Top ▲
Target not currently curated in GtoImmuPdb
Target id: 387
Nomenclature: KCa5.1
Family: Calcium- and sodium-activated potassium channels (KCa, KNa)
Gene and Protein Information | |||||||
Species | TM | P Loops | AA | Chromosomal Location | Gene Symbol | Gene Name | Reference |
Human | 7 | 0 | 1149 | 8p11.23 | KCNU1 | potassium calcium-activated channel subfamily U member 1 | 6 |
Mouse | 7 | 0 | 1121 | 8 A2 | Kcnu1 | potassium channel, subfamily U, member 1 | 5 |
Rat | 6 | 1 | 1113 | 16q12.4 | Kcnu1 | potassium calcium-activated channel subfamily U member 1 | 2 |
Previous and Unofficial Names |
Kcnma3 | KCNMC1 | Slo3 | potassium channel |
Database Links | |
Alphafold | A8MYU2 (Hs), O54982 (Mm) |
Ensembl Gene | ENSG00000215262 (Hs), ENSMUSG00000031576 (Mm), ENSRNOG00000014741 (Rn) |
Entrez Gene | 157855 (Hs), 16532 (Mm), 680912 (Rn) |
Human Protein Atlas | ENSG00000215262 (Hs) |
KEGG Gene | hsa:157855 (Hs), mmu:16532 (Mm), rno:680912 (Rn) |
OMIM | 615215 (Hs) |
Pharos | A8MYU2 (Hs) |
RefSeq Nucleotide | NM_001031836 (Hs), NM_008432 (Mm) |
RefSeq Protein | NP_001027006 (Hs), NP_032458 (Mm) |
UniProtKB | A8MYU2 (Hs), O54982 (Mm) |
Wikipedia | KCNU1 (Hs) |
Functional Characteristics | |
Sperm pH-regulated K+ current, KSPER |
Ion Selectivity and Conductance | ||||||
|
Voltage Dependence | ||||||||||||||||||||||
|
Download all structure-activity data for this target as a CSV file
Activators | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | View all chemical structures | Click column headers to sort | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Activator Comments | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Increase in (-OH) or pH can modulate mSlo3 activation: When expressed in the Xenopus oocyte expression system, mSlo3 cRNA produced currents that were sensitive to both pH and voltage. Currents are sensitive to intracellular pH. Currents were small or absent at a pH of 7.1 or lower, whereas raising pH (to >= 7.5) resulted in sharp increases in channel activity. The effect of changing pH was shown to be completely and repeatedly reversible [5,11]. |
Channel Blockers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | View all chemical structures | Click column headers to sort | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
View species-specific channel blocker tables |
Tissue Distribution | ||||||||
|
||||||||
|
||||||||
|
Physiological Functions | ||||||||
|
Phenotypes, Alleles and Disease Models | Mouse data from MGI | ||||||||||||||||||||||||||||||||||||
|
1. Brenker C, Zhou Y, Müller A, Echeverry FA, Trötschel C, Poetsch A, Xia XM, Bönigk W, Lingle CJ, Kaupp UB et al.. (2014) The Ca2+-activated K+ current of human sperm is mediated by Slo3. Elife, 3: e01438. [PMID:24670955]
2. Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, Scherer S, Scott G, Steffen D, Worley KC, Burch PE et al.. (2004) Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature, 428 (6982): 493-521. [PMID:15057822]
3. Navarro B, Kirichok Y, Clapham DE. (2007) KSper, a pH-sensitive K+ current that controls sperm membrane potential. Proc Natl Acad Sci USA, 104 (18): 7688-92. [PMID:17460039]
4. Santi CM, Martínez-López P, de la Vega-Beltrán JL, Butler A, Alisio A, Darszon A, Salkoff L. (2010) The SLO3 sperm-specific potassium channel plays a vital role in male fertility. FEBS Lett, 584 (5): 1041-6. [PMID:20138882]
5. Schreiber M, Wei A, Yuan A, Gaut J, Saito M, Salkoff L. (1998) Slo3, a novel pH-sensitive K+ channel from mammalian spermatocytes. J Biol Chem, 273 (6): 3509-16. [PMID:9452476]
6. Strausberg RL, Feingold EA, Grouse LH, Derge JG, Klausner RD, Collins FS, Wagner L, Shenmen CM, Schuler GD, Altschul SF et al.. (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci USA, 99 (26): 16899-903. [PMID:12477932]
7. Sánchez-Carranza O, Torres-Rodríguez P, Darszon A, Treviño CL, López-González I. (2015) Pharmacology of hSlo3 channels and their contribution in the capacitation-associated hyperpolarization of human sperm. Biochem Biophys Res Commun, 466 (3): 554-9. [PMID:26381170]
8. Tang QY, Zhang Z, Xia XM, Lingle CJ. (2010) Block of mouse Slo1 and Slo3 K+ channels by CTX, IbTX, TEA, 4-AP and quinidine. Channels (Austin), 4 (1): 22-41. [PMID:19934650]
9. Wrighton DC, Muench SP, Lippiat JD. (2015) Mechanism of inhibition of mouse Slo3 (KCa 5.1) potassium channels by quinine, quinidine and barium. Br J Pharmacol, 172 (17): 4355-63. [PMID:26045093]
10. Zeng XH, Yang C, Kim ST, Lingle CJ, Xia XM. (2011) Deletion of the Slo3 gene abolishes alkalization-activated K+ current in mouse spermatozoa. Proc Natl Acad Sci USA, 108 (14): 5879-84. [PMID:21427226]
11. Zhang X, Zeng X, Lingle CJ. (2006) Slo3 K+ channels: voltage and pH dependence of macroscopic currents. J Gen Physiol, 128 (3): 317-36. [PMID:16940555]
12. Zhang X, Zeng X, Xia XM, Lingle CJ. (2006) pH-regulated Slo3 K+ channels: properties of unitary currents. J Gen Physiol, 128 (3): 301-15. [PMID:16940554]