Top ▲
Target has curated data in GtoImmuPdb
Target id: 79
Nomenclature: chemerin receptor 1
Abbreviated Name: Chemerin1
Family: Chemerin receptors
Gene and Protein Information | ||||||
class A G protein-coupled receptor | ||||||
Species | TM | AA | Chromosomal Location | Gene Symbol | Gene Name | Reference |
Human | 7 | 373 | 12q23.3 | CMKLR1 | chemerin chemokine-like receptor 1 | 20 |
Mouse | 7 | 371 | 5 F | Cmklr1 | chemerin chemokine-like receptor 1 | 42 |
Rat | 7 | 371 | 12q16 | Cmklr1 | chemerin chemokine-like receptor 1 | 44 |
Previous and Unofficial Names | |
Chemerin1 [31] | chemokine receptor-like 1 | CMKLR1 | Gpcr27 | G-protein coupled receptor ChemR23 | G-protein coupled receptor DEZ | resolvin E1 receptor | RVER1 | tazarotene induced gene 2 receptor | TIG2 receptor |
Database Links | |
Specialist databases | |
GPCRdb | cml1_human (Hs), cml1_mouse (Mm), cml1_rat (Rn) |
Other databases | |
Alphafold | Q99788 (Hs), P97468 (Mm), O35786 (Rn) |
ChEMBL Target | CHEMBL3540 (Hs), CHEMBL4523269 (Mm) |
Ensembl Gene | ENSG00000174600 (Hs), ENSMUSG00000042190 (Mm), ENSRNOG00000000704 (Rn) |
Entrez Gene | 1240 (Hs), 14747 (Mm), 60669 (Rn) |
Human Protein Atlas | ENSG00000174600 (Hs) |
KEGG Gene | hsa:1240 (Hs), mmu:14747 (Mm), rno:60669 (Rn) |
OMIM | 602351 (Hs) |
Pharos | Q99788 (Hs) |
RefSeq Nucleotide | NM_004072 (Hs), NM_008153 (Mm), NM_022218 (Rn) |
RefSeq Protein | NP_004063 (Hs), NP_032179 (Mm), NP_071554 (Rn) |
UniProtKB | Q99788 (Hs), P97468 (Mm), O35786 (Rn) |
Wikipedia | CMKLR1 (Hs) |
Natural/Endogenous Ligands |
chemerin {Sp: Human} |
resolvin E1 |
Potency order of endogenous ligands |
resolvin E1 > chemerin C-terminal peptide > 18R-HEPE > EPA [2] |
Download all structure-activity data for this target as a CSV file
Agonists | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | View all chemical structures | Click column headers to sort | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Agonist Comments | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nonapeptide (149)YFPGQFAFS(157) (chemerin C-terminal peptide/chemerin-9), corresponding to the C terminus of processed chemerin, retains most of the activity of the full-size protein, with regard to agonism towards the chemerin receptor. Alanine-scanning mutagenesis identified residues Tyr(149), Phe(150), Gly(152), Phe(154), and Phe(156) as the key positions for receptor activation [62]. Removal of a single amino acid from the C-terminal of chemerin resulted in a peptide able to activate the receptor but with a 6-fold drop of potency [62]. Chemerin15 (C15; A140-A154), inhibited macrophage (MΦ) activation to a similar extent as proteolyzed chemerin, but exhibited reduced activity as a MΦ chemoattractant [10]. Serum chemerin levels have been shown to oscillate in a diurnal-type rhythmn [45]. |
Antagonists | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | View all chemical structures | Click column headers to sort | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Antagonist Comments | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CCX832 (structure not disclosed) is a selective antagonist, pKi=9.2 [32]. |
Immunopharmacology Comments |
Studies in CMKLR1 (chemerin receptor 1) knockout mice highlight the role of this receptor in inflammation and obesity. Chemerin receptor 1 is activated by the lipid-derived, anti-inflammatory autacoid ligand resolvin E1. As its name suggests, reslovin E1 is involved in resolving physiological inflammatory responses. The metabolically stable resolvin E1 analogue, RX-10045 (navamepent) has completed Phase 2 clinical trials in several occular inflammation indications. In relation to multiple sclerosis (MS), clinical EAE is significantly reduced in CMKLR1 KO mice. Taking this in to consideration with data that confirm CMKLR1 expression by the main effector cells in MS, this protein is judged to be a novel and tractable target for therapeutic intervention in MS. CMKLR1 antagonists are being pursued as anti-inflammatory agents. The selective CMKLR1 antagonist CCX832 was developed by ChemoCentryx and GlaxoSmithKline as a potential anti-psoriatic medication, but development appears to have halted at Phase 1. α-NETA is a CMKLR1 antagonist that has shown efficacious effects applicable to MS in vitro and in vivo [24]. |
Immuno Process Associations | ||
|
||
|
||
|
||
|
||
|
Primary Transduction Mechanisms | |
Transducer | Effector/Response |
Gi/Go family | Adenylyl cyclase inhibition |
Comments: Activation of the receptor results in intracellular calcium release, inhibition of cAMP accumulation, and phosphorylation of p42-p44 MAP kinases [61]. | |
References: 61 |
Tissue Distribution | ||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
Tissue Distribution Comments | ||||||||
In dendritic cell differentiation from bone marrow, murine CMKLR1 is upregulated early and then diminishes with time in culture [66]. CMKLR1 expression is upregulated in adipose tissue of mice fed a high fat diet. Troglitazone, a PPAR-γ2 agonist, treatment also significantly increases CMKLR1 expression [50]. The chemerin receptor is coexpressed with CXCR1 and CXCL8 receptors in blood CD56lowCD16+ natural killer cells [46]. CMKLR1 is expressed ubiquitously in tissues from P. obesus, and differentially from chemerin in mesenteric tissue. CMKLR1 was also downregulated in adipocyte differentiation [8]. CMKLR1+ cells in kidney from SLE patients with nephritis, mostly localized at tubulointerstitial level surrounding tubular epithelial cells, with a typical DC pattern. Moreover, CMKLR1+ cells frequently localized around the glomeruli and were also associated with renal vessels [12]. Cigarette smoke decreases preprochemerin and CMKLR1 mRNA expression in the lung [13]. Homocysteine, uric acid, high glucose, or oxidized low-density lipoprotein down-regulated the chemerin secretion and CMKLR1 expression in rat aortic endothelial cells [68]. Synovial fibroblasts expressed chemerin receptor and chemerin mRNA, in rheumatoid- and osteo-arthritis patients [16]. CMKLR1 was expressed in a 3T3-L1 adipocyte cell line and examined with RT-PCR [5], and a J744A.1 cell line using immunocytochemistry and immunohistochemistry [47]. CMKLR1 levels also increased during differentiation and decreased again with full differentiation of primary human adipocytes after 13 days [52]. CMKLR1 mRNA levels have been reported as approximately 5-fold lower in skeletal muscle and 36-fold lower in liver tissue relative to white adipose tissue (using RT-PCR) [18]. TNF-α and IL-1β both dose-dependently increase receptor expression in human endothelial cells [30]. Of interest to cardiovascular medicine, CMKLR1 has also been identified on vascular smooth muscle cells [59]. Upregulation of CMKLR1 on F4/80+ macrophages is favored by the tumor cells [47]. CMKLR1 has been expressed in a murine NH15-CA2 cell line and detected by Northern blot analysis [36]. Other murine cell lines used to express the receptor are neuroblastoma NB4 1A3 cells and microglia BV2 cells [40,42]. CMKLR1 has been expressed at at low level in the human 3T3-L1 cell line and analysed by RT-PCR [50], and has also been expressed in a murine 3T3-L1 adipocyte cell line, also analysed by RT-PCR [5]. |
Expression Datasets | |
|
Functional Assays | ||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
Physiological Functions | ||||||||
|
||||||||
|
||||||||
Physiological Functions Comments | ||||||||
Potential roles have been postulated for the CMKLR1/chemerin signaling pathway as a modulator of bone mass (osteoblastgenesis), and angiogenesis [30,39]. |
Physiological Consequences of Altering Gene Expression | ||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
Physiological Consequences of Altering Gene Expression Comments | ||||||||||
In ob/ob mice, CMKLR1 mRNA was 2.3-fold lower in white adipose tissue and 4.8-fold higher in skeletal muscle compared with congenic C57BL/6 controls. Similarly, CMKLR1 levels were significantly lower (2.7-fold) in white adipose tissue and higher (4.3-fold) in skeletal muscle of db/db mice compared with C57BL/6 mice [18]. The receptor is also upregulated in mice on a high-fat diet [5]. |
Phenotypes, Alleles and Disease Models | Mouse data from MGI | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Clinically-Relevant Mutations and Pathophysiology | ||||||||||||||||
|
||||||||||||||||
|
||||||||||||||||
|
||||||||||||||||
|
||||||||||||||||
|
||||||||||||||||
Clinically-Relevant Mutations and Pathophysiology Comments | ||||||||||||||||
SNP rs1878022 is an intronic variant located within CMKLR1 on human chromosome 12, and was found to be higher in normal mucosa of patients with esophageal squamous dysplasia patients whose disease had progressed, although no link has been found between either the CMKLR1 gene, or its protein, and non-small cell lung cancer [63]. |
Gene Expression and Pathophysiology | ||||||||||||
|
||||||||||||
|
||||||||||||
Gene Expression and Pathophysiology Comments | ||||||||||||
CMKLR1 expression was determined on peritoneal and tumor-infiltrating macrophages, suggesting a role for the receptor in mediating inflammatory responses in the tumour microenvironment [47]. CMKLR1 expression has been shown to be increased in inflammatory pain by RT-PCR [49]. HIV isolates are able to activate the chemerin receptor, and in the presence of CD4, this receptor functions as a "minor co-receptor" promoting infection by these classes of viruses [49]. Lesions which progress in mild to moderate squamous dysplasia have higher expression of inflammatory genes such as CMKLR1 [29]. Chemerin-derived peptides may represent a novel therapeutic strategy for the treatment of inflammatory diseases through the chemerin receptor [10]. The receptor is transiently upregulated in Peg-interferon alfa-2b plus ribavirin in peripheral blood monocytes (PBMC) of hepatitis C patients during the first 10 weeks of treatment [58]. Prepsoriatic skin adjacent to active lesions and early lesions were characterized by a strong expression of chemerin in the dermis and by the presence of CD15(+) neutrophils and CD123(+)/BDCA-2(+)/ChemR23(+) pDC, supporting a role for the chemerin/chemerin receptor axis in the early phases of psoriasis development [1]. Lesional skin from psoriasis patients contains the active form of the chemerin receptor ligand chemerin [54]. Coronary and aortic atherosclerosis have been correlated with increased chemerin concentration, though it is not indicated whether any effects are mediated by the chemerin receptor [56]. CMKLR1+ cells in kidney from SLE patients with nephritis, mostly localized at tubulointerstitial level. |
General Comments |
It is believed that another orphan receptor, CCLR2, may concentrate bioactive chemerin for presentation to the chemerin receptor [64-65]. The mouse and the two human splicing variants are 70% identical, the human splicing variants a and b showing 99% amino acid sequence identity. The mouse and the rat orthologues (the latter located to chromosome 12, region 12q16) display 91% identity [42]. The promoter does not seem to be tissue specific but other elements or enhancers may be missing, and sequence comparison of human and mouse genes reveals a homologous block structure in the promoter regions [42,57]. The murine receptor utilizes alternative promoters for transcription and is regulated by all-trans retinoic acid [40]. The chemerin receptor is a cell surface receptor that can be used to target recombinant adenovirus vectors to dendritic cells for vaccination development [35]. HIV-1 subtype C lineages also had diverse alternative coreceptor patterns including the ability to use the chemerin receptor [11]. Chemerin and resolvin mediated divergent results suggesting the chemerin receptor is multifunctional [64]. |
1. Albanesi C, Scarponi C, Pallotta S, Daniele R, Bosisio D, Madonna S, Fortugno P, Gonzalvo-Feo S, Franssen JD, Parmentier M et al.. (2009) Chemerin expression marks early psoriatic skin lesions and correlates with plasmacytoid dendritic cell recruitment. J Exp Med, 206 (1): 249-58. [PMID:19114666]
2. Arita M, Bianchini F, Aliberti J, Sher A, Chiang N, Hong S, Yang R, Petasis NA, Serhan CN. (2005) Stereochemical assignment, antiinflammatory properties, and receptor for the omega-3 lipid mediator resolvin E1. J Exp Med, 201 (5): 713-22. [PMID:15753205]
3. Arita M, Ohira T, Sun YP, Elangovan S, Chiang N, Serhan CN. (2007) Resolvin E1 selectively interacts with leukotriene B4 receptor BLT1 and ChemR23 to regulate inflammation. J Immunol, 178 (6): 3912-7. [PMID:17339491]
4. Barnea G, Strapps W, Herrada G, Berman Y, Ong J, Kloss B, Axel R, Lee KJ. (2008) The genetic design of signaling cascades to record receptor activation. Proc Natl Acad Sci USA, 105 (1): 64-9. [PMID:18165312]
5. Bauer S, Wanninger J, Schmidhofer S, Weigert J, Neumeier M, Dorn C, Hellerbrand C, Zimara N, Schäffler A, Aslanidis C et al.. (2011) Sterol regulatory element-binding protein 2 (SREBP2) activation after excess triglyceride storage induces chemerin in hypertrophic adipocytes. Endocrinology, 152 (1): 26-35. [PMID:21084441]
6. Berg V, Sveinbjörnsson B, Bendiksen S, Brox J, Meknas K, Figenschau Y. (2010) Human articular chondrocytes express ChemR23 and chemerin; ChemR23 promotes inflammatory signalling upon binding the ligand chemerin(21-157). Arthritis Res Ther, 12 (6): R228. [PMID:21192818]
7. Bondue B, Vosters O, de Nadai P, Glineur S, De Henau O, Luangsay S, Van Gool F, Communi D, De Vuyst P, Desmecht D et al.. (2011) ChemR23 dampens lung inflammation and enhances anti-viral immunity in a mouse model of acute viral pneumonia. PLoS Pathog, 7 (11): e1002358. [PMID:22072972]
8. Bozaoglu K, Bolton K, McMillan J, Zimmet P, Jowett J, Collier G, Walder K, Segal D. (2007) Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology, 148 (10): 4687-94. [PMID:17640997]
9. Cash JL, Christian AR, Greaves DR. (2010) Chemerin peptides promote phagocytosis in a ChemR23- and Syk-dependent manner. J Immunol, 184 (9): 5315-24. [PMID:20363975]
10. Cash JL, Hart R, Russ A, Dixon JP, Colledge WH, Doran J, Hendrick AG, Carlton MB, Greaves DR. (2008) Synthetic chemerin-derived peptides suppress inflammation through ChemR23. J Exp Med, 205 (4): 767-75. [PMID:18391062]
11. Coetzer M, Nedellec R, Cilliers T, Meyers T, Morris L, Mosier DE. (2011) Extreme genetic divergence is required for coreceptor switching in HIV-1 subtype C. J Acquir Immune Defic Syndr, 56 (1): 9-15. [PMID:20921899]
12. De Palma G, Castellano G, Del Prete A, Sozzani S, Fiore N, Loverre A, Parmentier M, Gesualdo L, Grandaliano G, Schena FP. (2011) The possible role of ChemR23/Chemerin axis in the recruitment of dendritic cells in lupus nephritis. Kidney Int, 79 (11): 1228-35. [PMID:21346723]
13. Demoor T, Bracke KR, Dupont LL, Plantinga M, Bondue B, Roy MO, Lannoy V, Lambrecht BN, Brusselle GG, Joos GF. (2011) The role of ChemR23 in the induction and resolution of cigarette smoke-induced inflammation. J Immunol, 186 (9): 5457-67. [PMID:21430224]
14. Doyle JR, Krishnaji ST, Zhu G, Xu ZZ, Heller D, Ji RR, Levy BD, Kumar K, Kopin AS. (2014) Development of a membrane-anchored chemerin receptor agonist as a novel modulator of allergic airway inflammation and neuropathic pain. J Biol Chem, 289 (19): 13385-96. [PMID:24659779]
15. Du XY, Leung LL. (2009) Proteolytic regulatory mechanism of chemerin bioactivity. Acta Biochim Biophys Sin (Shanghai), 41 (12): 973-9. [PMID:20011981]
16. Eisinger K, Bauer S, Schäffler A, Walter R, Neumann E, Buechler C, Müller-Ladner U, Frommer KW. (2012) Chemerin induces CCL2 and TLR4 in synovial fibroblasts of patients with rheumatoid arthritis and osteoarthritis. Exp Mol Pathol, 92 (1): 90-6. [PMID:22037282]
17. Ernst MC, Haidl ID, Zúñiga LA, Dranse HJ, Rourke JL, Zabel BA, Butcher EC, Sinal CJ. (2012) Disruption of the chemokine-like receptor-1 (CMKLR1) gene is associated with reduced adiposity and glucose intolerance. Endocrinology, 153 (2): 672-82. [PMID:22186410]
18. Ernst MC, Issa M, Goralski KB, Sinal CJ. (2010) Chemerin exacerbates glucose intolerance in mouse models of obesity and diabetes. Endocrinology, 151 (5): 1998-2007. [PMID:20228173]
19. Fredman G, Van Dyke TE, Serhan CN. (2010) Resolvin E1 regulates adenosine diphosphate activation of human platelets. Arterioscler Thromb Vasc Biol, 30 (10): 2005-13. [PMID:20702811]
20. Gantz I, Konda Y, Yang YK, Miller DE, Dierick HA, Yamada T. (1996) Molecular cloning of a novel receptor (CMKLR1) with homology to the chemotactic factor receptors. Cytogenet Cell Genet, 74 (4): 286-90. [PMID:8976386]
21. Goralski KB, McCarthy TC, Hanniman EA, Zabel BA, Butcher EC, Parlee SD, Muruganandan S, Sinal CJ. (2007) Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism. J Biol Chem, 282 (38): 28175-88. [PMID:17635925]
22. Goralski KB, Sinal CJ. (2009) Elucidation of chemerin and chemokine-like receptor-1 function in adipocytes by adenoviral-mediated shRNA knockdown of gene expression. Meth Enzymol, 460: 289-312. [PMID:19446731]
23. Graham KL, Zabel BA, Loghavi S, Zuniga LA, Ho PP, Sobel RA, Butcher EC. (2009) Chemokine-like receptor-1 expression by central nervous system-infiltrating leukocytes and involvement in a model of autoimmune demyelinating disease. J Immunol, 183 (10): 6717-23. [PMID:19864606]
24. Graham KL, Zhang JV, Lewén S, Burke TM, Dang T, Zoudilova M, Sobel RA, Butcher EC, Zabel BA. (2014) A novel CMKLR1 small molecule antagonist suppresses CNS autoimmune inflammatory disease. PLoS ONE, 9 (12): e112925. [PMID:25437209]
25. Hart R, Greaves DR. (2010) Chemerin contributes to inflammation by promoting macrophage adhesion to VCAM-1 and fibronectin through clustering of VLA-4 and VLA-5. J Immunol, 185 (6): 3728-39. [PMID:20720202]
26. Haworth O, Cernadas M, Levy BD. (2011) NK cells are effectors for resolvin E1 in the timely resolution of allergic airway inflammation. J Immunol, 186 (11): 6129-35. [PMID:21515793]
27. Imaizumi T, Otsubo S, Maemoto M, Kobayashi A, Komai M, Takada H, Sakaida Y, Otsubo N. (2022) Discovery and mechanistic study of thiazole-4-acylsulfonamide derivatives as potent and orally active ChemR23 inhibitors with a long-acting effect in cynomolgus monkeys. Bioorg Med Chem, 56: 116587. [PMID:35063894]
28. Issa ME, Muruganandan S, Ernst MC, Parlee SD, Zabel BA, Butcher EC, Sinal CJ, Goralski KB. (2012) Chemokine-like receptor 1 regulates skeletal muscle cell myogenesis. Am J Physiol, Cell Physiol, 302 (11): C1621-31. [PMID:22460713]
29. Joshi N, Johnson LL, Wei WQ, Abnet CC, Dong ZW, Taylor PR, Limburg PJ, Dawsey SM, Hawk ET, Qiao YL et al.. (2006) Gene expression differences in normal esophageal mucosa associated with regression and progression of mild and moderate squamous dysplasia in a high-risk Chinese population. Cancer Res, 66 (13): 6851-60. [PMID:16818663]
30. Kaur J, Adya R, Tan BK, Chen J, Randeva HS. (2010) Identification of chemerin receptor (ChemR23) in human endothelial cells: chemerin-induced endothelial angiogenesis. Biochem Biophys Res Commun, 391 (4): 1762-8. [PMID:20044979]
31. Kennedy AJ, Davenport AP. (2018) International Union of Basic and Clinical Pharmacology CIII: Chemerin Receptors CMKLR1 (Chemerin1) and GPR1 (Chemerin2) Nomenclature, Pharmacology, and Function. Pharmacol Rev, 70 (1): 174-196. [PMID:29279348]
32. Kennedy AJ, Yang P, Read C, Kuc RE, Yang L, Taylor EJ, Taylor CW, Maguire JJ, Davenport AP. (2016) Chemerin Elicits Potent Constrictor Actions via Chemokine-Like Receptor 1 (CMKLR1), not G-Protein-Coupled Receptor 1 (GPR1), in Human and Rat Vasculature. J Am Heart Assoc, 5 (10). [PMID:27742615]
33. Ko B, Jang Y, Kwak SH, You H, Kim JH, Lee JE, Park HD, Kim SK, Goddard 3rd WA, Han JH et al.. (2023) Discovery of 3-Phenyl Indazole-Based Novel Chemokine-like Receptor 1 Antagonists for the Treatment of Psoriasis. J Med Chem, 66 (21): 14564-14582. [PMID:37883692]
34. Luangsay S, Wittamer V, Bondue B, De Henau O, Rouger L, Brait M, Franssen JD, de Nadai P, Huaux F, Parmentier M. (2009) Mouse ChemR23 is expressed in dendritic cell subsets and macrophages, and mediates an anti-inflammatory activity of chemerin in a lung disease model. J Immunol, 183 (10): 6489-99. [PMID:19841182]
35. Maguire CA, Sapinoro R, Girgis N, Rodriguez-Colon SM, Ramirez SH, Williams J, Dewhurst S. (2006) Recombinant adenovirus type 5 vectors that target DC-SIGN, ChemR23 and alpha(v)beta3 integrin efficiently transduce human dendritic cells and enhance presentation of vectored antigens. Vaccine, 24 (5): 671-82. [PMID:16154247]
36. Methner A, Hermey G, Schinke B, Hermans-Borgmeyer I. (1997) A novel G protein-coupled receptor with homology to neuropeptide and chemoattractant receptors expressed during bone development. Biochem Biophys Res Commun, 233 (2): 336-42. [PMID:9144535]
37. Morehouse MG, Scheer BT, Deuel HJ. (1947) The effect of dietary fat level on the physical capacity of rats during undernutrition. Fed Proc, 6 (1): 415. [PMID:20343880]
38. Muruganandan S, Parlee SD, Rourke JL, Ernst MC, Goralski KB, Sinal CJ. (2011) Chemerin, a novel peroxisome proliferator-activated receptor gamma (PPARgamma) target gene that promotes mesenchymal stem cell adipogenesis. J Biol Chem, 286 (27): 23982-95. [PMID:21572083]
39. Muruganandan S, Roman AA, Sinal CJ. (2010) Role of chemerin/CMKLR1 signaling in adipogenesis and osteoblastogenesis of bone marrow stem cells. J Bone Miner Res, 25 (2): 222-34. [PMID:19929432]
40. Mårtensson UE, Bristulf J, Owman C, Olde B. (2005) The mouse chemerin receptor gene, mcmklr1, utilizes alternative promoters for transcription and is regulated by all-trans retinoic acid. Gene, 350 (1): 65-77. [PMID:15792532]
41. Mårtensson UE, Fenyö EM, Olde B, Owman C. (2006) Characterization of the human chemerin receptor--ChemR23/CMKLR1--as co-receptor for human and simian immunodeficiency virus infection, and identification of virus-binding receptor domains. Virology, 355 (1): 6-17. [PMID:16904155]
42. Mårtensson UE, Owman C, Olde B. (2004) Genomic organization and promoter analysis of the gene encoding the mouse chemoattractant-like receptor, CMKLR1. Gene, 328: 167-76. [PMID:15019996]
43. Ohira T, Arita M, Omori K, Recchiuti A, Van Dyke TE, Serhan CN. (2010) Resolvin E1 receptor activation signals phosphorylation and phagocytosis. J Biol Chem, 285 (5): 3451-61. [PMID:19906641]
44. Owman C, Lolait SJ, Santén S, Olde B. (1997) Molecular cloning and tissue distribution of cDNA encoding a novel chemoattractant-like receptor. Biochem Biophys Res Commun, 241 (2): 390-4. [PMID:9425281]
45. Parlee SD, Ernst MC, Muruganandan S, Sinal CJ, Goralski KB. (2010) Serum chemerin levels vary with time of day and are modified by obesity and tumor necrosis factor-{alpha}. Endocrinology, 151 (6): 2590-602. [PMID:20363880]
46. Parolini S, Santoro A, Marcenaro E, Luini W, Massardi L, Facchetti F, Communi D, Parmentier M, Majorana A, Sironi M, Tabellini G, Moretta A, Sozzani S. (2007) The role of chemerin in the colocalization of NK and dendritic cell subsets into inflamed tissues. Blood, 109 (9): 3625-32. [PMID:17202316]
47. Rama D, Esendagli G, Guc D. (2011) Expression of chemokine-like receptor 1 (CMKLR1) on J744A.1 macrophages co-cultured with fibroblast and/or tumor cells: modeling the influence of microenvironment. Cell Immunol, 271 (1): 134-40. [PMID:21752353]
48. Reverchon M, Cornuau M, Ramé C, Guerif F, Royère D, Dupont J. (2012) Chemerin inhibits IGF-1-induced progesterone and estradiol secretion in human granulosa cells. Hum Reprod, 27 (6): 1790-800. [PMID:22447628]
49. Rodriguez Parkitna J, Korostynski M, Kaminska-Chowaniec D, Obara I, Mika J, Przewlocka B, Przewlocki R. (2006) Comparison of gene expression profiles in neuropathic and inflammatory pain. J Physiol Pharmacol, 57 (3): 401-14. [PMID:17033093]
50. Roh SG, Song SH, Choi KC, Katoh K, Wittamer V, Parmentier M, Sasaki S. (2007) Chemerin--a new adipokine that modulates adipogenesis via its own receptor. Biochem Biophys Res Commun, 362 (4): 1013-8. [PMID:17767914]
51. Samson M, Edinger AL, Stordeur P, Rucker J, Verhasselt V, Sharron M, Govaerts C, Mollereau C, Vassart G, Doms RW, Parmentier M. (1998) ChemR23, a putative chemoattractant receptor, is expressed in monocyte-derived dendritic cells and macrophages and is a coreceptor for SIV and some primary HIV-1 strains. Eur J Immunol, 28 (5): 1689-700. [PMID:9603476]
52. Sell H, Laurencikiene J, Taube A, Eckardt K, Cramer A, Horrighs A, Arner P, Eckel J. (2009) Chemerin is a novel adipocyte-derived factor inducing insulin resistance in primary human skeletal muscle cells. Diabetes, 58 (12): 2731-40. [PMID:19720798]
53. Skrzeczyńska-Moncznik J, Stefańska A, Zabel BA, Kapińska-Mrowiecka M, Butcher EC, Cichy J. (2009) Chemerin and the recruitment of NK cells to diseased skin. Acta Biochim Pol, 56 (2): 355-60. [PMID:19543554]
54. Skrzeczyńska-Moncznik J, Wawro K, Stefańska A, Oleszycka E, Kulig P, Zabel BA, Sułkowski M, Kapińska-Mrowiecka M, Czubak-Macugowska M, Butcher EC, Cichy J. (2009) Potential role of chemerin in recruitment of plasmacytoid dendritic cells to diseased skin. Biochem Biophys Res Commun, 380 (2): 323-7. [PMID:19168032]
55. Southern C, Cook JM, Neetoo-Isseljee Z, Taylor DL, Kettleborough CA, Merritt A, Bassoni DL, Raab WJ, Quinn E, Wehrman TS et al.. (2013) Screening β-Arrestin Recruitment for the Identification of Natural Ligands for Orphan G-Protein-Coupled Receptors. J Biomol Screen, 18 (5): 599-609. [PMID:23396314]
56. Spiroglou SG, Kostopoulos CG, Varakis JN, Papadaki HH. (2010) Adipokines in periaortic and epicardial adipose tissue: differential expression and relation to atherosclerosis. J Atheroscler Thromb, 17 (2): 115-30. [PMID:20145358]
57. Suzuki Y, Yamashita R, Shirota M, Sakakibara Y, Chiba J, Mizushima-Sugano J, Nakai K, Sugano S. (2004) Sequence comparison of human and mouse genes reveals a homologous block structure in the promoter regions. Genome Res, 14 (9): 1711-8. [PMID:15342556]
58. Taylor MW, Tsukahara T, McClintick JN, Edenberg HJ, Kwo P. (2008) Cyclic changes in gene expression induced by Peg-interferon alfa-2b plus ribavirin in peripheral blood monocytes (PBMC) of hepatitis C patients during the first 10 weeks of treatment. J Transl Med, 6: 66. [PMID:18986530]
59. Uddin M, Levy BD. (2011) Resolvins: natural agonists for resolution of pulmonary inflammation. Prog Lipid Res, 50 (1): 75-88. [PMID:20887750]
60. Vermi W, Riboldi E, Wittamer V, Gentili F, Luini W, Marrelli S, Vecchi A, Franssen JD, Communi D, Massardi L, Sironi M, Mantovani A, Parmentier M, Facchetti F, Sozzani S. (2005) Role of ChemR23 in directing the migration of myeloid and plasmacytoid dendritic cells to lymphoid organs and inflamed skin. J Exp Med, 201 (4): 509-15. [PMID:15728234]
61. Wittamer V, Franssen JD, Vulcano M, Mirjolet JF, Le Poul E, Migeotte I, Brézillon S, Tyldesley R, Blanpain C, Detheux M, Mantovani A, Sozzani S, Vassart G, Parmentier M, Communi D. (2003) Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflammatory fluids. J Exp Med, 198 (7): 977-85. [PMID:14530373]
62. Wittamer V, Grégoire F, Robberecht P, Vassart G, Communi D, Parmentier M. (2004) The C-terminal nonapeptide of mature chemerin activates the chemerin receptor with low nanomolar potency. J Biol Chem, 279 (11): 9956-62. [PMID:14701797]
63. Wu X, Ye Y, Rosell R, Amos CI, Stewart DJ, Hildebrandt MA, Roth JA, Minna JD, Gu J, Lin J et al.. (2011) Genome-wide association study of survival in non-small cell lung cancer patients receiving platinum-based chemotherapy. J Natl Cancer Inst, 103 (10): 817-25. [PMID:21483023]
64. Yoshimura T, Oppenheim JJ. (2008) Chemerin reveals its chimeric nature. J Exp Med, 205 (10): 2187-90. [PMID:18809717]
65. Zabel BA, Nakae S, Zúñiga L, Kim JY, Ohyama T, Alt C, Pan J, Suto H, Soler D, Allen SJ, Handel TM, Song CH, Galli SJ, Butcher EC. (2008) Mast cell-expressed orphan receptor CCRL2 binds chemerin and is required for optimal induction of IgE-mediated passive cutaneous anaphylaxis. J Exp Med, 205 (10): 2207-20. [PMID:18794339]
66. Zabel BA, Ohyama T, Zuniga L, Kim JY, Johnston B, Allen SJ, Guido DG, Handel TM, Butcher EC. (2006) Chemokine-like receptor 1 expression by macrophages in vivo: regulation by TGF-beta and TLR ligands. Exp Hematol, 34 (8): 1106-14. [PMID:16863918]
67. Zabel BA, Silverio AM, Butcher EC. (2005) Chemokine-like receptor 1 expression and chemerin-directed chemotaxis distinguish plasmacytoid from myeloid dendritic cells in human blood. J Immunol, 174 (1): 244-51. [PMID:15611246]
68. Zhao RJ, Wang H. (2011) Chemerin/ChemR23 signaling axis is involved in the endothelial protection by K(ATP) channel opener iptakalim. Acta Pharmacol Sin, 32 (5): 573-80. [PMID:21516134]