J Immunol, 40 (3): 682-7. [PMID:20039304]

109. O'Shaughnessy CT, Aram JA, Lodge D. (1988) A1 adenosine receptor-mediated block of epileptiform activity induced in zero magnesium in rat neocortex in vitro. Epilepsy Res, 2 (5): 294-301. [PMID:2461856]

110. Obiefuna PC, Batra VK, Nadeem A, Borron P, Wilson CN, Mustafa SJ. (2005) A novel A1 adenosine receptor antagonist, L-97-1 [3-[2-(4-aminophenyl)-ethyl]-8-benzyl-7-{2-ethyl-(2-hydroxy-ethyl)-amino]-ethyl}-1-propyl-3,7-dihydro-purine-2,6-dione], reduces allergic responses to house dust mite in an allergic rabbit model of asthma. J Pharmacol Exp Ther, 315 (1): 329-36. [PMID:16020631]

111. Olsson T, Cronberg T, Rytter A, Asztély F, Fredholm BB, Smith ML, Wieloch T. (2004) Deletion of the adenosine A1 receptor gene does not alter neuronal damage following ischaemia in vivo or in vitro. Eur J Neurosci, 20 (5): 1197-204. [PMID:15341591]

112. Ongini E, Dionisotti S, Gessi S, Irenius E, Fredholm BB. (1999) Comparison of CGS 15943, ZM 241385 and SCH 58261 as antagonists at human adenosine receptors. Naunyn Schmiedebergs Arch Pharmacol, 359 (1): 7-10. [PMID:9933143]

113. Ozola V, Thorand M, Diekmann M, Qurishi R, Schumacher B, Jacobson KA, Müller CE. (2003) 2-Phenylimidazo[2,1-i]purin-5-ones: structure-activity relationships and characterization of potent and selective inverse agonists at Human A3 adenosine receptors. Bioorg Med Chem, 11 (3): 347-56. [PMID:12517430]

114. Pfeifer CA, Suzuki F, Jackson EK. (1995) Selective A1 adenosine receptor antagonism augments beta-adrenergic-induced renin release in vivo. Am J Physiol, 269 (4 Pt 2): F469-79. [PMID:7485531]

115. Pfister JR, Belardinelli L, Lee G, Lum RT, Milner P, Stanley WC, Linden J, Baker SP, Schreiner G. (1997) Synthesis and biological evaluation of the enantiomers of the potent and selective A1-adenosine antagonist 1,3-dipropyl-8-[2-(5,6-epoxynorbonyl)]-xanthine. J Med Chem, 40 (12): 1773-8. [PMID:9191953]

116. Poon A, Sawynok J. (1998) Antinociception by adenosine analogs and inhibitors of adenosine metabolism in an inflammatory thermal hyperalgesia model in the rat. Pain, 74 (2-3): 235-45. [PMID:9520238]

117. Ren H, Stiles GL. (1994) Characterization of the human A1 adenosine receptor gene. Evidence for alternative splicing. J Biol Chem, 269 (4): 3104-10. [PMID:8300646]

118. Rice AM, Fain JN, Rivkees SA. (2000) A1 adenosine receptor activation increases adipocyte leptin secretion. Endocrinology, 141 (4): 1442-5. [PMID:10746648]

119. Rivkees SA. (1994) Localization and characterization of adenosine receptor expression in rat testis. Endocrinology, 135 (6): 2307-13. [PMID:7988413]

120. Rivkees SA, Barbhaiya H, IJzerman AP. (1999) Identification of the adenine binding site of the human A1 adenosine receptor. J Biol Chem, 274 (6): 3617-21. [PMID:9920910]

121. Saki M, Tsumuki H, Nonaka H, Shimada J, Ichimura M. (2002) KF26777 (2-(4-bromophenyl)-7,8-dihydro-4-propyl-1H-imidazo[2,1-i]purin-5(4H)-one dihydrochloride), a new potent and selective adenosine A3 receptor antagonist. Eur J Pharmacol, 444 (3): 133-41. [PMID:12063073]

122. Salehi A, Parandeh F, Fredholm BB, Grapengiesser E, Hellman B. (2009) Absence of adenosine A1 receptors unmasks pulses of insulin release and prolongs those of glucagon and somatostatin. Life Sci, 85 (11-12): 470-6. [PMID:19682463]

123. Salvatore CA, Jacobson MA, Taylor HE, Linden J, Johnson RG. (1993) Molecular cloning and characterization of the human A3 adenosine receptor. Proc Natl Acad Sci USA, 90 (21): 10365-9. [PMID:8234299]

124. Satoh A, Shimosegawa T, Satoh K, Ito H, Kohno Y, Masamune A, Fujita M, Toyota T. (2000) Activation of adenosine A1-receptor pathway induces edema formation in the pancreas of rats. Gastroenterology, 119 (3): 829-36. [PMID:10982777]

125. Sauer R, Maurinsh J, Reith U, Fülle F, Klotz KN, Müller CE. (2000) Water-soluble phosphate prodrugs of 1-propargyl-8-styrylxanthine derivatives, A(2A)-selective adenosine receptor antagonists. J Med Chem, 43 (3): 440-8. [PMID:10669571]

126. Scammell TE, Arrigoni E, Thompson MA, Ronan PJ, Saper CB, Greene RW. (2003) Focal deletion of the adenosine A1 receptor in adult mice using an adeno-associated viral vector. J Neurosci, 23 (13): 5762-70. [PMID:12843280]

127. Schindler M, Harris CA, Hayes B, Papotti M, Humphrey PP. (2001) Immunohistochemical localization of adenosine A1 receptors in human brain regions. Neurosci Lett, 297 (3): 211-5. [PMID:11137765]

128. Schnermann J, Weihprecht H, Briggs JP. (1990) Inhibition of tubuloglomerular feedback during adenosine1 receptor blockade. Am J Physiol, 258 (3 Pt 2): F553-61. [PMID:1969237]

129. Schnurr M, Toy T, Shin A, Hartmann G, Rothenfusser S, Soellner J, Davis ID, Cebon J, Maraskovsky E. (2004) Role of adenosine receptors in regulating chemotaxis and cytokine production of plasmacytoid dendritic cells. Blood, 103 (4): 1391-7. [PMID:14551144]

130. Scholz KP, Miller RJ. (1992) Inhibition of quantal transmitter release in the absence of calcium influx by a G protein-linked adenosine receptor at hippocampal synapses. Neuron, 8 (6): 1139-50. [PMID:1351733]

131. Schulte G, Fredholm BB. (2000) Human adenosine A(1), A(2A), A(2B), and A(3) receptors expressed in Chinese hamster ovary cells all mediate the phosphorylation of extracellular-regulated kinase 1/2. Mol Pharmacol, 58 (3): 477-82. [PMID:10953039]

132. Schulte G, Robertson B, Fredholm BB, DeLander GE, Shortland P, Molander C. (2003) Distribution of antinociceptive adenosine A1 receptors in the spinal cord dorsal horn, and relationship to primary afferents and neuronal subpopulations. Neuroscience, 121 (4): 907-16. [PMID:14580941]

133. Schweda F, Segerer F, Castrop H, Schnermann J, Kurtz A. (2005) Blood pressure-dependent inhibition of Renin secretion requires A1 adenosine receptors. Hypertension, 46 (4): 780-6. [PMID:16172432]

134. Sjölund KF, Sollevi A, Segerdahl M, Lundeberg T. (1997) Intrathecal adenosine analog administration reduces substance P in cerebrospinal fluid along with behavioral effects that suggest antinociception in rats. Anesth Analg, 85 (3): 627-32. [PMID:9296420]

135. Stenberg D, Litonius E, Halldner L, Johansson B, Fredholm BB, Porkka-Heiskanen T. (2003) Sleep and its homeostatic regulation in mice lacking the adenosine A1 receptor. J Sleep Res, 12 (4): 283-90. [PMID:14633239]

136. Storr M, Thammer J, Dunkel R, Schusdziarra V, Allescher HD. (2002) Modulatory effect of adenosine receptors on the ascending and descending neural reflex responses of rat ileum. BMC Neurosci, 3: 21. [PMID:12495441]

137. Sun D, Samuelson LC, Yang T, Huang Y, Paliege A, Saunders T, Briggs J, Schnermann J. (2001) Mediation of tubuloglomerular feedback by adenosine: evidence from mice lacking adenosine 1 receptors. Proc Natl Acad Sci USA, 98 (17): 9983-8. [PMID:11504952]

138. Thomson S, Bao D, Deng A, Vallon V. (2000) Adenosine formed by 5'-nucleotidase mediates tubuloglomerular feedback. J Clin Invest, 106 (2): 289-98. [PMID:10903345]

139. Tosh DK, Rao H, Bitant A, Salmaso V, Mannes P, Lieberman DI, Vaughan KL, Mattison JA, Rothwell AC, Auchampach JA et al.. (2019) Design and in Vivo Characterization of A1 Adenosine Receptor Agonists in the Native Ribose and Conformationally Constrained (N)-Methanocarba Series. J Med Chem, 62 (3): 1502-1522. [PMID:30605331]

140. Townsend-Nicholson A, Schofield PR. (1994) A threonine residue in the seventh transmembrane domain of the human A1 adenosine receptor mediates specific agonist binding. J Biol Chem, 269 (4): 2373-6. [PMID:8300561]

141. Townsend-Nicholson A, Shine J. (1992) Molecular cloning and characterisation of a human brain A1 adenosine receptor cDNA. Brain Res Mol Brain Res, 16 (3-4): 365-70. [PMID:1339301]

142. Turner CP, Seli M, Ment L, Stewart W, Yan H, Johansson B, Fredholm BB, Blackburn M, Rivkees SA. (2003) A1 adenosine receptors mediate hypoxia-induced ventriculomegaly. Proc Natl Acad Sci USA, 100 (20): 11718-22. [PMID:12975523]

143. van Muijlwijk-Koezen JE, Timmerman H, Link R, van der Goot H, IJzerman AP. (1998) A novel class of adenosine A3 receptor ligands. 1. 3-(2-Pyridinyl)isoquinoline derivatives. J Med Chem, 41 (21): 3987-93. [PMID:9767636]

144. Varani K, Gessi S, Merighi S, Vincenzi F, Cattabriga E, Benini A, Klotz KN, Baraldi PG, Tabrizi MA, Lennan SM et al.. (2005) Pharmacological characterization of novel adenosine ligands in recombinant and native human A2B receptors. Biochem Pharmacol, 70 (11): 1601-12. [PMID:16219300]

145. Varani K, Merighi S, Gessi S, Klotz KN, Leung E, Baraldi PG, Cacciari B, Romagnoli R, Spalluto G, Borea PA. (2000) [(3)H]MRE 3008F20: a novel antagonist radioligand for the pharmacological and biochemical characterization of human A(3) adenosine receptors. Mol Pharmacol, 57 (5): 968-75. [PMID:10779381]

146. Vidal B, Nueda A, Esteve C, Domenech T, Benito S, Reinoso RF, Pont M, Calbet M, López R, Cadavid MI et al.. (2007) Discovery and characterization of 4'-(2-furyl)-N-pyridin-3-yl-4,5'-bipyrimidin-2'-amine (LAS38096), a potent, selective, and efficacious A2B adenosine receptor antagonist. J Med Chem, 50 (11): 2732-6. [PMID:17469811]

147. Vitzthum H, Weiss B, Bachleitner W, Krämer BK, Kurtz A. (2004) Gene expression of adenosine receptors along the nephron. Kidney Int, 65 (4): 1180-90. [PMID:15086457]

148. Volpini R, Costanzi S, Lambertucci C, Taffi S, Vittori S, Klotz KN, Cristalli G. (2002) N(6)-alkyl-2-alkynyl derivatives of adenosine as potent and selective agonists at the human adenosine A(3) receptor and a starting point for searching A(2B) ligands. J Med Chem, 45 (15): 3271-9. [PMID:12109910]

149. Voors AA, Bax JJ, Hernandez AF, Wirtz AB, Pap AF, Ferreira AC, Senni M, van der Laan M, Butler J, PANTHEON Investigators. (2019) Safety and efficacy of the partial adenosine A1 receptor agonist neladenoson bialanate in patients with chronic heart failure with reduced ejection fraction: a phase IIb, randomized, double-blind, placebo-controlled trial. Eur J Heart Fail, 21 (11): 1426-1433. [PMID:31523892]

150. Weiss SM, Benwell K, Cliffe IA, Gillespie RJ, Knight AR, Lerpiniere J, Misra A, Pratt RM, Revell D, Upton R et al.. (2003) Discovery of nonxanthine adenosine A2A receptor antagonists for the treatment of Parkinson's disease. Neurology, 61 (11 Suppl 6): S101-6. [PMID:14663021]

151. Weyler S, Fülle F, Diekmann M, Schumacher B, Hinz S, Klotz KN, Müller CE. (2006) Improving potency, selectivity, and water solubility of adenosine A1 receptor antagonists: xanthines modified at position 3 and related pyrimido[1,2,3-cd]purinediones. ChemMedChem, 1 (8): 891-902. [PMID:16902942]

152. Wittendorp MC, von Frijtag Drabbe Künzel J, Ijzerman AP, Boddeke HW, Biber K. (2004) The mouse brain adenosine A1 receptor: functional expression and pharmacology. Eur J Pharmacol, 487 (1-3): 73-9. [PMID:15033378]

153. Wu WP, Hao JX, Halldner L, Lövdahl C, DeLander GE, Wiesenfeld-Hallin Z, Fredholm BB, Xu XJ. (2005) Increased nociceptive response in mice lacking the adenosine A1 receptor. Pain, 113 (3): 395-404. [PMID:15661449]

154. Yamamoto S, Nakanishi O, Matsui T, Shinohara N, Kinoshita H, Lambert C, Ishikawa T. (2003) Intrathecal adenosine A1 receptor agonist attenuates hyperalgesia without inhibiting spinal glutamate release in the rat. Cell Mol Neurobiol, 23 (2): 175-85. [PMID:12735630]

155. Yan L, Burbiel JC, Maass A, Müller CE. (2003) Adenosine receptor agonists: from basic medicinal chemistry to clinical development. Expert Opin Emerg Drugs, 8 (2): 537-76. [PMID:14662005]

156. Yang JN, Tiselius C, Daré E, Johansson B, Valen G, Fredholm BB. (2007) Sex differences in mouse heart rate and body temperature and in their regulation by adenosine A1 receptors. Acta Physiol (Oxf), 190 (1): 63-75. [PMID:17428234]

157. Yang X, van Veldhoven JPD, Offringa J, Kuiper BJ, Lenselink EB, Heitman LH, van der Es D, IJzerman AP. (2019) Development of Covalent Ligands for G Protein-Coupled Receptors: A Case for the Human Adenosine A3 Receptor. J Med Chem, 62 (7): 3539-3552. DOI: 10.1021/acs.jmedchem.8b02026 [PMID:30869893]

Contributors

Show »

How to cite this page