Top ▲

COUP-TF2

Click here for help

Target not currently curated in GtoImmuPdb

Target id: 618

Nomenclature: COUP-TF2

Systematic Nomenclature: NR2F2

Family: 2F. COUP-TF-like receptors

Gene and Protein Information Click here for help
Species AA Chromosomal Location Gene Symbol Gene Name Reference
Human 414 15q26.2 NR2F2 nuclear receptor subfamily 2 group F member 2 15
Mouse 414 7 38.66 cM Nr2f2 nuclear receptor subfamily 2, group F, member 2 30
Rat 414 1q31 Nr2f2 nuclear receptor subfamily 2, group F, member 2 25
Previous and Unofficial Names Click here for help
ARP1 | COUPβ | COUP-TFII | SVP40 | NF-E3 | apolipoprotein A-I regulatory protein 1 | Aporp1 | EAR3 | ovalbumin upstream promoter beta nuclear receptor | TFCOUP2 | nuclear receptor subfamily 2
Database Links Click here for help
Alphafold
CATH/Gene3D
ChEMBL Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Selected 3D Structures Click here for help
Image of receptor 3D structure from RCSB PDB
Description:  COUP-TF2 - ligand binding domain (apo-structure)
PDB Id:  3CJW
Resolution:  1.48Å
Species:  Human
References:  12
Natural/Endogenous Ligands Click here for help
Comments: Orphan
DNA Binding Click here for help
Structure:  Homodimer, Heterodimer
HRE core sequence:  A/GGGTCA n AGGGTCA
Response element:  DR1, DR3, DR4, DR5, Palindrome, Other - see comments
DNA Binding Comments
Heterodimerization with RXR in solution is still a controversial issue. However, COUP-TFs readily form DNA-binding heterodimers with RXR. COUP-TFI is able to heterodimerize with COUP-TFII. Systematic comparison of the relative affinities of COUP-TFs for the various elements reveal that DR1 is the preferred element and then DR6, DR4, DR8, DR0 and DR11. Palindromic and inverted repeats are also recognised but with a lower affinity. In contrast, monomeric elements are not efficiently recognised by COUP-TFs. It has been demonstrated that COUP-TFs repress the hormonal induction of target genes by PPAR, VDR, TR, and RAR in transient transfection assays through direct competition with VDR, TR, and RAR for the available binding sites.
Co-binding Partners Click here for help
Name Interaction Effect Reference
V-erbA-related gene Physical 2
Retinoic acid receptor-α 20
Thyroid hormone receptor-α 20
Retinoid X receptor-α Physical COUP-TFs are able to sequester the common heterodimerization partner RXR and reduce the available concentrations of RXR. The loss of RXR indirectly decreases the DNA-binding affinity of TR, VDR, RAR, and PPAR and thereby interferes with the potential of this subgroup of receptors to transactivate their target genes. 4,11,42
Hepatocyte nuclear factor-4-α Physical, Functional COUP-TF interact both functionally and physically with the NRs HNF4. COUP-TFs have been shown to inhibit the transactivation of HNF4 due to mutually exclusive binding to the promoter of many genes. In addition, COUP-TF activates transcription through protein-protein interaction with DNA-bound factor, such as with HNF-4 in the HNF-1a gene promoter. Similar mechanism are observed for other transcription factor (Sp1). 13,32,38
ZFPM2 Physical, Functional The carboxyl terminus of the COUP-TF proteins interacts with multiple FOG2 zinc finger and FOG-2 serves as a co-repressor for COUP-TFII. 9
SMAD4 Physical, Functional COUP-TFII interacts with SMAD4 to modulate TGF-β signaling mediating prostate tumorigenesis. 29
PROX1 Physical, Functional COUP-TFII physically interacts with Prox1 to specify lymphatic endothelial cell fate. 19,35
RUNX2 Physical, Functional COUP-TFII interacts with Runx2 to repress Runx2 transcriptional activity in mesenchymal cell. 18,45
Main Co-regulators Click here for help
Name Activity Specific Ligand dependent AF-2 dependent Comments References
NCOR1 Co-repressor No No No 33
NCOR2 Co-repressor No No No 33
BCL11A Co-repressor No No No 1
BCL11B Co-activator No No Yes 1
SQSTM1 Co-activator Yes No Yes 25
ZFPM2 Co-repressor No No No 9
Main Target Genes Click here for help
Name Species Effect Technique Comments References
APOA1 Human Activated Transient transfection, Other COUP-TFs repressed the apolipoprotein A1 gene expression by interacting with RXR and HNF4. (shown in other species) 7,15,43
MHC Class I Mouse Repressed Transient transfection, EMSA COUP-TFs directly inhibits MHC Class I expression via interaction with the R2 promoter element and recruitment of the NCoR and HDACs. 14,34,49
CYP7A1 Human Activated Transient transfection, EMSA, Other COUP-TFII stimulates the transcriptional activity of the rat cholesterol 7a-hydroxylase (CYP7A) promoter by binding to the nucleotide sequence located between 74 and 54 (relative to the transcription start site), which contains a direct repeat of two hormone response element half-sites separated by 4 nucleotides. COUP-TFII also exerts a regulatory role of the CYP7A gene expression via its interaction with GR, HNF4 and RXR. 3,5-6,10,36-37
Arrestin Human Activated Transient transfection, EMSA In the arrestin gene promoter, a DR-7 element mediates the positive transcriptional effect of COUP-TF (seen in all species) 23
Angpt1 Mouse Activated ChIP, Transient transfection COUP-TFII stimulates the angiopoietin-1 gene expression in pericytes to promote neoangiogenesis. 27
NRP2 Human Activated ChIP, Transient transfection COUP-TFII positively regulates neuropilin-1 and neuropilin-2 expression through interaction with Sp1 transcriptional factor. Also seen in mouse. 19,22,41
Wnt10b Mouse Repressed ChIP, Transient transfection COUP-TFII exerts a negative regulatory role of the Wnt10b gene expression to control mesenchymal cell development. 21,45
KDR Human Repressed ChIP, Transient transfection In the VEGFR-2 gene promoter, a DR-2element mediates the negative transcriptional effect of COUP-TF. This is also seen in mouse. 28
Eya1 Mouse Activated ChIP, Transient transfection COUP-TFII directly regulates Eya1 expression by interacting with Sp1. 48
Main Target Genes Comments
Recently, growing evidences suggest critical roles of COUP-TF transcriptional factors in driving stem/progenitor cell self-renewal, lineage specification, differentiation, and cell identity in diverse tissue types. First, COUP-TFs are part of the regulatory circuitry maintaining embryonic stem cell properties. COUP-TFs profoundly interact with key pluripotency factors including Oct4, microRNA-302 and ploycomb repressor complex 2 (PRC2) to control stem cell reprogramming and differentiation [8,16,31]. Given the universal expression of COUP-TFII in the mesenchymal compartment in multiple organs, it is not surprising to find that COUP-TFII is indispensable for appropriate mesoderm tissue formation. Inactivation of COUP-TFII in mesenchymal progenitors favors osteoblast and myoblast differentiation, while impairing adipogenic and chrogenic programs [18,21,45]. Additionally, COUP-TFII is required for metanephric mesenchyme development as ablation of COUP-TFII in kidney precursor cells results in the absence of metanephric mesenchyme and the misexpression of key nephrogenic factors, including Eya1, Pax2, Six2 and Gdnf [48]. Moreover, COUP-TFII also controls lymphatic cell identity. Loss of COUP-TFII at early stage disrupts the formation of lymphatic endothelial cell (LEC) progenitors, and cause LEC identity switch as mutant LEC gain some features of blood endothelial cell [22]. Further studies demonstrate that COUP-TFII directly binds to a conserved site in the Prox1 regulatory region, and interaction between COUP-TFII and Prox1 is required to maintain Prox1 expression in LEC population [35]. Finally, COUP-TFII regulatory network specify atrial identity and cardiomyocyte-specific COUP-TFII deletion produces ventricularized atria by controlling the expression of atrial-ventricular identity genes such as Tbx5, Hey2, Irx4, MLC2v, MLC2a, and MLC1a [44].
Tissue Distribution Comments
In the mouse COUP-TFII gene generate a transcript of 4.5 kb found in all tissues examined. COUP-TFII expression is similar to the one of COUP-TFI in the sense that it exhibit a complex expression pattern in the CNS and a broad expression in other tissues. The beginning of the expression at 7.5 dpc is identical to the one of COUP-TFI. A segmented expression in the diencephalic neuromeres was also found but the specific set of neuromeres in which COUP-TFII are different, although overlapping with COUP-TFI. In the hindbrain, the specific rhombomeres in which the genes are expressed are also distinct. In the neural tube the expression is restricted to the motorneurons.The levels of COUP-TFII expression are in general higher than the one of COUP-TFI especially in salivary gland, lung, oesophagus, stomach, pancreas, kidney, prostate. It is also found at lower levels in testes, ovary, retina, skin, inner ear or limb bud. The expression in the mesenchymal portion of places were mesenchyme-epithelial interactions occurs was also found. In the adult the expression is also higher to the one of COUP-TFI in supraoptic nucleus. COUP-TFII was shown to be regulated by all-trans retinoic acid in the neural tube. In addition a regulation of COUP-TFII by Sonic hedgehog has been found by Tsai group [15,24].
Physiological Consequences of Altering Gene Expression Click here for help
COUP-TFII knock-out animal exhibit a lethal phenotype.
Species:  Mouse
Tissue: 
Technique:  Gene knockout
References:  17,26,39-40,47
Physiological Consequences of Altering Gene Expression Comments
Homozygous mutants die around embryonic day 10 whereas two-third of heterozygous animals die during the first weeks of life. Examination of the homozygous embryos show that they are growth retarded with severe haemorrhage and oedema just before death. Histological analysis revealed enlarged blood vessels, lack of normal heart development and malformed cardinal veins. The vascular system exhibit a decrease in the complexity of the microvasculature in the head and spine regions suggesting that vasculogenesis (i.e. de novo formation of blood vessels from mesodermal precursor cells) and vascular remodelling (conversion of the primary capillaries of the plexus into large and small vessels of the mature vasculature) are defective in COUP-TFII mutants. These defects are consistent with a need of COUP-TFII function in the mesenchymal compartments of the head, spine and heart. Molecular analysis revealed that the Angiopoietine 1 gene which is important for the development of both the vascular system and the heart is down regulated in mutant animals. All these data suggest that COUP-TF is required for the signalling between the endothelial and mesenchymal compartments. Heterozygous mice have growth and reproductive defects. Reproductive defect is due to reduced expression of enzymes important for progesterone synthesis in the ovary and defective decidual response in the uterus. In addition, COUP-TFII conditional mutants have defect in migration of myoblast precursor cells to the limb resulting in hypoplastic muscle in the limbs. Furthermore, conditional mutants have defect in stomach development resulting in both anterior-posterior and radial axis defect. Using the same conditional mutants, it was found that COUP-TFII is important for diaphragm development. Thus animals develop a hole in the left side of diaphragm resulting in the protrusion of stomach content to the thorasic chamber. Finally, deletion of COUP-TFII in the endothelial cells resulting in the vein to acquire artery characteristics. Conversely, over expression of COUP-TFII in endothelial cells resulting in the fusion of vein and artery into a vein like vessel. Therefore, COUP-TFII is important in determine the vein vs. artery identity.
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Nr2f2tm1Tsa Nr2f2tm1Tsa/Nr2f2tm1Tsa
either: 129S7/SvEvBrd or C57BL/6 or (involves: 129S7/SvEvBrd * C57BL/6 * ICR)
MGI:1352452  MP:0004784 abnormal anterior cardinal vein morphology PMID: 10215630 
Nr2f2tm2.1Tsa Nr2f2tm2.1Tsa/Nr2f2tm2.1Tsa
involves: 129S7/SvEvBrd * C57BL/6
MGI:1352452  MP:0001614 abnormal blood vessel morphology PMID: 15875024 
Nkx3-2+|Nkx3-2tm1(cre)Tsa|Nr2f2tm2.1Tsa Nkx3-2tm1(cre)Tsa/Nkx3-2+,Nr2f2tm2.1Tsa/Nr2f2tm2.1Tsa
involves: 129S7/SvEvBrd * C57BL/6
MGI:108015  MGI:1352452  MP:0003119 abnormal digestive system development PMID: 15829524 
Nkx3-2+|Nkx3-2tm1(cre)Tsa|Nr2f2tm2.1Tsa Nkx3-2tm1(cre)Tsa/Nkx3-2+,Nr2f2tm2.1Tsa/Nr2f2tm2.1Tsa
involves: 129S7/SvEvBrd * C57BL/6
MGI:108015  MGI:1352452  MP:0001046 abnormal enteric neuron morphology PMID: 15829524 
Nr2f2+|Nr2f2tm1Tsa Nr2f2tm1Tsa/Nr2f2+
involves: 129S7/SvEvBrd * C57BL/6
MGI:1352452  MP:0001927 abnormal estrous cycle PMID: 15890675 
Nr2f1tm2.1Mjts|Nr2f2tm2.1Tsa|Tg(rx3-cre)1Mjam Nr2f1tm2.1Mjts/Nr2f1tm2.1Mjts,Nr2f2tm2.1Tsa/Nr2f2tm2.1Tsa,Tg(rx3-cre)1Mjam/0
involves: 129S7/SvEvBrd
MGI:1352451  MGI:1352452  MGI:3665327  MP:0001286 abnormal eye development PMID: 20147377 
Nkx3-2+|Nkx3-2tm1(cre)Tsa|Nr2f2tm2.1Tsa Nkx3-2tm1(cre)Tsa/Nkx3-2+,Nr2f2tm2.1Tsa/Nr2f2tm2.1Tsa
involves: 129S7/SvEvBrd * C57BL/6
MGI:108015  MGI:1352452  MP:0004139 abnormal gastric parietal cell morphology PMID: 15829524 
Nr2f2+|Nr2f2tm1Vco|Tg(Ins2-cre)25Mgn Nr2f2tm1Vco/Nr2f2+,Tg(Ins2-cre)25Mgn/0
involves: 129S2/SvPas * 129X1/SvJ * C57BL/6 * DBA
MGI:1352452  MGI:2176225  MP:0002078 abnormal glucose homeostasis PMID: 15855320 
Nr2f2tm1Tsa Nr2f2tm1Tsa/Nr2f2tm1Tsa
either: 129S7/SvEvBrd or C57BL/6 or (involves: 129S7/SvEvBrd * C57BL/6 * ICR)
MGI:1352452  MP:0000270 abnormal heart tube morphology PMID: 10215630 
Nr2f2+|Nr2f2tm1Vco|Tg(Ins2-cre)25Mgn Nr2f2tm1Vco/Nr2f2+,Tg(Ins2-cre)25Mgn/0
involves: 129S2/SvPas * 129X1/SvJ * C57BL/6 * DBA
MGI:1352452  MGI:2176225  MP:0001547 abnormal lipid level PMID: 15855320 
Gt(ROSA)26Sor+|Gt(ROSA)26Sortm1Sor|Nr2f2tm2.1Tsa|Prox1+|Prox1tm3(cre/ERT2)Gco Gt(ROSA)26Sortm1Sor/Gt(ROSA)26Sor+,Nr2f2tm2.1Tsa/Nr2f2tm2.1Tsa,Prox1tm3(cre/ERT2)Gco/Prox1+
involves: 129S1/Sv * 129S4/SvJaeSor * 129S7/SvEvBrd * C57BL/6
MGI:104735  MGI:1352452  MGI:97772  MP:0001879 abnormal lymphatic vessel morphology PMID: 20360386 
Amhr2+|Amhr2tm3(cre)Bhr|Nr2f2tm2.1Tsa Amhr2tm3(cre)Bhr/Amhr2+,Nr2f2tm2.1Tsa/Nr2f2tm2.1Tsa
involves: 129S7/SvEvBrd
MGI:105062  MGI:1352452  MP:0004256 abnormal maternal decidual layer morphology PMID: 17404209 
Amhr2+|Amhr2tm3(cre)Bhr|Nr2f2tm2.1Tsa Amhr2tm3(cre)Bhr/Amhr2+,Nr2f2tm2.1Tsa/Nr2f2tm2.1Tsa
involves: 129S7/SvEvBrd
MGI:105062  MGI:1352452  MP:0008256 abnormal myometrium morphology PMID: 17404209 
Nr2f1tm2.1Mjts|Nr2f2tm2.1Tsa|Tg(rx3-cre)1Mjam Nr2f1tm2.1Mjts/Nr2f1tm2.1Mjts,Nr2f2tm2.1Tsa/Nr2f2tm2.1Tsa,Tg(rx3-cre)1Mjam/0
involves: 129S7/SvEvBrd
MGI:1352451  MGI:1352452  MGI:3665327  MP:0008259 abnormal optic disc morphology PMID: 20147377 
Nr2f1tm2.1Mjts|Nr2f2tm2.1Tsa|Tg(rx3-cre)1Mjam Nr2f1tm2.1Mjts/Nr2f1tm2.1Mjts,Nr2f2tm2.1Tsa/Nr2f2tm2.1Tsa,Tg(rx3-cre)1Mjam/0
involves: 129S7/SvEvBrd
MGI:1352451  MGI:1352452  MGI:3665327  MP:0004268 abnormal optic stalk morphology PMID: 20147377 
Nr2f2+|Nr2f2tm1Tsa Nr2f2tm1Tsa/Nr2f2+
involves: 129S7/SvEvBrd * C57BL/6
MGI:1352452  MP:0001126 abnormal ovary morphology PMID: 15890675 
Amhr2+|Amhr2tm3(cre)Bhr|Nr2f2tm2.1Tsa Amhr2tm3(cre)Bhr/Amhr2+,Nr2f2tm2.1Tsa/Nr2f2tm2.1Tsa
involves: 129S7/SvEvBrd
MGI:105062  MGI:1352452  MP:0001712 abnormal placenta development PMID: 17404209 
Amhr2+|Amhr2tm3(cre)Bhr|Nr2f2tm2.1Tsa Amhr2tm3(cre)Bhr/Amhr2+,Nr2f2tm2.1Tsa/Nr2f2tm2.1Tsa
involves: 129S7/SvEvBrd
MGI:105062  MGI:1352452  MP:0008803 abnormal placental labyrinth vasculature morphology PMID: 17404209 
Nr2f2tm1Tsa Nr2f2tm1Tsa/Nr2f2tm1Tsa
either: 129S7/SvEvBrd or C57BL/6 or (involves: 129S7/SvEvBrd * C57BL/6 * ICR)
MGI:1352452  MP:0004785 abnormal posterior cardinal vein morphology PMID: 10215630 
Nr2f1tm2.1Mjts|Nr2f2tm2.1Tsa|Tg(rx3-cre)1Mjam Nr2f1tm2.1Mjts/Nr2f1tm2.1Mjts,Nr2f2tm2.1Tsa/Nr2f2tm2.1Tsa,Tg(rx3-cre)1Mjam/0
involves: 129S7/SvEvBrd
MGI:1352451  MGI:1352452  MGI:3665327  MP:0005201 abnormal retinal pigment epithelium morphology PMID: 20147377 
Amhr2+|Amhr2tm3(cre)Bhr|Nr2f2tm2.1Tsa Amhr2tm3(cre)Bhr/Amhr2+,Nr2f2tm2.1Tsa/Nr2f2tm2.1Tsa
involves: 129S7/SvEvBrd
MGI:105062  MGI:1352452  MP:0008959 abnormal spongiotrophoblast cell morphology PMID: 17404209 
Amhr2+|Amhr2tm3(cre)Bhr|Nr2f2tm2.1Tsa Amhr2tm3(cre)Bhr/Amhr2+,Nr2f2tm2.1Tsa/Nr2f2tm2.1Tsa
involves: 129S7/SvEvBrd
MGI:105062  MGI:1352452  MP:0004244 abnormal spontaneous abortion rate PMID: 17404209 
Nkx3-2+|Nkx3-2tm1(cre)Tsa|Nr2f2tm2.1Tsa Nkx3-2tm1(cre)Tsa/Nkx3-2+,Nr2f2tm2.1Tsa/Nr2f2tm2.1Tsa
involves: 129S7/SvEvBrd * C57BL/6
MGI:108015  MGI:1352452  MP:0000471 abnormal stomach epithelium morphology PMID: 15829524 
Nkx3-2+|Nkx3-2tm1(cre)Tsa|Nr2f2tm2.1Tsa Nkx3-2tm1(cre)Tsa/Nkx3-2+,Nr2f2tm2.1Tsa/Nr2f2tm2.1Tsa
involves: 129S7/SvEvBrd * C57BL/6
MGI:108015  MGI:1352452  MP:0000473 abnormal stomach glandular epithelium morphology PMID: 15829524 
Nkx3-2+|Nkx3-2tm1(cre)Tsa|Nr2f2tm2.1Tsa Nkx3-2tm1(cre)Tsa/Nkx3-2+,Nr2f2tm2.1Tsa/Nr2f2tm2.1Tsa
involves: 129S7/SvEvBrd * C57BL/6
MGI:108015  MGI:1352452  MP:0000470 abnormal stomach morphology PMID: 15829524 
Amhr2+|Amhr2tm3(cre)Bhr|Nr2f2tm2.1Tsa Amhr2tm3(cre)Bhr/Amhr2+,Nr2f2tm2.1Tsa/Nr2f2tm2.1Tsa
involves: 129S7/SvEvBrd
MGI:105062  MGI:1352452  MP:0004014 abnormal uterine environment PMID: 17404209 
Nr2f2+|Nr2f2tm1Tsa Nr2f2tm1Tsa/Nr2f2+
involves: 129S7/SvEvBrd * C57BL/6
MGI:1352452  MP:0009085 abnormal uterine horn morphology PMID: 15890675 
Nr2f2tm1Tsa Nr2f2tm1Tsa/Nr2f2tm1Tsa
either: 129S7/SvEvBrd or C57BL/6 or (involves: 129S7/SvEvBrd * C57BL/6 * ICR)
MGI:1352452  MP:0002725 abnormal vein morphology PMID: 10215630 
Nr2f2tm2.1Tsa Nr2f2tm2.1Tsa/Nr2f2tm2.1Tsa
involves: 129S7/SvEvBrd * C57BL/6
MGI:1352452  MP:0002725 abnormal vein morphology PMID: 15875024 
Nr2f2+|Nr2f2tm1Tsa Nr2f2tm1Tsa/Nr2f2+
involves: 129S7/SvEvBrd * C57BL/6
MGI:1352452  MP:0009021 absent estrus PMID: 15890675 
Amhr2+|Amhr2tm3(cre)Bhr|Nr2f2tm2.1Tsa Amhr2tm3(cre)Bhr/Amhr2+,Nr2f2tm2.1Tsa/Nr2f2tm2.1Tsa
involves: 129S7/SvEvBrd
MGI:105062  MGI:1352452  MP:0003403 absent placental labyrinth PMID: 17404209 
Nr2f2tm1Tsa Nr2f2tm1Tsa/Nr2f2tm1Tsa
either: 129S7/SvEvBrd or C57BL/6 or (involves: 129S7/SvEvBrd * C57BL/6 * ICR)
MGI:1352452  MP:0000296 absent trabeculae carneae PMID: 10215630 
Nr2f1tm2.1Mjts|Nr2f2tm2.1Tsa|Tg(rx3-cre)1Mjam Nr2f1tm2.1Mjts/Nr2f1tm2.1Mjts,Nr2f2tm2.1Tsa/Nr2f2tm2.1Tsa,Tg(rx3-cre)1Mjam/0
involves: 129S7/SvEvBrd
MGI:1352451  MGI:1352452  MGI:3665327  MP:0005262 coloboma PMID: 20147377 
Nr2f1+|Nr2f1tm2.1Mjts|Nr2f2tm2.1Tsa|Tg(rx3-cre)1Mjam Nr2f1tm2.1Mjts/Nr2f1+,Nr2f2tm2.1Tsa/Nr2f2tm2.1Tsa,Tg(rx3-cre)1Mjam/0
involves: 129S7/SvEvBrd
MGI:1352451  MGI:1352452  MGI:3665327  MP:0005262 coloboma PMID: 20147377 
Nr2f1tm2.1Mjts|Nr2f2+|Nr2f2tm2.1Tsa|Tg(rx3-cre)1Mjam Nr2f1tm2.1Mjts/Nr2f1tm2.1Mjts,Nr2f2tm2.1Tsa/Nr2f2+,Tg(rx3-cre)1Mjam/0
involves: 129S7/SvEvBrd
MGI:1352451  MGI:1352452  MGI:3665327  MP:0005262 coloboma PMID: 20147377 
Nr2f2tm1Tsa Nr2f2tm1Tsa/Nr2f2tm1Tsa
either: 129S7/SvEvBrd or C57BL/6 or (involves: 129S7/SvEvBrd * C57BL/6 * ICR)
MGI:1352452  MP:0005602 decreased angiogenesis PMID: 10215630 
Nr2f2+|Nr2f2tm1Tsa Nr2f2tm1Tsa/Nr2f2+
either: 129S7/SvEvBrd or C57BL/6 or (involves: 129S7/SvEvBrd * C57BL/6 * ICR)
MGI:1352452  MP:0001265 decreased body size PMID: 10215630 
Nr2f2+|Nr2f2tm1Vco|Tg(Ins2-cre)25Mgn Nr2f2tm1Vco/Nr2f2+,Tg(Ins2-cre)25Mgn/0
involves: 129S2/SvPas * 129X1/SvJ * C57BL/6 * DBA
MGI:1352452  MGI:2176225  MP:0005560 decreased circulating glucose level PMID: 15855320 
Nr2f2+|Nr2f2tm1Tsa Nr2f2tm1Tsa/Nr2f2+
involves: 129S7/SvEvBrd * C57BL/6
MGI:1352452  MP:0005185 decreased circulating progesterone level PMID: 15890675 
Nr2f2+|Nr2f2tm1Vco|Tg(Ins2-cre)25Mgn Nr2f2tm1Vco/Nr2f2+,Tg(Ins2-cre)25Mgn/0
involves: 129S2/SvPas * 129X1/SvJ * C57BL/6 * DBA
MGI:1352452  MGI:2176225  MP:0005282 decreased fatty acid level PMID: 15855320 
Nr2f2+|Nr2f2tm1Vco|Tg(Ins2-cre)25Mgn Nr2f2tm1Vco/Nr2f2+,Tg(Ins2-cre)25Mgn/0
involves: 129S2/SvPas * 129X1/SvJ * C57BL/6 * DBA
MGI:1352452  MGI:2176225  MP:0003059 decreased insulin secretion PMID: 15855320 
Nr2f2+|Nr2f2tm1Tsa Nr2f2tm1Tsa/Nr2f2+
involves: 129S7/SvEvBrd * C57BL/6
MGI:1352452  MP:0001935 decreased litter size PMID: 15890675 
Nr2f2tm2.1Tsa|Rbpjtm1Hon|Tg(Tek-cre)1Ywa Nr2f2tm2.1Tsa/Nr2f2tm2.1Tsa,Rbpjtm1Hon/Rbpjtm1Hon,Tg(Tek-cre)1Ywa/0
involves: 129S1/Sv * 129S7/SvEvBrd * C57BL/6 * SJL
MGI:1352452  MGI:2450309  MGI:96522  MP:0010198 decreased lymphatic vessel endothelial cell number PMID: 20360386 
Nr2f2tm2.1Tsa|Tg(Tek-cre)1Ywa Nr2f2tm2.1Tsa/Nr2f2tm2.1Tsa,Tg(Tek-cre)1Ywa/0
involves: 129S1/Sv * 129S7/SvEvBrd * C57BL/6 * SJL
MGI:1352452  MGI:2450309  MP:0010198 decreased lymphatic vessel endothelial cell number PMID: 20360386 
Nr2f2+|Nr2f2tm1Tsa Nr2f2tm1Tsa/Nr2f2+
involves: 129S7/SvEvBrd * C57BL/6
MGI:1352452  MP:0002636 delayed vaginal opening PMID: 15890675 
Amhr2+|Amhr2tm3(cre)Bhr|Nr2f2tm2.1Tsa Amhr2tm3(cre)Bhr/Amhr2+,Nr2f2tm2.1Tsa/Nr2f2tm2.1Tsa
involves: 129S7/SvEvBrd
MGI:105062  MGI:1352452  MP:0001785 edema PMID: 17404209 
Gt(ROSA)26Sor+|Gt(ROSA)26Sortm1Sor|Nr2f2tm2.1Tsa|Prox1+|Prox1tm3(cre/ERT2)Gco Gt(ROSA)26Sortm1Sor/Gt(ROSA)26Sor+,Nr2f2tm2.1Tsa/Nr2f2tm2.1Tsa,Prox1tm3(cre/ERT2)Gco/Prox1+
involves: 129S1/Sv * 129S4/SvJaeSor * 129S7/SvEvBrd * C57BL/6
MGI:104735  MGI:1352452  MGI:97772  MP:0001785 edema PMID: 20360386 
Amhr2+|Amhr2tm3(cre)Bhr|Nr2f2tm2.1Tsa Amhr2tm3(cre)Bhr/Amhr2+,Nr2f2tm2.1Tsa/Nr2f2tm2.1Tsa
involves: 129S7/SvEvBrd
MGI:105062  MGI:1352452  MP:0008762 embryonic lethality PMID: 17404209 
Nr2f2tm2.1Tsa|Rbpjtm1Hon|Tg(Tek-cre)1Ywa Nr2f2tm2.1Tsa/Nr2f2tm2.1Tsa,Rbpjtm1Hon/Rbpjtm1Hon,Tg(Tek-cre)1Ywa/0
involves: 129S1/Sv * 129S7/SvEvBrd * C57BL/6 * SJL
MGI:1352452  MGI:2450309  MGI:96522  MP:0008762 embryonic lethality PMID: 20360386 
Nr2f2tm1Tsa Nr2f2tm1Tsa/Nr2f2tm1Tsa
either: 129S7/SvEvBrd or C57BL/6 or (involves: 129S7/SvEvBrd * C57BL/6 * ICR)
MGI:1352452  MP:0006207 embryonic lethality during organogenesis PMID: 10215630 
Nr2f2tm2.1Tsa Nr2f2tm2.1Tsa/Nr2f2tm2.1Tsa
involves: 129S7/SvEvBrd * C57BL/6
MGI:1352452  MP:0006207 embryonic lethality during organogenesis PMID: 15875024 
Nr2f2tm1Tsa Nr2f2tm1Tsa/Nr2f2tm1Tsa
either: 129S7/SvEvBrd or C57BL/6 or (involves: 129S7/SvEvBrd * C57BL/6 * ICR)
MGI:1352452  MP:0001914 hemorrhage PMID: 10215630 
Nr2f2+|Nr2f2tm1Tsa Nr2f2tm1Tsa/Nr2f2+
either: 129S7/SvEvBrd or C57BL/6 or (involves: 129S7/SvEvBrd * C57BL/6 * ICR)
MGI:1352452  MP:0001914 hemorrhage PMID: 10215630 
Nr2f2tm2.1Tsa Nr2f2tm2.1Tsa/Nr2f2tm2.1Tsa
involves: 129S7/SvEvBrd * C57BL/6
MGI:1352452  MP:0001914 hemorrhage PMID: 15875024 
Amhr2+|Amhr2tm3(cre)Bhr|Nr2f2tm2.1Tsa Amhr2tm3(cre)Bhr/Amhr2+,Nr2f2tm2.1Tsa/Nr2f2tm2.1Tsa
involves: 129S7/SvEvBrd
MGI:105062  MGI:1352452  MP:0001914 hemorrhage PMID: 17404209 
Amhr2+|Amhr2tm3(cre)Bhr|Nr2f2tm2.1Tsa Amhr2tm3(cre)Bhr/Amhr2+,Nr2f2tm2.1Tsa/Nr2f2tm2.1Tsa
involves: 129S7/SvEvBrd
MGI:105062  MGI:1352452  MP:0001729 impaired embryo implantation PMID: 17404209 
Nr2f2+|Nr2f2tm1Vco|Tg(Ins2-cre)25Mgn Nr2f2tm1Vco/Nr2f2+,Tg(Ins2-cre)25Mgn/0
involves: 129S2/SvPas * 129X1/SvJ * C57BL/6 * DBA
MGI:1352452  MGI:2176225  MP:0005293 impaired glucose tolerance PMID: 15855320 
Nr2f2tm1Tsa Nr2f2tm1Tsa/Nr2f2tm1Tsa
either: 129S7/SvEvBrd or C57BL/6 or (involves: 129S7/SvEvBrd * C57BL/6 * ICR)
MGI:1352452  MP:0001689 incomplete somite formation PMID: 10215630 
Nr2f2+|Nr2f2tm1Vco|Tg(Ins2-cre)25Mgn Nr2f2tm1Vco/Nr2f2+,Tg(Ins2-cre)25Mgn/0
involves: 129S2/SvPas * 129X1/SvJ * C57BL/6 * DBA
MGI:1352452  MGI:2176225  MP:0002079 increased circulating insulin level PMID: 15855320 
Nr2f2+|Nr2f2tm1Vco|Tg(Ins2-cre)25Mgn Nr2f2tm1Vco/Nr2f2+,Tg(Ins2-cre)25Mgn/0
involves: 129S2/SvPas * 129X1/SvJ * C57BL/6 * DBA
MGI:1352452  MGI:2176225  MP:0001552 increased circulating triglyceride level PMID: 15855320 
Nr2f2+|Nr2f2tm1Vco|Tg(Ins2-cre)25Mgn Nr2f2tm1Vco/Nr2f2+,Tg(Ins2-cre)25Mgn/0
involves: 129S2/SvPas * 129X1/SvJ * C57BL/6 * DBA
MGI:1352452  MGI:2176225  MP:0003058 increased insulin secretion PMID: 15855320 
Amhr2+|Amhr2tm3(cre)Bhr|Nr2f2tm2.1Tsa Amhr2tm3(cre)Bhr/Amhr2+,Nr2f2tm2.1Tsa/Nr2f2tm2.1Tsa
involves: 129S7/SvEvBrd
MGI:105062  MGI:1352452  MP:0009397 increased trophoblast giant cell number PMID: 17404209 
Nr2f2+|Nr2f2tm1Vco|Tg(Ins2-cre)25Mgn Nr2f2tm1Vco/Nr2f2+,Tg(Ins2-cre)25Mgn/0
involves: 129S2/SvPas * 129X1/SvJ * C57BL/6 * DBA
MGI:1352452  MGI:2176225  MP:0005331 insulin resistance PMID: 15855320 
Nr2f1tm2.1Mjts|Nr2f2tm2.1Tsa|Tg(rx3-cre)1Mjam Nr2f1tm2.1Mjts/Nr2f1tm2.1Mjts,Nr2f2tm2.1Tsa/Nr2f2tm2.1Tsa,Tg(rx3-cre)1Mjam/0
involves: 129S7/SvEvBrd
MGI:1352451  MGI:1352452  MGI:3665327  MP:0001297 microphthalmia PMID: 20147377 
Nr2f2tm1Vco Nr2f2tm1Vco/Nr2f2tm1Vco
involves: 129S2/SvPas * 129X1/SvJ * C57BL/6
MGI:1352452  MP:0002081 perinatal lethality PMID: 15855320 
Nr2f2+|Nr2f2tm1Tsa Nr2f2tm1Tsa/Nr2f2+
involves: 129S7/SvEvBrd * C57BL/6
MGI:1352452  MP:0001732 postnatal growth retardation PMID: 15890675 
Nr2f2+|Nr2f2tm1Tsa Nr2f2tm1Tsa/Nr2f2+
either: 129S7/SvEvBrd or C57BL/6 or (involves: 129S7/SvEvBrd * C57BL/6 * ICR)
MGI:1352452  MP:0002082 postnatal lethality PMID: 10215630 
Nr2f2tm1Vco|Tg(Ins2-cre)25Mgn Nr2f2tm1Vco/Nr2f2tm1Vco,Tg(Ins2-cre)25Mgn/0
involves: 129S2/SvPas * 129X1/SvJ * C57BL/6 * DBA
MGI:1352452  MGI:2176225  MP:0002080 prenatal lethality PMID: 15855320 
Nr2f2+|Nr2f2tm1Tsa Nr2f2tm1Tsa/Nr2f2+
involves: 129S7/SvEvBrd * C57BL/6
MGI:1352452  MP:0009011 prolonged diestrus PMID: 15890675 
Nr2f2+|Nr2f2tm1Tsa Nr2f2tm1Tsa/Nr2f2+
involves: 129S7/SvEvBrd * C57BL/6
MGI:1352452  MP:0009020 prolonged metestrus PMID: 15890675 
Nr2f2+|Nr2f2tm1Tsa Nr2f2tm1Tsa/Nr2f2+
involves: 129S7/SvEvBrd * C57BL/6
MGI:1352452  MP:0001923 reduced female fertility PMID: 15890675 
Nr2f2tm2.1Tsa Nr2f2tm2.1Tsa/Nr2f2tm2.1Tsa
involves: 129S7/SvEvBrd
MGI:1352452  MP:0001923 reduced female fertility PMID: 17404209 
Amhr2+|Amhr2tm3(cre)Bhr|Nr2f2tm2.1Tsa Amhr2tm3(cre)Bhr/Amhr2+,Nr2f2tm2.1Tsa/Nr2f2tm2.1Tsa
involves: 129S7/SvEvBrd
MGI:105062  MGI:1352452  MP:0001923 reduced female fertility PMID: 17404209 
Amhr2+|Amhr2tm3(cre)Bhr|Nr2f2tm2.1Tsa Amhr2tm3(cre)Bhr/Amhr2+,Nr2f2tm2.1Tsa/Nr2f2tm2.1Tsa
involves: 129S7/SvEvBrd
MGI:105062  MGI:1352452  MP:0009089 short uterine horn PMID: 17404209 
Nkx3-2+|Nkx3-2tm1(cre)Tsa|Nr2f2tm2.1Tsa Nkx3-2tm1(cre)Tsa/Nkx3-2+,Nr2f2tm2.1Tsa/Nr2f2tm2.1Tsa
involves: 129S7/SvEvBrd * C57BL/6
MGI:108015  MGI:1352452  MP:0002691 small stomach PMID: 15829524 
Clinically-Relevant Mutations and Pathophysiology Click here for help
Disease:  Congenital heart defects, multiple types, 4; CHTD4
Synonyms: Complete atrioventricular canal [Orphanet: ORPHA1329]
Partial atrioventricular canal [Orphanet: ORPHA1330]
OMIM: 615779
Orphanet: ORPHA1330, ORPHA1329
Clinically-Relevant Mutations and Pathophysiology Comments
Some CDH patients were shown to have COUP-TFII deletion and conditional mouse mutants has CDH [46].

References

Show »

1. Avram D, Fields A, Pretty On Top K, Nevrivy DJ, Ishmael JE, Leid M. (2000) Isolation of a novel family of C(2)H(2) zinc finger proteins implicated in transcriptional repression mediated by chicken ovalbumin upstream promoter transcription factor (COUP-TF) orphan nuclear receptors. J Biol Chem, 275 (14): 10315-22. [PMID:10744719]

2. Avram D, Ishmael JE, Nevrivy DJ, Peterson VJ, Lee SH, Dowell P, Leid M. (1999) Heterodimeric interactions between chicken ovalbumin upstream promoter-transcription factor family members ARP1 and ear2. J Biol Chem, 274 (20): 14331-6. [PMID:10318855]

3. Chen J, Cooper AD, Levy-Wilson B. (1999) Hepatocyte nuclear factor 1 binds to and transactivates the human but not the rat CYP7A1 promoter. Biochem Biophys Res Commun, 260 (3): 829-34. [PMID:10403849]

4. Cooney AJ, Tsai SY, O'Malley BW, Tsai MJ. (1992) Chicken ovalbumin upstream promoter transcription factor (COUP-TF) dimers bind to different GGTCA response elements, allowing COUP-TF to repress hormonal induction of the vitamin D3, thyroid hormone, and retinoic acid receptors. Mol Cell Biol, 12 (9): 4153-63. [PMID:1324415]

5. Crestani M, Sadeghpour A, Stroup D, Galli G, Chiang JY. (1998) Transcriptional activation of the cholesterol 7alpha-hydroxylase gene (CYP7A) by nuclear hormone receptors. J Lipid Res, 39 (11): 2192-200. [PMID:9799805]

6. De Martino MU, Alesci S, Chrousos GP, Kino T. (2004) Interaction of the glucocorticoid receptor and the chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII): implications for the actions of glucocorticoids on glucose, lipoprotein, and xenobiotic metabolism. Ann N Y Acad Sci, 1024: 72-85. [PMID:15265774]

7. Ge R, Rhee M, Malik S, Karathanasis SK. (1994) Transcriptional repression of apolipoprotein AI gene expression by orphan receptor ARP-1. J Biol Chem, 269 (18): 13185-92. [PMID:8175747]

8. Hu S, Wilson KD, Ghosh Z, Han L, Wang Y, Lan F, Ransohoff KJ, Burridge P, Wu JC. (2013) MicroRNA-302 increases reprogramming efficiency via repression of NR2F2. Stem Cells, 31 (2): 259-68. [PMID:23136034]

9. Huggins GS, Bacani CJ, Boltax J, Aikawa R, Leiden JM. (2001) Friend of GATA 2 physically interacts with chicken ovalbumin upstream promoter-TF2 (COUP-TF2) and COUP-TF3 and represses COUP-TF2-dependent activation of the atrial natriuretic factor promoter. J Biol Chem, 276 (30): 28029-36. [PMID:11382775]

10. Kang S, Spann NJ, Hui TY, Davis RA. (2003) ARP-1/COUP-TF II determines hepatoma phenotype by acting as both a transcriptional repressor of microsomal triglyceride transfer protein and an inducer of CYP7A1. J Biol Chem, 278 (33): 30478-86. [PMID:12777384]

11. Kliewer SA, Umesono K, Heyman RA, Mangelsdorf DJ, Dyck JA, Evans RM. (1992) Retinoid X receptor-COUP-TF interactions modulate retinoic acid signaling. Proc Natl Acad Sci USA, 89 (4): 1448-52. [PMID:1311101]

12. Kruse SW, Suino-Powell K, Zhou XE, Kretschman JE, Reynolds R, Vonrhein C, Xu Y, Wang L, Tsai SY, Tsai MJ, Xu HE. (2008) Identification of COUP-TFII orphan nuclear receptor as a retinoic acid-activated receptor. PLoS Biol, 6 (9): e227. [PMID:18798693]

13. Ktistaki E, Talianidis I. (1997) Chicken ovalbumin upstream promoter transcription factors act as auxiliary cofactors for hepatocyte nuclear factor 4 and enhance hepatic gene expression. Mol Cell Biol, 17 (5): 2790-7. [PMID:9111350]

14. Kushner DB, Pereira DS, Liu X, Graham FL, Ricciardi RP. (1996) The first exon of Ad12 E1A excluding the transactivation domain mediates differential binding of COUP-TF and NF-kappa B to the MHC class I enhancer in transformed cells. Oncogene, 12 (1): 143-51. [PMID:8552385]

15. Ladias JA, Karathanasis SK. (1991) Regulation of the apolipoprotein AI gene by ARP-1, a novel member of the steroid receptor superfamily. Science, 251 (4993): 561-5. [PMID:1899293]

16. Laursen KB, Mongan NP, Zhuang Y, Ng MM, Benoit YD, Gudas LJ. (2013) Polycomb recruitment attenuates retinoic acid-induced transcription of the bivalent NR2F1 gene. Nucleic Acids Res, 41 (13): 6430-43. [PMID:23666625]

17. Lee CT, Li L, Takamoto N, Martin JF, Demayo FJ, Tsai MJ, Tsai SY. (2004) The nuclear orphan receptor COUP-TFII is required for limb and skeletal muscle development. Mol Cell Biol, 24 (24): 10835-43. [PMID:15572686]

18. Lee KN, Jang WG, Kim EJ, Oh SH, Son HJ, Kim SH, Franceschi R, Zhang XK, Lee SE, Koh JT. (2012) Orphan nuclear receptor chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) protein negatively regulates bone morphogenetic protein 2-induced osteoblast differentiation through suppressing runt-related gene 2 (Runx2) activity. J Biol Chem, 287 (23): 18888-99. [PMID:22493443]

19. Lee S, Kang J, Yoo J, Ganesan SK, Cook SC, Aguilar B, Ramu S, Lee J, Hong YK. (2009) Prox1 physically and functionally interacts with COUP-TFII to specify lymphatic endothelial cell fate. Blood, 113 (8): 1856-9. [PMID:18815287]

20. Leng X, Cooney AJ, Tsai SY, Tsai MJ. (1996) Molecular mechanisms of COUP-TF-mediated transcriptional repression: evidence for transrepression and active repression. Mol Cell Biol, 16 (5): 2332-40. [PMID:8628300]

21. Li L, Xie X, Qin J, Jeha GS, Saha PK, Yan J, Haueter CM, Chan L, Tsai SY, Tsai MJ. (2009) The nuclear orphan receptor COUP-TFII plays an essential role in adipogenesis, glucose homeostasis, and energy metabolism. Cell Metab, 9 (1): 77-87. [PMID:19117548]

22. Lin FJ, Chen X, Qin J, Hong YK, Tsai MJ, Tsai SY. (2010) Direct transcriptional regulation of neuropilin-2 by COUP-TFII modulates multiple steps in murine lymphatic vessel development. J Clin Invest, 120 (5): 1694-707. [PMID:20364082]

23. Lu XP, Salbert G, Pfahl M. (1994) An evolutionary conserved COUP-TF binding element in a neural-specific gene and COUP-TF expression patterns support a major role for COUP-TF in neural development. Mol Endocrinol, 8 (12): 1774-88. [PMID:7708064]

24. Lutz B, Kuratani S, Cooney AJ, Wawersik S, Tsai SY, Eichele G, Tsai MJ. (1994) Developmental regulation of the orphan receptor COUP-TF II gene in spinal motor neurons. Development, 120 (1): 25-36. [PMID:8119130]

25. Marcus SL, Winrow CJ, Capone JP, Rachubinski RA. (1996) A p56(lck) ligand serves as a coactivator of an orphan nuclear hormone receptor. J Biol Chem, 271 (44): 27197-200. [PMID:8910285]

26. Pereira FA, Qiu Y, Zhou G, Tsai MJ, Tsai SY. (1999) The orphan nuclear receptor COUP-TFII is required for angiogenesis and heart development. Genes Dev, 13 (8): 1037-49. [PMID:10215630]

27. Qin J, Chen X, Xie X, Tsai MJ, Tsai SY. (2010) COUP-TFII regulates tumor growth and metastasis by modulating tumor angiogenesis. Proc Natl Acad Sci USA, 107 (8): 3687-92. [PMID:20133706]

28. Qin J, Chen X, Yu-Lee LY, Tsai MJ, Tsai SY. (2010) Nuclear receptor COUP-TFII controls pancreatic islet tumor angiogenesis by regulating vascular endothelial growth factor/vascular endothelial growth factor receptor-2 signaling. Cancer Res, 70 (21): 8812-21. [PMID:20978203]

29. Qin J, Wu SP, Creighton CJ, Dai F, Xie X, Cheng CM, Frolov A, Ayala G, Lin X, Feng XH et al.. (2013) COUP-TFII inhibits TGF-β-induced growth barrier to promote prostate tumorigenesis. Nature, 493 (7431): 236-40. [PMID:23201680]

30. Qiu Y, Cooney AJ, Kuratani S, DeMayo FJ, Tsai SY, Tsai MJ. (1994) Spatiotemporal expression patterns of chicken ovalbumin upstream promoter-transcription factors in the developing mouse central nervous system: evidence for a role in segmental patterning of the diencephalon. Proc Natl Acad Sci USA, 91 (10): 4451-5. [PMID:8183930]

31. Rosa A, Brivanlou AH. (2011) A regulatory circuitry comprised of miR-302 and the transcription factors OCT4 and NR2F2 regulates human embryonic stem cell differentiation. EMBO J, 30 (2): 237-48. [PMID:21151097]

32. Schaeffer E, Guillou F, Part D, Zakin MM. (1993) A different combination of transcription factors modulates the expression of the human transferrin promoter in liver and Sertoli cells. J Biol Chem, 268 (31): 23399-408. [PMID:8226864]

33. Shibata H, Nawaz Z, Tsai SY, O'Malley BW, Tsai MJ. (1997) Gene silencing by chicken ovalbumin upstream promoter-transcription factor I (COUP-TFI) is mediated by transcriptional corepressors, nuclear receptor-corepressor (N-CoR) and silencing mediator for retinoic acid receptor and thyroid hormone receptor (SMRT). Mol Endocrinol, 11 (6): 714-24. [PMID:9171235]

34. Smirnov DA, Hou S, Liu X, Claudio E, Siebenlist UK, Ricciardi RP. (2001) Coup-TFII is up-regulated in adenovirus type 12 tumorigenic cells and is a repressor of MHC class I transcription. Virology, 284 (1): 13-9. [PMID:11352663]

35. Srinivasan RS, Geng X, Yang Y, Wang Y, Mukatira S, Studer M, Porto MP, Lagutin O, Oliver G. (2010) The nuclear hormone receptor Coup-TFII is required for the initiation and early maintenance of Prox1 expression in lymphatic endothelial cells. Genes Dev, 24 (7): 696-707. [PMID:20360386]

36. Stroup D, Chiang JY. (2000) HNF4 and COUP-TFII interact to modulate transcription of the cholesterol 7alpha-hydroxylase gene (CYP7A1). J Lipid Res, 41 (1): 1-11. [PMID:10627496]

37. Stroup D, Crestani M, Chiang JY. (1997) Orphan receptors chicken ovalbumin upstream promoter transcription factor II (COUP-TFII) and retinoid X receptor (RXR) activate and bind the rat cholesterol 7alpha-hydroxylase gene (CYP7A). J Biol Chem, 272 (15): 9833-9. [PMID:9092518]

38. Sugiyama T, Wang JC, Scott DK, Granner DK. (2000) Transcription activation by the orphan nuclear receptor, chicken ovalbumin upstream promoter-transcription factor I (COUP-TFI). Definition of the domain involved in the glucocorticoid response of the phosphoenolpyruvate carboxykinase gene. J Biol Chem, 275 (5): 3446-54. [PMID:10652338]

39. Takamoto N, Kurihara I, Lee K, Demayo FJ, Tsai MJ, Tsai SY. (2005) Haploinsufficiency of chicken ovalbumin upstream promoter transcription factor II in female reproduction. Mol Endocrinol, 19 (9): 2299-308. [PMID:15890675]

40. Takamoto N, You LR, Moses K, Chiang C, Zimmer WE, Schwartz RJ, DeMayo FJ, Tsai MJ, Tsai SY. (2005) COUP-TFII is essential for radial and anteroposterior patterning of the stomach. Development, 132 (9): 2179-89. [PMID:15829524]

41. Tang K, Xie X, Park JI, Jamrich M, Tsai S, Tsai MJ. (2010) COUP-TFs regulate eye development by controlling factors essential for optic vesicle morphogenesis. Development, 137 (5): 725-34. [PMID:20147377]

42. Tran P, Zhang XK, Salbert G, Hermann T, Lehmann JM, Pfahl M. (1992) COUP orphan receptors are negative regulators of retinoic acid response pathways. Mol Cell Biol, 12 (10): 4666-76. [PMID:1328857]

43. Widom RL, Rhee M, Karathanasis SK. (1992) Repression by ARP-1 sensitizes apolipoprotein AI gene responsiveness to RXR alpha and retinoic acid. Mol Cell Biol, 12 (8): 3380-9. [PMID:1321332]

44. Wu SP, Cheng CM, Lanz RB, Wang T, Respress JL, Ather S, Chen W, Tsai SJ, Wehrens XH, Tsai MJ et al.. (2013) Atrial identity is determined by a COUP-TFII regulatory network. Dev Cell, 25 (4): 417-26. [PMID:23725765]

45. Xie X, Qin J, Lin SH, Tsai SY, Tsai MJ. (2011) Nuclear receptor chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) modulates mesenchymal cell commitment and differentiation. Proc Natl Acad Sci USA, 108 (36): 14843-8. [PMID:21873211]

46. You LR, Lin FJ, Lee CT, DeMayo FJ, Tsai MJ, Tsai SY. (2005) Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity. Nature, 435 (7038): 98-104. [PMID:15875024]

47. You LR, Takamoto N, Yu CT, Tanaka T, Kodama T, Demayo FJ, Tsai SY, Tsai MJ. (2005) Mouse lacking COUP-TFII as an animal model of Bochdalek-type congenital diaphragmatic hernia. Proc Natl Acad Sci USA, 102 (45): 16351-6. [PMID:16251273]

48. Yu CT, Tang K, Suh JM, Jiang R, Tsai SY, Tsai MJ. (2012) COUP-TFII is essential for metanephric mesenchyme formation and kidney precursor cell survival. Development, 139 (13): 2330-9. [PMID:22669823]

49. Zhao B, Hou S, Ricciardi RP. (2003) Chromatin repression by COUP-TFII and HDAC dominates activation by NF-kappaB in regulating major histocompatibility complex class I transcription in adenovirus tumorigenic cells. Virology, 306 (1): 68-76. [PMID:12620799]

Contributors

Show »

How to cite this page