Top ▲

IP receptor

Click here for help

Immunopharmacology Ligand  Target has curated data in GtoImmuPdb

Target id: 345

Nomenclature: IP receptor

Family: Prostanoid receptors

Gene and Protein Information Click here for help
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 386 19q13.32 PTGIR prostaglandin I2 receptor 9,49
Mouse 7 415 7 9.15 cM Ptgir prostaglandin I receptor (IP) 51
Rat 7 416 1q21 Ptgir prostaglandin I2 receptor 59
Previous and Unofficial Names Click here for help
prostanoid IP receptor | prostacyclin receptor | prostaglandin I2 receptor | prostaglandin I2 (prostacyclin) receptor (IP)
Database Links Click here for help
Specialist databases
GPCRdb pi2r_human (Hs), pi2r_mouse (Mm), pi2r_rat (Rn)
Other databases
Alphafold
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Natural/Endogenous Ligands Click here for help
PGD2
PGE1
PGE2
PGF
PGI2
Comments: PGI2 is the principal endogenous agonist
Potency order of endogenous ligands
PGI2 >> PGE1 > PGD2, PGF > thromboxane A2

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
taprostene Small molecule or natural product Hs Partial agonist 9.1 pKd 76
pKd 9.1 (Kd 7.69x10-10 M) [76]
[3H]iloprost Small molecule or natural product Ligand is labelled Ligand is radioactive Rn Full agonist 8.9 pKd 59
pKd 8.9 [59]
[3H]iloprost Small molecule or natural product Ligand is labelled Ligand is radioactive Hs Full agonist 7.7 – 9.0 pKd 1,9,76-77
pKd 7.7 – 9.0 (Kd 2x10-8 – 1x10-9 M) [1,9,76-77]
[3H]iloprost Small molecule or natural product Ligand is labelled Ligand is radioactive Mm Full agonist 8.3 pKd 51
pKd 8.3 [51]
esuberaprost Small molecule or natural product Primary target of this compound Hs Agonist 7.9 pKd 34
pKd 7.9 (Kd 1.3x10-8 M) [34]
FK-788 Small molecule or natural product Hs Full agonist 8.1 pKi 23
pKi 8.1 [23]
iloprost Small molecule or natural product Approved drug Click here for species-specific activity table Immunopharmacology Ligand Mm Full agonist 8.0 pKi 36
pKi 8.0 [36]
cicaprost Small molecule or natural product Click here for species-specific activity table Immunopharmacology Ligand Mm Full agonist 8.0 pKi 36
pKi 8.0 [36]
PGI2 Small molecule or natural product Approved drug Click here for species-specific activity table Ligand is endogenous in the given species Hs Agonist 7.8 pKi 62
pKi 7.8 (Ki 1.585x10-8 M) [62]
cicaprost Small molecule or natural product Click here for species-specific activity table Immunopharmacology Ligand Hs Full agonist 7.8 pKi 1
pKi 7.8 [1]
isocarbacyclin Small molecule or natural product Click here for species-specific activity table Mm Full agonist 7.8 pKi 36
pKi 7.8 [36]
beraprost Small molecule or natural product Mm Full agonist 7.8 pKi 36
pKi 7.8 [36]
iloprost Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Immunopharmacology Ligand Hs Full agonist 7.5 – 8.0 pKi 1,77
pKi 7.5 – 8.0 [1,77]
beraprost Small molecule or natural product Rn Agonist 7.7 pKi 39
pKi 7.7 (Ki 1.9x10-8 M) [39]
MRE-269 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 7.7 pKi 6,39
pKi 7.7 (Ki 2x10-8 M) [6,39]
PGE1 Small molecule or natural product Approved drug Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Mm Full agonist 7.5 pKi 36
pKi 7.5 [36]
treprostinil Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 7.5 pKi 76
pKi 7.5 [76]
beraprost Small molecule or natural product Click here for species-specific activity table Hs Agonist 7.4 pKi 39
pKi 7.4 (Ki 3.9x10-8 M) [39]
ONO-1301 Small molecule or natural product Mm Full agonist 7.3 pKi 36
pKi 7.3 [36]
FR181157 Small molecule or natural product Hs Full agonist 7.3 pKi 68
pKi 7.3 [68]
carbacyclin Small molecule or natural product Click here for species-specific activity table Mm Full agonist 7.0 pKi 36
pKi 7.0 [36]
PGE1 Small molecule or natural product Approved drug Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Hs Full agonist 6.5 – 6.8 pKi 42,64
pKi 6.5 – 6.8 (Ki 3.18x10-7 – 1.5x10-7 M) [42,64]
MRE-269 Small molecule or natural product Ligand has a PDB structure Rn Full agonist 6.7 pKi 39
pKi 6.7 (Ki 2.2x10-7 M) [39]
selexipag Small molecule or natural product Approved drug Hs Agonist 6.6 pKi 39
pKi 6.6 (Ki 2.6x10-7 M) [39]
carbacyclin Small molecule or natural product Click here for species-specific activity table Hs Full agonist 6.5 – 6.6 pKi 1
pKi 6.5 – 6.6 [1]
selexipag Small molecule or natural product Approved drug Rn Agonist 5.7 pKi 39
pKi 5.7 (Ki 2.1x10-6 M) [39]
butaprost (free acid form) Small molecule or natural product Click here for species-specific activity table Hs Full agonist 4.3 pKi 1
pKi 4.3 [1]
U46619 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Immunopharmacology Ligand Hs Full agonist 4.2 pKi 1
pKi 4.2 [1]
treprostinil Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 8.7 pEC50 74,76
pEC50 8.7 [74,76]
AFP-07 Small molecule or natural product Hs Full agonist 8.5 pIC50 12
pIC50 8.5 (IC50 3.16x10-9 M) [12]
TEI-9063 Small molecule or natural product Hs Full agonist 8.5 pIC50 31
pIC50 8.5 [31]
BMY 45778 Small molecule or natural product Hs Full agonist 8.0 pIC50 31
pIC50 8.0 (IC50 1x10-8 M) [31]
taprostene Small molecule or natural product Hs Full agonist 6.9 pIC50 31
pIC50 6.9 [31]
EP 157 Small molecule or natural product Hs Full agonist 4.9 – 5.7 pIC50 3
pIC50 4.9 – 5.7 (IC50 1.12x10-5 – 2.03x10-6 M) [3]
View species-specific agonist tables
Agonist Comments
References [12,31] use human platelet preparations instead of transfected cells.

Stable analogues of prostacyclin (e.g. iloprost, carbacyclin, AFP-07) often show potent EP1 agonist and modest EP3 agonism; cicaprost is the most selective IP agonist [15,40]. Treprostinil has high affinity for the DP1 and EP2 receptors with pKi values of 8.36 and 8.44 respectively [76]. IP receptor agonism is generated by the introduction of a diaryl-heteroatomic unit into PGH analogues (e.g. EP-157) and other n-alkylcarboxylic acids (BMY-45778, ONO-1301, MRE-269) often designated as 'non-prostanoid prostacyclin mimetics' [32,43]. MRE 269 is the biologically-active metabolite of the pro-drug, NS304 (ACT-293987) which has the INN selexipag.
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
CAY10441 Small molecule or natural product Hs Antagonist 8.2 – 9.0 pA2 8,52
pA2 8.2 – 9.0 [8,52]
RO3244794 Small molecule or natural product Hs Antagonist 8.5 pA2 8
pA2 8.5 [8]
RO3244794 Small molecule or natural product Hs Antagonist 9.1 – 9.5 pKB 80-81
pKB 9.1 – 9.5 [80-81]
TG6-129 Small molecule or natural product Click here for species-specific activity table Immunopharmacology Ligand Hs Antagonist 6.7 pKB 18
pKB 6.7 (KB 1.99x10-7 M) [18]
CAY10441 Small molecule or natural product Hs Antagonist 8.7 pKi 8
pKi 8.7 [8]
RO3244794 Small molecule or natural product Hs Antagonist 6.9 pKi 8
pKi 6.9 [8]
BAY-73-1449 Small molecule or natural product Hs Antagonist >10.0 pIC50 7
pIC50 >10.0 (IC50 <1x10-10 M) [7]
Antagonist Comments
RO-1138452 has similar pA2 values (8.1 - 8.4) for human, guinea-pig and rabbit IP receptors [33]. However, it also has moderately high affinity for imidazoline I2 and PAF receptors [8]. RO-3244794 appears to be more specific [8]. RO-1138452 may behave as a pseudo-irreversible antagonist [5,52].
Allosteric Modulator Comments
A positive modulator for the human IP receptor has been reported (the [R] enantiomer of 1,2,3,4-tetrahydroisoquinoline derivative IPPAM-1) [83].
Immunopharmacology Comments
Although primarily recognised for vasodilatory and antihypertensive action in pulmonary arterial hypertension (PAH) the importance of PGI2 as an immunomodulatory agent has been investigated more recently. PGI2 regulates both the innate and adaptive immune systems and its effects are thought to be mainly anti-inflammatory or immunosuppressive, which may have implications for clinical use. Note also that the prostacyclin analog, cicaprost, exhibits potent anti-inflammatory activity in human primary immune cells [72]. Papers have appeared on immune responses modulation by PGI2 via IP signaling [87], as well on PGI2 promoting in vivo Th17 differentiation, with possible clinical implications for the use of PGI2 and its analogs in PAH treatment [86].
Immuno Process Associations
Immuno Process:  Inflammation
Primary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gs family Adenylyl cyclase stimulation
References:  51,60
Secondary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gi/Go family
Gq/G11 family
Adenylyl cyclase inhibition
Phospholipase C stimulation
Comments:  Gq signalling has been reported in heterologous expression systems but it is unclear whether this coupling occurs widely in native cells or tissues [44].
References:  44,60
Tissue Distribution Click here for help
Airway smooth muscle cells.
Species:  Human
Technique:  RT-PCR.
References:  14
Basophils.
Species:  Human
Technique:  Radioligand binding.
References:  70
Aorta, lung, atrium, ventricle, kidney.
Species:  Human
Technique:  Northern blotting.
References:  49
Kidney > lung, liver > skeletal muscle, heart.
Species:  Human
Technique:  Northern blotting.
References:  9
Thymus > spleen > heart > lung.
Species:  Mouse
Technique:  Northern blotting.
References:  51
Kidney: medullary thick ascending limb.
Species:  Rat
Technique:  In situ hybridisation and RT-PCR.
References:  27
CNS: dorsal root ganglion neurons.
Species:  Rat
Technique:  RT-PCR.
References:  47
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays Click here for help
Measurement of cAMP levels in CHO cells transfected with the mouse IP receptor.
Species:  Mouse
Tissue:  CHO cells.
Response measured:  Stimulation of cAMP accumulation.
References:  51
Measurement of PI metabolite formation in CHO cells transfected with the mouse IP receptor.
Species:  Mouse
Tissue:  CHO cells.
Response measured:  Stimulation of PI hydrolysis.
References:  51
Measurement of cAMP levels in adult rat cardiomyocytes endogenously expressing the IP receptor.
Species:  Rat
Tissue:  Cardiomyocytes.
Response measured:  Stimulation of cAMP accumulation.
References:  57
Measurement of cAMP and substance P levels in cultured rat dorsal root ganglion neurons endogenously expressing the IP receptor.
Species:  Rat
Tissue:  Cultured dorsal root ganglion neurons.
Response measured:  Stimulation of cAMP accumulation and substance P release.
References:  47
Measurement of cAMP levels in Xenopus oocytes transfected with the human IP receptor and the cystic fibrosis transmembrane conductance regulator (a cAMP-activated Cl- channel).
Species:  Human
Tissue:  Xenopus oocytes.
Response measured:  Stimulation of cAMP accumulation.
References:  9,20
Measurement of cAMP levels in human platelets endogenously expressing the IP receptor.
Species:  Human
Tissue:  Platelets.
Response measured:  Stimulation of cAMP accumulation.
References:  61
Measurement of cAMP levels in HEL cells endogenously expressing the IP receptor.
Species:  Human
Tissue:  HEL cells.
Response measured:  Stimulation of cAMP accumulation.
References:  16
Measurement of Ca2+ levels in human erythroleukemia (HEL) cells endogenously expressing the IP receptor.
Species:  Human
Tissue:  HEL cells.
Response measured:  Increase in Ca2+ concentration.
References:  16
Measurement of CRE-dependent transcription and augmentation of GRE-dependent transcription in cells endogenously expressing the IP receptor
Species:  Human
Tissue:  BEAS-2B airway epithelial cells.
Response measured:  Activation of CRE and GRE luciferase reporter constructs.
References:  5,80-81
Measurement of cAMP in dorsal root ganglion neurons and UMR 108 cells endogenously expressing the IP receptor.
Species:  Rat
Tissue:  Dorsal root ganglion neurons and UMR 108 osteosarcoma cells.
Response measured:  Stimulation of cAMP accumulation.
References:  48
Measurement of cAMP levels in HEK-293 cells transfected with the human IP receptor. This study directly compares iloprost and treprostinil binding.
Species:  Human
Tissue:  HEK-293 cells transfected with the human IP receptor.
Response measured:  Stimulation of cAMP accumulation.
References:  76
Measurement of cAMP levels in COS-7 cells transfected with the human IP receptor.
Species:  Human
Tissue:  COS-7 cells.
Response measured:  Stimulation of cAMP accumulation.
References:  49
Physiological Functions Click here for help
Inhibition of platelet aggregation.
Species:  Human
Tissue:  Platelets.
References:  4,61
Inhibition of platelet aggregation.
Species:  Rat
Tissue:  Platelets.
References:  4,61
Antihypertrophy.
Species:  Rat
Tissue:  Cardiomyocytes.
References:  57
Relaxation of bronchial smooth muscle.
Species:  Human
Tissue:  Bronchial preparations.
References:  24,53
Augmentation of glucocorticoid-induced gene expression
Species:  Human
Tissue:  Airway epithelial cells.
References:  81
Inhibition of chemokine release.
Species:  Human
Tissue:  Airway epithelial cells.
References:  5
Sensitisation of sensory neurons.
Species:  Rat
Tissue:  Dorsal root ganglion neurons.
References:  48
Inhibition of chemokine/cytokine release.
Species:  Mouse
Tissue:  Th1 and Th2 cells.
References:  85
Relaxation of pulmonary and venous arterial smooth muscle.
Species:  Human
Tissue:  Pulmonary vascular preparations.
References:  6,24,71
Relaxation of rat pulmonary smooth muscle.
Species:  Rat
Tissue:  Pulmonary arterial and venous preparations.
References:  54
Physiological Consequences of Altering Gene Expression Click here for help
IP receptor knockout mice exhibit reduced inflammatory and pain responses and increased susceptibility to thrombosis.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  45
IP receptor knockout mice exhibit reduced inflammatory nociception.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  69
IP receptor knockout mice exhibit increased cardiomyocyte and cardiac hypertrophy and increased cardiac fibrosis.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  21
IP receptor knockout mice exhibit increased allergic inflammation in airways and skin, as well as increased capillary pemeability and increased IgE and IgG production.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  66
IP knockout mice exhibit enhanced atherogenesis.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  37
Injury-induced vascular proliferation and platelet activation are enhanced in mice that are genetically deficient in the IP receptor.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  13
Cardiac injury upon post-ischemic reperfusion was worsened in mice lacking the IP receptor.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  82
IP knockout mice develop more severe pulmonary hypertension and vascular remodeling after chronic hypoxic exposure, when compared to the wild-type.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  26
IP1 receptor deficient mice exhibited significant reduction in arthritis scores compared to wild-type mice.
Species:  Mouse
Tissue:  Knee joint.
Technique:  Gene targeting in embryonic stem cells.
References:  25
In sensitized mice, prolonged allergen exposure increases pulmonary eosinophil and lymphocyte burden, Th2 cytokines and ovalbumin-specific immunoglobulin IgE and IgG1 in serum that is significantly enhanced in animals lacking the IP1 receptor.
Species:  Mouse
Tissue:  Lung and T-lymphocytes
Technique:  Gene targeting in embryonic stem cells.
References:  46
IP-deficient mice are more susceptible to respiratory syncytial virus-induced illness.
Species:  Mouse
Tissue:  Respiratory tract.
Technique:  Gene targeting in embryonic stem cells.
References:  22
Th1 cell differentiation in a model of contact hypersensitivity is inhibited in IP receptor knockout mice.
Species:  Mouse
Tissue:  T-lymphocytes.
Technique:  Gene targeting in embryonic stem cells.
References:  50
IP receptor-deficient mice have impaired Th17 differentiation and delayed onset of experimental autoimmune encephalomyelitis.
Species:  Mouse
Tissue:  Th17 T-lymphocytes and CNS.
Technique:  Gene targeting in embryonic stem cells.
References:  86
IP receptor deficiency inhibits recruitment of endothelial progenitor cells and accelerates vascular remodelling in wire injury-mediated neointimal hyperplasia.
Species:  Mouse
Tissue:  Endothelial progenitor cells and femoral artery.
Technique:  Gene targeting in embryonic stem cells.
References:  35
IP receptor-deficient mice develop salt-sensitive hypertension, cardiac hypertrophy, and cardiac fibrosis.
Species:  Mouse
Tissue:  Myocardium, vascular smooth muscle.
Technique:  Gene targeting in embryonic stem cells.
References:  11,17
IP receptor inactivation promotes anatomical and functional damage following ischemic stroke.
Species:  Mouse
Tissue:  Middle cerebral artery.
Technique:  Gene targeting in embryonic stem cells.
References:  58
IP receptor deletion aggravates hippocampal neuronal loss after bilateral common carotid artery occlusion.
Species:  Mouse
Tissue:  Brain.
Technique:  Gene targeting in embryonic stem cells.
References:  75
IP receptor deletion inhibits the development of IL-17-producing γδ T cells.
Species:  Mouse
Tissue:  Thymus and lungs during allergic inflammation.
Technique:  Gene targeting in embryonic stem cells.
References:  30
IP receptor deletion attenuates zymosan-induced pleurisy.
Species:  Mouse
Tissue:  Pleural cavity.
Technique:  Gene targeting in embryonic stem cells.
References:  84
CCL17-induced chemotaxis of CD4+ Th2 T-cells is unaffected in cells harvested from IP receptor deficient mice compared to wild type mice.
Species:  Mouse
Tissue:  CD4+ Th2 T-cells.
Technique:  Gene targeting in embryonic stem cells.
References:  29
Neuronal cell loss after brain trauma is enhanced in IP receptor deficient mice compared to wild type animals.
Species:  Mouse
Tissue:  Brain.
Technique:  Gene targeting in embryonic stem cells.
References:  41
Migration and cell fusion are attenuated in myoblasts harvested from IP receptor-deficient mice compared to wild type animals.
Species:  Mouse
Tissue:  Skeletal muscle.
Technique:  Gene targeting in embryonic stem cells.
References:  10
Ischemia/reperfusion-induced gastric lesions are aggravated in IP receptor-deficient mice.
Species:  Mouse
Tissue:  Stomach.
Technique:  Gene targeting in embryonic stem cells.
References:  38
Mice deficient in the IP receptor are protected against experimental osteoarthritis and rheumatoid arthritis
Species:  Mouse
Tissue:  Knee joint.
Technique:  Gene targeting in embryonic stem cells.
References:  56
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Ptgirtm1Sna Ptgirtm1Sna/Ptgirtm1Sna
involves: 129P2/OlaHsd * C57BL/6
MGI:99535  MP:0002551 abnormal blood coagulation PMID: 9262402 
Ptgirtm1Sna Ptgirtm1Sna/Ptgirtm1Sna
involves: 129P2/OlaHsd * C57BL/6
MGI:99535  MP:0000249 abnormal blood vessel physiology PMID: 11964481 
Ptgirtm1Sna Ptgirtm1Sna/Ptgirtm1Sna
involves: 129P2/OlaHsd * C57BL/6
MGI:99535  MP:0001544 abnormal cardiovascular system physiology PMID: 11964481 
Ptgirtm1Sna Ptgirtm1Sna/Ptgirtm1Sna
involves: 129P2/OlaHsd * C57BL/6
MGI:99535  MP:0005464 abnormal platelet physiology PMID: 11964481 
Ptgirtm1Sna Ptgirtm1Sna/Ptgirtm1Sna
involves: 129P2/OlaHsd * C57BL/6
MGI:99535  MP:0009818 abnormal thromboxane level PMID: 11964481 
Ptgirtm1Sna Ptgirtm1Sna/Ptgirtm1Sna
involves: 129P2/OlaHsd * C57BL/6
MGI:99535  MP:0005087 decreased acute inflammation PMID: 9262402 
Ptgirtm1Sna Ptgirtm1Sna/Ptgirtm1Sna
involves: 129P2/OlaHsd * C57BL/6
MGI:99535  MP:0009815 decreased prostaglandin level PMID: 9262402 
Ptgirtm1Sna Ptgirtm1Sna/Ptgirtm1Sna
involves: 129P2/OlaHsd * C57BL/6
MGI:99535  MP:0008531 increased chemical nociceptive threshold PMID: 9262402 
Ptgirtm1Sna Ptgirtm1Sna/Ptgirtm1Sna
involves: 129P2/OlaHsd * C57BL/6
MGI:99535  MP:0002080 prenatal lethality PMID: 9262402 
Ptgirtm1Sna Ptgirtm1Sna/Ptgirtm1Sna
involves: 129P2/OlaHsd * C57BL/6
MGI:99535  MP:0005048 thrombosis PMID: 16614756  9262402 
Ptgirtm1Sna Ptgirtm1Sna/Ptgirtm1Sna
involves: 129P2/OlaHsd * C57BL/6
MGI:99535  MP:0005413 vascular restenosis PMID: 11964481 
Biologically Significant Variants Click here for help
Type:  Single nucleotide polymorphisms
Species:  Human
Description:  Coronary artery occlusion.
References:  63
Type:  Single nucleotide polymorphisms
Species:  Human
Description:  R212C; enhances cardiovascular disease progression if risk factors co-exist.
References:  2,55
Type:  Single nucleotide polymorphisms
Species:  Human
Description:  IP1 variants including R77C, L104R, M113T, R212H, R212C, R215C, R279C, I293N have impaired cAMP signalling.
References:  63,65
General Comments
Human IP forms homo-oligomers via disulfide bonds, which might be essential for receptor trafficking to the cell surface [19]. The IP receptor was the first to be described to form heterodimers, most interestingly with its physiologic opponent, the TP receptor, leading to unexpected TP-mediated cAMP formation [28,78-79].

Pharmacological evidence for a second IP receptor, denoted IP2, in the central nervous system [67,73] and in the BEAS-2B human airway epithelial cell line [80] is available. This receptor is selectively activated by 15R-17,18,19,20-tetranor-16-m-tolyl-isocarbacyclin (15R-TIC) and 15R-Deoxy 17,18,19,20-tetranor-16-m-tolyl-isocarbacyclin (15-deoxy-TIC). However, molecular biological evidence for the IP2 subtype is currently lacking.

References

Show »

1. Abramovitz M, Adam M, Boie Y, Carrière M, Denis D, Godbout C, Lamontagne S, Rochette C, Sawyer N, Tremblay NM et al.. (2000) The utilization of recombinant prostanoid receptors to determine the affinities and selectivities of prostaglandins and related analogs. Biochim Biophys Acta, 1483 (2): 285-93. [PMID:10634944]

2. Arehart E, Stitham J, Asselbergs FW, Douville K, MacKenzie T, Fetalvero KM, Gleim S, Kasza Z, Rao Y, Martel L et al.. (2008) Acceleration of cardiovascular disease by a dysfunctional prostacyclin receptor mutation: potential implications for cyclooxygenase-2 inhibition. Circ Res, 102 (8): 986-93. [PMID:18323528]

3. Armstrong RA, Jones RL, MacDermot J, Wilson NH. (1986) Prostaglandin endoperoxide analogues which are both thromboxane receptor antagonists and prostacyclin mimetics. Br J Pharmacol, 87 (3): 543-51. [PMID:3026540]

4. Armstrong RA, Lawrence RA, Jones RL, Wilson NH, Collier A. (1989) Functional and ligand binding studies suggest heterogeneity of platelet prostacyclin receptors. Br J Pharmacol, 97: 657-668. [PMID:2474350]

5. Ayer LM, Wilson SM, Traves SL, Proud D, Giembycz MA. (2008) 4,5-Dihydro-1H-imidazol-2-yl)-[4-(4-isopropoxy-benzyl)-phenyl]-amine (RO1138452) is a selective, pseudo-irreversible orthosteric antagonist at the prostacyclin (IP)-receptor expressed by human airway epithelial cells: IP-receptor-mediated inhibition of CXCL9 and CXCL10 release. J Pharmacol Exp Ther, 324 (2): 815-26. [PMID:17962517]

6. Benyahia C, Boukais K, Gomez I, Silverstein A, Clapp L, Fabre A, Danel C, Leséche G, Longrois D, Norel X. (2013) A comparative study of PGI2 mimetics used clinically on the vasorelaxation of human pulmonary arteries and veins, role of the DP-receptor. Prostaglandins Other Lipid Mediat, 107: 48-55. [PMID:23850788]

7. Bexis S, McCormick PA, Docherty JR. (2008) Vascular actions of the prostacyclin receptor antagonist BAY 73-1449 in the portal hypertensive rat. Eur J Pharmacol, 590 (1-3): 322-6. [PMID:18603238]

8. Bley KR, Bhattacharya A, Daniels DV, Gever J, Jahangir A, O'Yang C, Smith S, Srinivasan D, Ford AP, Jett MF. (2006) RO1138452 and RO3244794: characterization of structurally distinct, potent and selective IP (prostacyclin) receptor antagonists. Br J Pharmacol, 147 (3): 335-45. [PMID:16331286]

9. Boie Y, Rushmore TH, Darmon-Goodwin A, Grygorczyk R, Slipetz DM, Metters KM, Abramovitz M. (1994) Cloning and expression of a cDNA for the human prostanoid IP receptor. J Biol Chem, 269 (16): 12173-8. [PMID:7512962]

10. Bondesen BA, Jones KA, Glasgow WC, Pavlath GK. (2007) Inhibition of myoblast migration by prostacyclin is associated with enhanced cell fusion. FASEB J, 21 (12): 3338-45. [PMID:17488951]

11. Chan EC, Dusting GJ, Guo N, Peshavariya HM, Taylor CJ, Dilley R, Narumiya S, Jiang F. (2010) Prostacyclin receptor suppresses cardiac fibrosis: role of CREB phosphorylation. J Mol Cell Cardiol, 49 (2): 176-85. [PMID:20403362]

12. Chang CS, Negishi M, Nakano T, Morizawa Y, Matsumura Y, Ichikawa A. (1997) 7,7-Difluoroprostacyclin derivative, AFP-07, a highly selective and potent agonist for the prostacyclin receptor. Prostaglandins, 53 (2): 83-90. [PMID:9112287]

13. Cheng Y, Austin SC, Rocca B, Koller BH, Coffman TM, Grosser T, Lawson JA, FitzGerald GA. (2002) Role of prostacyclin in the cardiovascular response to thromboxane A2. Science, 296 (5567): 539-41. [PMID:11964481]

14. Clarke DL, Belvisi MG, Smith SJ, Hardaker E, Yacoub MH, Meja KK, Newton R, Slater DM, Giembycz MA. (2005) Prostanoid receptor expression by human airway smooth muscle cells and regulation of the secretion of granulocyte colony-stimulating factor. Am J Physiol Lung Cell Mol Physiol, 288 (2): L238-50. [PMID:15640521]

15. Dong YJ, Jones RL, Wilson NH. (1986) Prostaglandin E receptor subtypes in smooth muscle: agonist activities of stable prostacyclin analogues. Br J Pharmacol, 87 (1): 97-107. [PMID:2420404]

16. Feoktistov I, Breyer RM, Biaggioni I. (1997) Prostanoid receptor with a novel pharmacological profile in human erythroleukemia cells. Biochem Pharmacol, 54 (8): 917-26. [PMID:9354592]

17. Francois H, Athirakul K, Howell D, Dash R, Mao L, Kim HS, Rockman HA, Fitzgerald GA, Koller BH, Coffman TM. (2005) Prostacyclin protects against elevated blood pressure and cardiac fibrosis. Cell Metab, 2 (3): 201-7. [PMID:16154102]

18. Ganesh T, Jiang J, Shashidharamurthy R, Dingledine R. (2013) Discovery and characterization of carbamothioylacrylamides as EP2 selective antagonists. ACS Med Chem Lett, 4 (7): 616-621. [PMID:23914286]

19. Giguère V, Gallant MA, de Brum-Fernandes AJ, Parent JL. (2004) Role of extracellular cysteine residues in dimerization/oligomerization of the human prostacyclin receptor. Eur J Pharmacol, 494 (1): 11-22. [PMID:15194446]

20. Grygorczyk R, Abramovitz M, Boie Y, Bastien L, Adam M. (1995) Detection of adenylate cyclase-coupled receptors in Xenopus oocytes by coexpression with cystic fibrosis transmembrane conductance regulator. Anal Biochem, 227: 27-31. [PMID:7545356]

21. Hara A, Yuhki K, Fujino T, Yamada T, Takayama K, Kuriyama S, Takahata O, Karibe H, Okada Y, Xiao CY et al.. (2005) Augmented cardiac hypertrophy in response to pressure overload in mice lacking the prostaglandin I2 receptor. Circulation, 112 (1): 84-92. [PMID:15983244]

22. Hashimoto K, Graham BS, Geraci MW, FitzGerald GA, Egan K, Zhou W, Goleniewska K, O'Neal JF, Morrow JD, Durbin RK et al.. (2004) Signaling through the prostaglandin I2 receptor IP protects against respiratory syncytial virus-induced illness. J Virol, 78 (19): 10303-9. [PMID:15367596]

23. Hattori K, Tanaka A, Okitsu O, Tabuchi S, Taniguchi K, Nishio M, Koyama S, Higaki M, Seki J, Sakane K. (2005) Discovery of diphenylcarbamate derivatives as highly potent and selective IP receptor agonists: orally active prostacyclin mimetics. Part 3. Bioorg Med Chem Lett, 15 (12): 3091-5. [PMID:15914004]

24. Haye-Legrand I, Bourdillat B, Labat C, Cerrina J, Norel X, Benveniste J, Brink C. (1987) Relaxation of isolated human pulmonary muscle preparations with prostacyclin (PGI2) and its analogs. Prostaglandins, 33 (6): 845-54. [PMID:2445003]

25. Honda T, Segi-Nishida E, Miyachi Y, Narumiya S. (2006) Prostacyclin-IP signaling and prostaglandin E2-EP2/EP4 signaling both mediate joint inflammation in mouse collagen-induced arthritis. J Exp Med, 203 (2): 325-35. [PMID:16446378]

26. Hoshikawa Y, Voelkel NF, Gesell TL, Moore MD, Morris KG, Alger LA, Narumiya S, Geraci MW. (2001) Prostacyclin receptor-dependent modulation of pulmonary vascular remodeling. Am J Respir Crit Care Med, 164 (2): 314-8. [PMID:11463607]

27. Hébert RL, O'Connor T, Neville C, Burns KD, Laneuville O, Peterson LN. (1998) Prostanoid signaling, localization, and expression of IP receptors in rat thick ascending limb cells. Am J Physiol, 275 (6): F904-14. [PMID:9843907]

28. Ibrahim S, McCartney A, Markosyan N, Smyth EM. (2013) Heterodimerization with the prostacyclin receptor triggers thromboxane receptor relocation to lipid rafts. Arterioscler Thromb Vasc Biol, 33 (1): 60-6. [PMID:23162015]

29. Jaffar Z, Ferrini ME, Buford MC, Fitzgerald GA, Roberts K. (2007) Prostaglandin I2-IP signaling blocks allergic pulmonary inflammation by preventing recruitment of CD4+ Th2 cells into the airways in a mouse model of asthma. J Immunol, 179 (9): 6193-203. [PMID:17947695]

30. Jaffar Z, Ferrini ME, Shaw PK, FitzGerald GA, Roberts K. (2011) Prostaglandin I₂promotes the development of IL-17-producing γδ T cells that associate with the epithelium during allergic lung inflammation. J Immunol, 187 (10): 5380-91. [PMID:21976777]

31. Jones RL, Qian YM, Wise H, Wong HN, Lam WL, Chan HW, Yim AP, Ho JK. (1997) Relaxant actions of nonprostanoid prostacyclin mimetics on human pulmonary artery. J Cardiovasc Pharmacol, 29 (4): 525-35. [PMID:9156364]

32. Jones RL, Wilson NH, Marr CG, Muir G, Armstrong RA. (1993) Diphenylmethylazine prostanoids with prostacyclin-like actions on human platelets. J Lipid Mediat, 6 (1-3): 405-10. [PMID:8357998]

33. Jones RL, Wise H, Clark R, Whiting RL, Bley KR. (2006) Investigation of the prostacyclin (IP) receptor antagonist RO1138452 on isolated blood vessel and platelet preparations. Br J Pharmacol, 149 (1): 110-20. [PMID:16880763]

34. Kajikawa N, Nogimori K, Murata T, Nishio S, Uchiyama S. (1989) Specific binding of the new stable epoprostenol analogue beraprost sodium to prostacyclin receptors on human and rat platelets. Arzneimittelforschung, 39 (4): 495-9. [PMID:2665758]

35. Kawabe J, Yuhki K, Okada M, Kanno T, Yamauchi A, Tashiro N, Sasaki T, Okumura S, Nakagawa N, Aburakawa Y et al.. (2010) Prostaglandin I2 promotes recruitment of endothelial progenitor cells and limits vascular remodeling. Arterioscler Thromb Vasc Biol, 30 (3): 464-70. [PMID:20007911]

36. Kiriyama M, Ushikubi F, Kobayashi T, Hirata M, Sugimoto Y, Narumiya S. (1997) Ligand binding specificities of the eight types and subtypes of the mouse prostanoid receptors expressed in Chinese hamster ovary cells. Br J Pharmacol, 122 (2): 217-24. [PMID:9313928]

37. Kobayashi T, Tahara Y, Matsumoto M, Iguchi M, Sano H, Murayama T, Arai H, Oida H, Yurugi-Kobayashi T, Yamashita JK et al.. (2004) Roles of thromboxane A(2) and prostacyclin in the development of atherosclerosis in apoE-deficient mice. J Clin Invest, 114 (6): 784-94. [PMID:15372102]

38. Kotani T, Kobata A, Nakamura E, Amagase K, Takeuchi K. (2006) Roles of cyclooxygenase-2 and prostacyclin/IP receptors in mucosal defense against ischemia/reperfusion injury in mouse stomach. J Pharmacol Exp Ther, 316 (2): 547-55. [PMID:16236816]

39. Kuwano K, Hashino A, Asaki T, Hamamoto T, Yamada T, Okubo K, Kuwabara K. (2007) 2-[4-[(5,6-diphenylpyrazin-2-yl)(isopropyl)amino]butoxy]-N-(methylsulfonyl)acetamide (NS-304), an orally available and long-acting prostacyclin receptor agonist prodrug. J Pharmacol Exp Ther, 322 (3): 1181-8. [PMID:17545310]

40. Lawrence RA, Jones RL, Wilson NH. (1992) Characterization of receptors involved in the direct and indirect actions of prostaglandins E and I on the guinea-pig ileum. Br J Pharmacol, 105 (2): 271-8. [PMID:1559125]

41. Lundblad C, Grände PO, Bentzer P. (2008) Increased cortical cell loss and prolonged hemodynamic depression after traumatic brain injury in mice lacking the IP receptor for prostacyclin. J Cereb Blood Flow Metab, 28 (2): 367-76. [PMID:17713464]

42. Maruyama T, Asada M, Shiraishi T, Ishida A, Egashira H, Yoshida H, Maruyama T, Ohuchida S, Nakai H, Kondo K et al.. (2001) Design and synthesis of a highly selective EP4-receptor agonist. Part 1: 3,7-dithiaPG derivatives with high selectivity. Bioorg Med Chem Lett, 11 (15): 2029-31. [PMID:11454473]

43. Meanwell NA, Romine JL, Seiler SM. (1994) Non-prostanoid prostacyclin mimetics. Drugs of the Future, 19 (4): 361-385.

44. Miggin SM, Kinsella BT. (2002) Investigation of the mechanisms of G protein: effector coupling by the human and mouse prostacyclin receptors. Identification of critical species-dependent differences. J Biol Chem, 277 (30): 27053-64. [PMID:12016224]

45. Murata T, Ushikubi F, Matsuoka T, Hirata M, Yamasaki A, Sugimoto Y, Ichikawa A, Aze Y, Tanaka T, Yoshida N et al.. (1997) Altered pain perception and inflammatory response in mice lacking prostacyclin receptor. Nature, 388 (6643): 678-82. [PMID:9262402]

46. Nagao K, Tanaka H, Komai M, Masuda T, Narumiya S, Nagai H. (2003) Role of prostaglandin I2 in airway remodeling induced by repeated allergen challenge in mice. Am J Respir Cell Mol Biol, 29 (3 Pt 1): 314-20. [PMID:12676807]

47. Nakae K, Hayashi F, Hayashi M, Yamamoto N, Iino T, Yoshikawa S, Gupta J. (2005) Functional role of prostacyclin receptor in rat dorsal root ganglion neurons. Neurosci Lett, 388: 132-137. [PMID:16039053]

48. Nakae K, Saito K, Iino T, Yamamoto N, Wakabayashi M, Yoshikawa S, Matsushima S, Miyashita H, Sugimoto H, Kiba A et al.. (2005) A prostacyclin receptor antagonist inhibits the sensitized release of substance P from rat sensory neurons. J Pharmacol Exp Ther, 315 (3): 1136-42. [PMID:16109742]

49. Nakagawa O, Tanaka I, Usui T, Harada M, Sasaki Y, Itoh H, Yoshimasa T, Namba T, Narumiya S, Nakao K. (1994) Molecular cloning of human prostacyclin receptor cDNA and its gene expression in the cardiovascular system. Circulation, 90 (4): 1643-7. [PMID:7923647]

50. Nakajima S, Honda T, Sakata D, Egawa G, Tanizaki H, Otsuka A, Moniaga CS, Watanabe T, Miyachi Y, Narumiya S et al.. (2010) Prostaglandin I2-IP signaling promotes Th1 differentiation in a mouse model of contact hypersensitivity. J Immunol, 184 (10): 5595-603. [PMID:20400695]

51. Namba T, Oida H, Sugimoto Y, Kakizuka A, Negishi M, Ichikawa A, Narumiya S. (1994) cDNA cloning of a mouse prostacyclin receptor. Multiple signaling pathways and expression in thymic medulla. J Biol Chem, 269 (13): 9986-92. [PMID:7511597]

52. Ng KY, Wong YH, Wise H. (2011) Glial cells isolated from dorsal root ganglia express prostaglandin E(2) (EP(4)) and prostacyclin (IP) receptors. Eur J Pharmacol, 661 (1-3): 42-8. [PMID:21549696]

53. Norel X, Walch L, Labat C, Gascard JP, Dulmet E, Brink C. (1999) Prostanoid receptors involved in the relaxation of human bronchial preparations. Br J Pharmacol, 126 (4): 867-72. [PMID:10193766]

54. Orie NN, Ledwozyw A, Williams DJ, Whittle BJ, Clapp LH. (2013) Differential actions of the prostacyclin analogues treprostinil and iloprost and the selexipag metabolite, MRE-269 (ACT-333679) in rat small pulmonary arteries and veins. Prostaglandins Other Lipid Mediat, 106: 1-7. [PMID:23872196]

55. Patrignani P, Di Febbo C, Tacconelli S, Douville K, Guglielmi MD, Horvath RJ, Ding M, Sierra K, Stitham J, Gleim S et al.. (2008) Differential association between human prostacyclin receptor polymorphisms and the development of venous thrombosis and intimal hyperplasia: a clinical biomarker study. Pharmacogenet Genomics, 18 (7): 611-20. [PMID:18551041]

56. Pulichino AM, Rowland S, Wu T, Clark P, Xu D, Mathieu MC, Riendeau D, Audoly LP. (2006) Prostacyclin antagonism reduces pain and inflammation in rodent models of hyperalgesia and chronic arthritis. J Pharmacol Exp Ther, 319 (3): 1043-50. [PMID:16973887]

57. Ritchie RH, Rosenkranz AC, Huynh LP, Stephenson T, Kaye DM, Dusting GJ. (2004) Activation of IP prostanoid receptors prevents cardiomyocyte hypertrophy via cAMP-dependent signaling. Am J Physiol Heart Circ Physiol, 287 (3): H1179-85. [PMID:15072955]

58. Saleem S, Shah ZA, Maruyama T, Narumiya S, Doré S. (2010) Neuroprotective properties of prostaglandin I2 IP receptor in focal cerebral ischemia. Neuroscience, 170 (1): 317-23. [PMID:20621166]

59. Sasaki Y, Usui T, Tanaka I, Nakagawa O, Sando T, Takahashi T, Namba T, Narumiya S, Nakao K. (1994) Cloning and expression of a cDNA for rat prostacyclin receptor. Biochim Biophys Acta, 1224 (3): 601-5. [PMID:7803522]

60. Schwaner I, Offermanns S, Spicher K, Seifert R, Schultz G. (1995) Differential activation of Gi and Gs proteins by E- and I-type prostaglandins in membranes from the human erythroleukaemia cell line, HEL. Biochim Biophys Acta, 1265 (1): 8-14. [PMID:7532011]

61. Seiler SM, Brassard CL, Federici ME, Romine J, Meanwell NA. (1997) [3-[4-(4,5-Diphenyl-2-oxazolyl)-5-oxazolyl]phenoxy]acetic acid (BMY 45778) is a potent non-prostanoid prostacyclin partial agonist: effects on platelet aggregation, adenylyl cyclase, cAMP levels, protein kinase, and iloprost binding. Prostaglandins, 53 (1): 21-35. [PMID:9068064]

62. Siegl AM, Smith JB, Silver MJ, Nicolaou KC, Ahern D. (1979) Selective binding site for [3H]prostacyclin on platelets. J Clin Invest, 63 (2): 215-20. [PMID:372237]

63. Stitham J, Arehart E, Elderon L, Gleim SR, Douville K, Kasza Z, Fetalvero K, MacKenzie T, Robb J, Martin KA et al.. (2011) Comprehensive biochemical analysis of rare prostacyclin receptor variants: study of association of signaling with coronary artery obstruction. J Biol Chem, 286 (9): 7060-9. [PMID:21189259]

64. Stitham J, Arehart E, Gleim SR, Li N, Douville K, Hwa J. (2007) New insights into human prostacyclin receptor structure and function through natural and synthetic mutations of transmembrane charged residues. Br J Pharmacol, 152 (4): 513-22. [PMID:17704830]

65. Stitham J, Stojanovic A, Hwa J. (2002) Impaired receptor binding and activation associated with a human prostacyclin receptor polymorphism. J Biol Chem, 277 (18): 15439-44. [PMID:11854299]

66. Takahashi Y, Tokuoka S, Masuda T, Hirano Y, Nagao M, Tanaka H, Inagaki N, Narumiya S, Nagai H. (2002) Augmentation of allergic inflammation in prostanoid IP receptor deficient mice. Br J Pharmacol, 137 (3): 315-22. [PMID:12237250]

67. Takechi H, Matsumura K, Watanabe Y, Kato K, Noyori R, Suzuki M, Watanabe Y. (1996) A novel subtype of the prostacyclin receptor expressed in the central nervous system. J Biol Chem, 271 (10): 5901-6. [PMID:8621463]

68. Tanaka A, Hattori K, Taniguchi K, Okitsu O, Tabuchi S, Nishio M, Nagakura Y, Maeda N, Murai H, Seki J. (2006) Replacing the cyclohexene-linker of FR181157 leading to novel IP receptor agonists: orally active prostacyclin mimetics. Part 6. Bioorg Med Chem Lett, 16 (18): 4861-4. [PMID:16837197]

69. Ueno A, Matsumoto H, Naraba H, Ikeda Y, Ushikubi F, Matsuoka T, Narumiya S, Sugimoto Y, Ichikawa A, Oh-ishi S. (2001) Major roles of prostanoid receptors IP and EP(3) in endotoxin-induced enhancement of pain perception. Biochem Pharmacol, 62 (2): 157-60. [PMID:11389873]

70. Virgolini I, Li S, Sillaber C, Majdic O, Sinzinger H, Lechner K, Bettelheim P, Valent P. (1992) Characterization of prostaglandin (PG)-binding sites expressed on human basophils. Evidence for a prostaglandin E1, I2, and a D2 receptor. J Biol Chem, 267 (18): 12700-8. [PMID:1377673]

71. Walch L, Labat C, Gascard JP, de Montpreville V, Brink C, Norel X. (1999) Prostanoid receptors involved in the relaxation of human pulmonary vessels. Br J Pharmacol, 126 (4): 859-66. [PMID:10193765]

72. Wang JW, Vu C, Poloso NJ. (2017) A Prostacyclin Analog, Cicaprost, Exhibits Potent Anti-Inflammatory Activity in Human Primary Immune Cells and a Uveitis Model. J Ocul Pharmacol Ther, 33 (3): 186-192. [PMID:28072560]

73. Watanabe Y, Matsumura K, Takechi H, Kato K, Morii H, Björkman M, Långström B, Noyori R, Suzuki M, Watanabe Y. (1999) A novel subtype of prostacyclin receptor in the central nervous system. J Neurochem, 72 (6): 2583-92. [PMID:10349870]

74. Waxman A, Restrepo-Jaramillo R, Thenappan T, Ravichandran A, Engel P, Bajwa A, Allen R, Feldman J, Argula R, Smith P et al.. (2021) Inhaled Treprostinil in Pulmonary Hypertension Due to Interstitial Lung Disease. N Engl J Med, 384 (4): 325-334. [PMID:33440084]

75. Wei G, Kibler KK, Koehler RC, Maruyama T, Narumiya S, Doré S. (2008) Prostacyclin receptor deletion aggravates hippocampal neuronal loss after bilateral common carotid artery occlusion in mouse. Neuroscience, 156 (4): 1111-7. [PMID:18790018]

76. Whittle BJ, Silverstein AM, Mottola DM, Clapp LH. (2012) Binding and activity of the prostacyclin receptor (IP) agonists, treprostinil and iloprost, at human prostanoid receptors: treprostinil is a potent DP1 and EP2 agonist. Biochem Pharmacol, 84 (1): 68-75. [PMID:22480736]

77. Wilson RJ, Giblin GM, Roomans S, Rhodes SA, Cartwright KA, Shield VJ, Brown J, Wise A, Chowdhury J, Pritchard S et al.. (2006) GW627368X ((N-{2-[4-(4,9-diethoxy-1-oxo-1,3-dihydro-2H-benzo[f]isoindol-2-yl)phenyl]acetyl} benzene sulphonamide): a novel, potent and selective prostanoid EP4 receptor antagonist. Br J Pharmacol, 148 (3): 326-39. [PMID:16604093]

78. Wilson SJ, Dowling JK, Zhao L, Carnish E, Smyth EM. (2007) Regulation of thromboxane receptor trafficking through the prostacyclin receptor in vascular smooth muscle cells: role of receptor heterodimerization. Arterioscler Thromb Vasc Biol, 27 (2): 290-6. [PMID:17110599]

79. Wilson SJ, Roche AM, Kostetskaia E, Smyth EM. (2004) Dimerization of the human receptors for prostacyclin and thromboxane facilitates thromboxane receptor-mediated cAMP generation. J Biol Chem, 279 (51): 53036-47. [PMID:15471868]

80. Wilson SM, Sheddan NA, Newton R, Giembycz MA. (2011) Evidence for a second receptor for prostacyclin on human airway epithelial cells that mediates inhibition of CXCL9 and CXCL10 release. Mol Pharmacol, 79 (3): 586-95. [PMID:21173040]

81. Wilson SM, Shen P, Rider CF, Traves SL, Proud D, Newton R, Giembycz MA. (2009) Selective prostacyclin receptor agonism augments glucocorticoid-induced gene expression in human bronchial epithelial cells. J Immunol, 183 (10): 6788-99. [PMID:19880449]

82. Xiao CY, Hara A, Yuhki K, Fujino T, Ma H, Okada Y, Takahata O, Yamada T, Murata T, Narumiya S et al.. (2001) Roles of prostaglandin I(2) and thromboxane A(2) in cardiac ischemia-reperfusion injury: a study using mice lacking their respective receptors. Circulation, 104 (18): 2210-5. [PMID:11684633]

83. Yamamoto K, Suzuki T, Imamura R, Nagano T, Okabe T, Miyachi H. (2017) Synthesis of both enantiomers of 1,2,3,4-tetrahydroisoquinoline derivative IPPAM-1 and enantio-dependency of its positive allosteric modulation of prostacyclin receptor. Bioorg Med Chem Lett, 27 (11): 2567-2570. [PMID:28462839]

84. Yuhki K, Ushikubi F, Naraba H, Ueno A, Kato H, Kojima F, Narumiya S, Sugimoto Y, Matsushita M, Oh-Ishi S. (2008) Prostaglandin I2 plays a key role in zymosan-induced mouse pleurisy. J Pharmacol Exp Ther, 325 (2): 601-9. [PMID:18256172]

85. Zhou W, Blackwell TS, Goleniewska K, O'Neal JF, Fitzgerald GA, Lucitt M, Breyer RM, Peebles RS. (2007) Prostaglandin I2 analogs inhibit Th1 and Th2 effector cytokine production by CD4 T cells. J Leukoc Biol, 81 (3): 809-17. [PMID:17135575]

86. Zhou W, Dowell DR, Huckabee MM, Newcomb DC, Boswell MG, Goleniewska K, Lotz MT, Toki S, Yin H, Yao S et al.. (2012) Prostaglandin I2 signaling drives Th17 differentiation and exacerbates experimental autoimmune encephalomyelitis. PLoS ONE, 7 (5): e33518. [PMID:22590492]

87. Zhou W, Goleniewska K, Zhang J, Dulek DE, Toki S, Lotz MT, Newcomb DC, Boswell MG, Polosukhin VV, Milne GL et al.. (2014) Cyclooxygenase inhibition abrogates aeroallergen-induced immune tolerance by suppressing prostaglandin I2 receptor signaling. J Allergy Clin Immunol, 134 (3): 698-705.e5. [PMID:25042746]

Contributors

Show »

How to cite this page