Top ▲

EP1 receptor

Click here for help

Immunopharmacology Ligand  Target has curated data in GtoImmuPdb

Target id: 340

Nomenclature: EP1 receptor

Family: Prostanoid receptors

Gene and Protein Information Click here for help
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 402 19p13.1 PTGER1 prostaglandin E receptor 1 18
Mouse 7 405 8 40.22 cM Ptger1 prostaglandin E receptor 1 (subtype EP1) 11,24,81
Rat 7 405 19q11 Ptger1 prostaglandin E receptor 1 9,54
Previous and Unofficial Names Click here for help
EP1 prostanoid receptor | PGE receptor EP1 subtype | prostanoid EP1 receptor | prostaglandin E receptor 1 (subtype EP1), 42kDa
Database Links Click here for help
Specialist databases
GPCRdb pe2r1_human (Hs), pe2r1_mouse (Mm), pe2r1_rat (Rn)
Other databases
Alphafold
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Natural/Endogenous Ligands Click here for help
PGD2
PGE1
PGE2
PGF
PGI2
Comments: PGE2 is the principal endogenous agonist
Potency order of endogenous ligands
PGE2 > PGE1 > PGF, PGI2 > PGD2, thromboxane A2

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[3H]PGE2 Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Ligand has a PDB structure Hs Full agonist 7.6 – 7.9 pKd 1,63,85
pKd 7.6 – 7.9 (Kd 2.5x10-8 – 1x10-9 M) [1,63,85]
[3H]PGE2 Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Ligand has a PDB structure Rn Full agonist 7.3 – 7.6 pKd 9,54
pKd 7.3 – 7.6 [9,54]
17-phenyl-ω-trinor-PGE2 Small molecule or natural product Click here for species-specific activity table Hs Full agonist 8.1 pKi 63
pKi 8.1 [63]
iloprost Small molecule or natural product Approved drug Click here for species-specific activity table Immunopharmacology Ligand Rn Partial agonist 7.9 pKi 9
pKi 7.9 [9]
17-phenyl-ω-trinor-PGE2 Small molecule or natural product Click here for species-specific activity table Mm Full agonist 7.9 pKi 31
pKi 7.9 [31]
PGE2 Small molecule or natural product Approved drug Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Immunopharmacology Ligand Mm Full agonist 7.7 pKi 31,65
pKi 7.7 [31,65]
PGE2 Small molecule or natural product Approved drug Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Immunopharmacology Ligand Rn Full agonist 7.7 pKi 9
pKi 7.7 [9]
iloprost Small molecule or natural product Approved drug Click here for species-specific activity table Immunopharmacology Ligand Mm Full agonist 7.7 pKi 31
pKi 7.7 [31]
sulprostone Small molecule or natural product Click here for species-specific activity table Mm Full agonist 7.7 pKi 31
pKi 7.7 [31]
PGE2 Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Immunopharmacology Ligand Hs Full agonist 7.3 – 8.0 pKi 1,63,85
pKi 7.3 – 8.0 [1,63,85]
carbacyclin Small molecule or natural product Click here for species-specific activity table Hs Full agonist 7.6 pKi 1
pKi 7.6 [1]
17-phenyl-ω-trinor-PGE2 Small molecule or natural product Click here for species-specific activity table Rn Full agonist 7.6 pKi 9
pKi 7.6 [9]
enprostil Small molecule or natural product Click here for species-specific activity table Hs Full agonist 7.1 – 7.8 pKi 1,63
pKi 7.1 – 7.8 [1,63]
PGE1 Small molecule or natural product Approved drug Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Mm Full agonist 7.4 pKi 31
pKi 7.4 [31]
ZK118182 Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 7.1 pKi 63
pKi 7.1 [63]
PGE1 Small molecule or natural product Approved drug Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Rn Full agonist 7.0 pKi 9
pKi 7.0 [9]
sulprostone Small molecule or natural product Click here for species-specific activity table Rn Full agonist 7.0 pKi 9
pKi 7.0 [9]
sulprostone Small molecule or natural product Click here for species-specific activity table Hs Full agonist 6.9 – 7.0 pKi 1,63
pKi 6.9 – 7.0 [1,63]
MB-28767 Small molecule or natural product Click here for species-specific activity table Mm Full agonist 6.9 pKi 31
pKi 6.9 [31]
PGE1 Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Hs Full agonist 6.8 pKi 63
pKi 6.8 [63]
ZK110841 Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 6.8 pKi 63
pKi 6.8 [63]
iloprost Small molecule or natural product Approved drug Click here for species-specific activity table Immunopharmacology Ligand Hs Full agonist 5.6 – 8.0 pKi 1,63
pKi 5.6 – 8.0 [1,63]
ONO-DI-004 Small molecule or natural product Mm Full agonist 6.8 pKi 65
pKi 6.8 [65]
enprostil Small molecule or natural product Click here for species-specific activity table Rn Full agonist 6.7 pKi 9
pKi 6.7 [9]
treprostinil Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 6.7 pKi 84
pKi 6.7 [84]
PGF Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Immunopharmacology Ligand Rn Full agonist 6.4 pKi 9
pKi 6.4 [9]
MB-28767 Small molecule or natural product Click here for species-specific activity table Hs Full agonist 6.4 pKi 1
pKi 6.4 [1]
MB-28767 Small molecule or natural product Click here for species-specific activity table Rn Full agonist 6.3 pKi 9
pKi 6.3 [9]
PGF Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Immunopharmacology Ligand Hs Full agonist 6.2 – 6.3 pKi 1,63
pKi 6.2 – 6.3 [1,63]
cloprostenol Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 5.9 – 6.1 pKi 1,63
pKi 5.9 – 6.1 [1,63]
PGF Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Immunopharmacology Ligand Mm Full agonist 5.9 pKi 31
pKi 5.9 [31]
cicaprost Small molecule or natural product Click here for species-specific activity table Immunopharmacology Ligand Hs Full agonist 5.9 pKi 1
pKi 5.9 [1]
PGD2 Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Rn Full agonist 5.2 pKi 9
pKi 5.2 [9]
U46619 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Immunopharmacology Ligand Rn Full agonist 5.2 pKi 9
pKi 5.2 [9]
PGI2 Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand is endogenous in the given species Hs Full agonist 4.8 pKi 63
pKi 4.8 [63]
PGD2 Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Hs Full agonist 4.7 pKi 63
pKi 4.7 [63]
U46619 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Immunopharmacology Ligand Hs Full agonist 4.5 pKi 1
pKi 4.5 [1]
View species-specific agonist tables
Agonist Comments
17-Phenyl PGE2 has been widely used as a EP1 standard agonist, but shows considerable EP3 agonism; ONO-D1-004 is much more selective [53,65].

Certain prostacyclin analogues exhibit high EP1 agonist activity, which may appear as partial agonism, e.g. iloprost [9,16].

A comprehensive SAR study of human EP1 agonism comparing binding and functional parameters has been published [78].
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
ONO-8713 Small molecule or natural product Click here for species-specific activity table Mm Antagonist 9.5 pKi 82
pKi 9.5 [82]
ONO-8711 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 9.2 pKi 83
pKi 9.2 [83]
ONO-8711 Small molecule or natural product Click here for species-specific activity table Mm Antagonist 8.8 pKi 83
pKi 8.8 [83]
MF266-1 Small molecule or natural product Hs Antagonist 8.4 pKi 14
pKi 8.4 (Ki 3.6x10-9 M) [14]
ONO-8713 Small molecule or natural product Hs Antagonist 8.0 pKi 57
pKi 8.0 [57]
SC-51322 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.9 pKi 1
pKi 7.9 [1]
AH6809 Small molecule or natural product Click here for species-specific activity table Immunopharmacology Ligand Hs Antagonist 5.9 – 6.0 pKi 1,63
pKi 5.9 – 6.0 [1,63]
AH6809 Small molecule or natural product Click here for species-specific activity table Immunopharmacology Ligand Rn Antagonist 5.9 pKi 9
pKi 5.9 [9]
SC-51089 Small molecule or natural product Immunopharmacology Ligand Hs Antagonist 5.9 pKi 1
pKi 5.9 [1]
SC-19220 Small molecule or natural product Rn Antagonist 4.6 pKi 9
pKi 4.6 [9]
SC-19220 Small molecule or natural product Hs Antagonist 4.5 pKi 63
pKi 4.5 [63]
GW848687X Small molecule or natural product Hs Antagonist 8.6 pIC50 19
pIC50 8.6 (IC50 2.5x10-9 M) [19]
ONO-8130 Small molecule or natural product Mm Antagonist 8.0 pIC50 34
pIC50 8.0 (IC50 9.3x10-9 M) [34]
Description: Measuring antagonism of agonist-induced intracellular calcium elevation in cells expressing mouse EP1 receptor.
View species-specific antagonist tables
Antagonist Comments
SC-19220 and AH6809 have been frequently used as EP1 blockers, but have now been superseded by SC-51322 (pA2 8.1-8.4) [21-22], ONO 8711 [46] and ONO-8713 [82].
The EP1 antagonist PF-2907617-02 (PF2907617) antagonizes prostaglandin-induced contractions in bladder detrusor muscle of rats with a pKB of 8.4 [56].
ONO-8130 is an EP1 antagonist, that blocks contraction of guinea pig tracheal segments with a pKB of 8.93 [68].
Immunopharmacology Comments
Foudi et al. (2012) [17] review the presence and role of EP1-4 receptors in human inflammation and immune cells.
Immuno Process Associations
Immuno Process:  Inflammation
Primary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gq/G11 family Other - See Comments
Comments:  Influx of extra-cellular Ca2++.
References:  27
Secondary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gi/Go family Adenylyl cyclase inhibition
References:  61
Tissue Distribution Click here for help
Kidney: cortex, inner medulla and outer medulla.
Species:  Human
Technique:  in situ hybridisation.
References:  10
Kidney: connecting segments, cortical and medullary collecting ducts, media of arteries, media of afferent and efferent arterioles.
Species:  Human
Technique:  Immunohistochemistry.
References:  40
Eye: endothelial and smooth muscle cells of blood vessels of iris, ciliary body, and choroid. Muscle fibers of the ciliary body, retina (photoreceptors, both nuclear layers, ganglion cells).
Species:  Human
Technique:  in situ hybridisation.
References:  44,89
Eye: sclera.
Species:  Human
Technique:  Immunocytochemistry and RT-PCR.
References:  4
Mouth: gingival fibroblasts.
Species:  Human
Technique:  RT-PCR.
References:  47
Eye: epithelia of the cornea, conjunctiva, lens, and ciliary body. Trabecular cells, iris vessels, retinal ganglion cells.
Species:  Human
Technique:  Immunohistochemistry.
References:  60
The musclaris mucosae of stomach and large intestine, neurons in the submucosa region and the muscularis mucosae layer of the stomach.
Species:  Mouse
Technique:  In situ hybridisation.
References:  39,41
Kidney > lung, spleen, skeletal muscle > testes.
Species:  Mouse
Technique:  Northern blotting.
References:  18
Kidney > lung.
Species:  Mouse
Technique:  Northern blotting.
References:  81
Medium spiny neurons in the striatum.
Species:  Mouse
Technique:  In situ hybridisation, immunohistochemistry.
References:  32
Urothelium.
Species:  Mouse
Technique:  Immunocytochemistry.
References:  80
Presynaptic terminal of GABAergic neurons in the substantia nigra.
Species:  Mouse
Technique:  Immunohistochemistry.
References:  75
Gastrointestinal tract: small intestine and colon (muscle layers of the deep intestinal wall), stomach (gastric muscle layers).
Species:  Rat
Technique:  Northern blotting.
References:  15
Kidney: preglomerular arterioles.
Species:  Rat
Technique:  RT-PCR.
References:  55
Heart: left atria.
Species:  Rat
Technique:  Western blotting.
References:  86
Kidney: papilla > outer medulla > cortex.
Species:  Rat
Technique:  RNase protection assay.
References:  25
Brain: cerebellum (Purkinje cells).
Species:  Rat
Technique:  Immunohistochemistry.
References:  13
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays Click here for help
Measurement of Ca2 in CHO cells transfected with the mouse EP1 receptor.
Species:  Mouse
Tissue:  CHO cells.
Response measured:  Ca2+ mobilisation.
References:  81
Measurement of Ca2+ levels and PI hydrolysis in CHO cells transfected with the mouse EP1 receptor.
Species:  Mouse
Tissue:  CHO cells.
Response measured:  Extracellular Ca2+ influx followed by PI hydrolysis, independent of PLC activation.
References:  27
Measurement of Ca2+ levels in CHO cells transfected with the rat EP1 receptor.
Species:  Rat
Tissue:  CHO cells.
Response measured:  Ca2+ mobilisation.
References:  54
Measurement of surfactant secretion and Ca2+ levels in cultured rat alveolar type II cells endogenously expressing the EP1 receptor.
Species:  Rat
Tissue:  Cultured rat alveolar type II cells.
Response measured:  Surfactant secretion via Ca2+ mobilisation.
References:  43
Measurement of Ba2+ currents in rat melanotrophs endogenously expressing the EP1 receptor.
Species:  Rat
Tissue:  Melanotrophs.
Response measured:  Inhibition of P/Q- and L-type voltage-dependent Ca2+ channels.
References:  74
Measurement of cAMP levels in cultured rat microglial cells endogenously expressing the EP1 receptor, as well as production of Il-1β.
Species:  Rat
Tissue:  Microglial cells.
Response measured:  Stimulation of cAMP accumulation and Il-1β production.
References:  12
Measurement of intracellular Ca2+ levels in COS cells transfected with the human EP1 receptor.
Species:  Human
Tissue:  COS cells.
Response measured:  Increase in Ca2+ concentration.
References:  18
Measurement of intracellular Ca2+ levels in cultured human myometrial cells endogenously expressing the EP1 receptor.
Species:  Human
Tissue:  Cultured myometrial cells.
Response measured:  Increase in Ca2+ concentration.
References:  6
Physiological Functions Click here for help
Thermal analgesia.
Species:  Rat
Tissue:  In vivo.
References:  50
Hyperthermia.
Species:  Rat
Tissue:  In vivo.
References:  51
Algesia and regulation of blood pressure.
Species:  Mouse
Tissue:  In vivo.
References:  64
Allodynia.
Species:  Mouse
Tissue:  In vivo.
References:  38
Stimulation of splenic sympathetic nerve activity.
Species:  Rat
Tissue:  In vivo.
References:  3
Renal vasoconstriction.
Species:  Rat
Tissue:  In vivo (renal artery).
References:  55
Increase in atrial contractility.
Species:  Rat
Tissue:  Left atrium.
References:  86
Contraction of pulmonary venous smooth muscle.
Species:  Human
Tissue:  Pulmonary venous preparations.
References:  48,79
Facilitation of primary bladder afferent nerve activity.
Species:  Rat
Tissue:  In vivo (urinary bladder).
References:  23
Role in hyperalgesia and allodynia.
Species:  Rat
Tissue:  In vivo.
References:  28
Regulation of the peripheral circadian clock.
Species:  Mouse
Tissue:  In vivo.
References:  77
Mediation of COX-2-induced cytotoxicity.
Species:  Mouse
Tissue:  In vivo.
References:  30
Gastric protection.
Species:  Rat
Tissue:  In vivo (stomach).
References:  33
Airway constriction.
Species:  Mouse
Tissue:  In vivo.
References:  76
Blood pressure regulation (male only).
Species:  Mouse
Tissue:  In vivo.
References:  7
Renal vasoconstriction.
Species:  Mouse
Tissue:  In vivo.
References:  62
Gastric HCO3- secretion.
Species:  Rat
Tissue:  Stomach.
References:  72
Mechanical analgesia.
Species:  Rat
Tissue:  In vivo.
References:  52
Nitric oxide (NO) release via NMDA receptors.
Species:  Rat
Tissue:  Spinal cord slices.
References:  58
Inhibition of sleep.
Species:  Rat
Tissue:  In vivo.
References:  87
Antiproliferation and enhanced differentiation.
Species:  Rat
Tissue:  Growth zone chondrocytes.
References:  67
Mediation of acid-induced visceral pain hypersensitivity.
Species:  Human
Tissue:  In vivo.
References:  59
EP1 receptor stimulation enhances GABAA-mediated inhibitory inputs to substantia nigra dopaminergic neurons in midbrain slices.
Species:  Mouse
Tissue:  Midbrain slices.
References:  75
EP1 stimulation suppresses gastric emptying.
Species:  Mouse
Tissue:  Stomach.
References:  39
EP1 receptor mediates anxiolytic-like activity of centrally administered PGE2.
Species:  Monkey
Tissue:  Brain.
References:  66
EP1 agonist induces ATP release from cultured urothelium cells.
Species:  Mouse
Tissue:  Urothelium.
References:  80
EP1 receptor stimulation facilitates Th1 cell differentiation in vitro under the Th1 skewing conditions.
Species:  Mouse
Tissue:  T lymphocytes.
References:  45
Physiological Consequences of Altering Gene Expression Click here for help
EP1 receptor knockout mice do not exhibit adaptive gastric cytoprotection, as seen in wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  5,70
EP1 receptor knockout mice exhibit reduced pain perception, reduced systolic blood pressure and increased renin-angiotensin activity.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  64
EP1 receptor knockout mice exhibit impaired LPS-induced ACTH release (impaired HPA axis activation).
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  35
EP1 receptor knockout mice exhibit reduced NMDA neurotoxicity.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  30
EP1 receptor knockout mice exhibit a reduction in the development of aberrant crypt foci (ACFs), suggesting that EP1 receptors have a role in colon carcinogenesis.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  83
EP1 receptor knockout mice do not exhibit PGE2-induced mechanical allodynia, as seen in wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  38
EP1 receptor knockout mice do not exhibit the protective gastric effects of dimethyl-PGE2 against indomethacin, as seen in wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  33
EP1 receptor knockout mice exhibit a significant reduction in colon cancer development, compared to wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  29
Under social and environmental stress, EP1 receptor knockout mice have an increased dopamine turnover in the frontal cortex and striatum. They exhibit phenotypes such as behavioural disinhibition, impulsive aggression, defective social interaction, impaired cliff avoidance and exaggerated acoustic startle resonse, all of which can be reversed by dopaminergic antagonists.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  36
EP1 receptor knockout mice exhibit reduced PGE2-induced airway responsiveness compared to wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  76
EP1 receptor knockout mice do not exhibit the PGE2-mediated gastric HCO3- release seen in wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  69,71
EP1 receptor knockout mice exhibit a reduction in furosemide-stimulated enhancement of diuresis and electrolyte excretion.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  49
EP1 receptor knockout mice exhibit suppression of cocaine-induced hyperlocomotion.
Species:  Mouse
Tissue:  in vivo
Technique:  Gene knockouts.
References:  32
EP1 receptor knockout mice did not show shortening of intercontraction interval induced by PGE2 and EP1 agonist.
Species:  Mouse
Tissue:  Bladder
Technique:  Gene knockouts.
References:  80
EP1 receptor knockout mice exhibit impaired social avoidance and reduced anxiety compared to wild type mice after repeated social defeat stress.
Species:  Mouse
Tissue:  in vivo
Technique:  Gene knockouts.
References:  73
EP1 receptor knockout mice exhibit augmented ocular inflammation as examined by protein amount and leukocyte number in aqueous humor.
Species:  Mouse
Tissue:  in vivo
Technique:  Gene knockouts.
References:  8
EP1 receptor knockout mice exhibit attenuated thermal hyperalgesia induced by PGE2 and mustard oil.
Species:  Mouse
Tissue:  in vivo
Technique:  Gene knockouts.
References:  42
EP1 receptor knockout mice exhibit impaired thermal but normal mechanical pain sensitization at the periphery to PGE2.
Species:  Mouse
Tissue:  in vivo
Technique:  Gene knockouts.
References:  26
EP1 deficient mice exhibit attenuated NMDA-induced brain lesions and Ca2+ dysregulation.
Species:  Mouse
Tissue:  Brain.
Technique:  Gene knockouts.
References:  30
EP1 gene disruption attenuates the acute and chronic pressor responses to Ang II.
Species:  Mouse
Tissue:  in vivo
Technique:  Gene knockouts.
References:  20
EP1-deficient mice exhibit enhanced osteoblast differentiation and accelerated fracture repair.
Species:  Mouse
Tissue:  Bone.
Technique:  Gene knockouts.
References:  88
EP1 receptor knockout mice exhibit reduced contact hypersensitivity and reduced Th1 subset development in response to dinitrofluorobenzene.
Species:  Mouse
Tissue:  in vivo
Technique:  Gene knockouts.
References:  45
EP1 receptor knockout mice exhibit protection of 6-hydroxydopamine-induced neuronal death and attenuated apomorphine-induced contralateral rotation on unilateral injection of 6-hydroxydopamine injection to the medial forebrain bundle.
Species:  Mouse
Tissue:  in vivo
Technique:  Gene knockouts.
References:  2
EP1 deficiency reduces amyloid plaques and confers resistance to ischemic neuronal death in APPswe/PS1 transgenic Alzheimer's disease model mice.
Species:  Mouse
Tissue:  Brain slices and neurons.
Technique:  Gene knockouts.
References:  90
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Ptger1tm1Sna Ptger1tm1Sna/Ptger1tm1Sna
B6.129P2-Ptger1
MGI:97793  MP:0008080 abnormal CD8-positive T cell differentiation PMID: 17967902 
Ptger1tm1Sna Ptger1tm1Sna/Ptger1tm1Sna
B6.129P2-Ptger1
MGI:97793  MP:0002351 abnormal cervical lymph node morphology PMID: 17967902 
Ptger1tm1Crjk Ptger1tm1Crjk/Ptger1tm1Crjk
B6.129S6-Ptger1
MGI:97793  MP:0003953 abnormal hormone level PMID: 16885154 
Ptger1tm1Sna Ptger1tm1Sna/Ptger1tm1Sna
B6.129P2-Ptger1
MGI:97793  MP:0010698 abnormal impulsive behavior control PMID: 16247016 
Ptger1tm1Sna Ptger1tm1Sna/Ptger1tm1Sna
B6.129P2-Ptger1
MGI:97793  MP:0008559 abnormal interferon-gamma secretion PMID: 17967902 
Ptger1tm1Sna Ptger1tm1Sna/Ptger1tm1Sna
B6.129P2-Ptger1
MGI:97793  MP:0003313 abnormal locomotor activation PMID: 16247016 
Ptger1tm1Sna Ptger1tm1Sna/Ptger1tm1Sna
B6.129P2-Ptger1
MGI:97793  MP:0002339 abnormal lymph node morphology PMID: 17967902 
Ptger1tm1Jdm Ptger1tm1Jdm/Ptger1tm1Jdm
DBA/1LacJ-Ptger1
MGI:97793  MP:0002736 abnormal nociception after inflammation PMID: 11160156 
Ptger1tm1Sna Ptger1tm1Sna/Ptger1tm1Sna
involves: 129P2/OlaHsd
MGI:97793  MP:0001970 abnormal pain threshold PMID: 11375261 
Ptger1tm1Sna Ptger1tm1Sna/Ptger1tm1Sna
involves: 129P2/OlaHsd * C57BL/6
MGI:97793  MP:0008872 abnormal physiological response to xenobiotic PMID: 11966527 
Ptger1tm1Sna Ptger1tm1Sna/Ptger1tm1Sna
involves: 129P2/OlaHsd * C57BL/6Cr
MGI:97793  MP:0008872 abnormal physiological response to xenobiotic PMID: 15564292 
Ptger1tm1Sna Ptger1tm1Sna/Ptger1tm1Sna
B6.129P2-Ptger1
MGI:97793  MP:0005025 abnormal response to infection PMID: 12642666 
Ptger1tm1Sna Ptger1tm1Sna/Ptger1tm1Sna
B6.129P2-Ptger1
MGI:97793  MP:0001360 abnormal social investigation PMID: 16247016 
Ptger1tm1Sna Ptger1tm1Sna/Ptger1tm1Sna
B6.129P2-Ptger1
MGI:97793  MP:0008088 abnormal T-helper 1 cell differentiation PMID: 17967902 
Ptger1tm1Matb Ptger1tm1Matb/Ptger1tm1Matb
129S6/SvEvTac-Ptger1
MGI:97793  MP:0001625 cardiac hypertrophy PMID: 17710229 
Ptger1tm1Sna Ptger1tm1Sna/Ptger1tm1Sna
B6.129P2-Ptger1
MGI:97793  MP:0002664 decreased circulating adrenocorticotropin level PMID: 12642666 
Ptger1tm1Sna Ptger1tm1Sna/Ptger1tm1Sna
B6.129P2-Ptger1
MGI:97793  MP:0005643 decreased dopamine level PMID: 16247016 
Ptger1tm1Matb Ptger1tm1Matb/Ptger1tm1Matb
129S6/SvEvTac-Ptger1
MGI:97793  MP:0003912 decreased drinking behavior PMID: 17710229 
Ptger1tm1Matb Ptger1tm1Matb/Ptger1tm1Matb
129S6/SvEvTac-Ptger1
MGI:97793  MP:0003910 decreased eating behavior PMID: 17710229 
Ptger1tm1Sna Ptger1tm1Sna/Ptger1tm1Sna
involves: 129P2/OlaHsd * C57BL/6Cr
MGI:97793  MP:0004502 decreased incidence of chemically-induced tumors PMID: 15564292 
Ptger1tm1Matb Ptger1tm1Matb/Ptger1tm1Matb
129S6/SvEvTac-Ptger1
MGI:97793  MP:0004876 decreased mean systemic arterial blood pressure PMID: 17710229 
Ptger1tm1Sna Ptger1tm1Sna/Ptger1tm1Sna
involves: 129P2/OlaHsd * C57BL/6J
MGI:97793  MP:0008874 decreased physiological sensitivity to xenobiotic PMID: 10537280 
Ptger1tm1Sna Ptger1tm1Sna/Ptger1tm1Sna
B6.129P2-Ptger1
MGI:97793  MP:0005616 decreased susceptibility to type IV hypersensitivity reaction PMID: 17967902 
Ptger1tm1Jdm Ptger1tm1Jdm/Ptger1tm1Jdm
DBA/1LacJ-Ptger1
MGI:97793  MP:0002843 decreased systemic arterial blood pressure PMID: 11160156 
Ptger1tm1Matb Ptger1tm1Matb/Ptger1tm1Matb
129S6/SvEvTac-Ptger1
MGI:97793  MP:0006264 decreased systemic arterial systolic blood pressure PMID: 17710229 
Ptger1tm1Sna Ptger1tm1Sna/Ptger1tm1Sna
involves: 129P2/OlaHsd * C57BL/6Cr
MGI:97793  MP:0003447 decreased tumor growth/size PMID: 15564292 
Ptger1tm1Crjk Ptger1tm1Crjk/Ptger1tm1Crjk
B6.129S6-Ptger1
MGI:97793  MP:0002988 decreased urine osmolality PMID: 16885154 
Ptger1tm1Matb Ptger1tm1Matb/Ptger1tm1Matb
129S6/SvEvTac-Ptger1
MGI:97793  MP:0003620 decreased urine output PMID: 17710229 
Ptger1tm1Matb Ptger1tm1Matb/Ptger1tm1Matb
129S6/SvEvTac-Ptger1
MGI:97793  MP:0006317 decreased urine sodium level PMID: 17710229 
Ptger1tm1Sna Ptger1tm1Sna/Ptger1tm1Sna
involves: 129P2/OlaHsd
MGI:97793  MP:0005407 hyperalgesia PMID: 11375261 
Ptger1tm1Dgen Ptger1tm1Dgen/Ptger1tm1Dgen
involves: 129P2/OlaHsd * C57BL/6
MGI:97793  MP:0001402 hypoactivity
Ptger1tm1Sna Ptger1tm1Sna/Ptger1tm1Sna
B6.129P2-Ptger1
MGI:97793  MP:0003829 impaired febrile response PMID: 12837930 
Ptger1tm1Sna Ptger1tm1Sna/Ptger1tm1Sna
B6.129P2-Ptger1
MGI:97793  MP:0001354 increased aggression towards males PMID: 16247016 
Ptger1tm1Sna Ptger1tm1Sna/Ptger1tm1Sna
involves: 129P2/OlaHsd * C57BL/6Cr
MGI:97793  MP:0001260 increased body weight PMID: 15564292 
Ptger1tm1Jdm Ptger1tm1Jdm/Ptger1tm1Jdm
DBA/1LacJ-Ptger1
MGI:97793  MP:0008531 increased chemical nociceptive threshold PMID: 11160156 
Ptger1tm1Sna Ptger1tm1Sna/Ptger1tm1Sna
B6.129P2-Ptger1
MGI:97793  MP:0001906 increased dopamine level PMID: 20092576 
Ptger1tm1Jdm Ptger1tm1Jdm/Ptger1tm1Jdm
DBA/1LacJ-Ptger1
MGI:97793  MP:0002626 increased heart rate PMID: 11160156 
Ptger1tm1Matb Ptger1tm1Matb/Ptger1tm1Matb
129S6/SvEvTac-Ptger1
MGI:97793  MP:0004875 increased mean systemic arterial blood pressure PMID: 17710229 
Ptger1tm1Sna Ptger1tm1Sna/Ptger1tm1Sna
involves: 129P2/OlaHsd * C57BL/6
MGI:97793  MP:0008873 increased physiological sensitivity to xenobiotic PMID: 11966527 
Ptger1tm1Jdm Ptger1tm1Jdm/Ptger1tm1Jdm
DBA/1LacJ-Ptger1
MGI:97793  MP:0005582 increased renin activity PMID: 11160156 
Ptger1tm1Sna Ptger1tm1Sna/Ptger1tm1Sna
B6.129P2-Ptger1
MGI:97793  MP:0001488 increased startle reflex PMID: 16247016 
Biologically Significant Variants Click here for help
Type:  Splice variant
Species:  Rat
Description:  A variant form of the EP1 receptor, EP1-variant, has been cloned from the rat, with a 49 amino acid change and lacking the intracellular carboxy tail. This may have an effect on receptor signalling and hence attenuate the action of PGE2.
References:  54
General Comments
Mouse EP1 and β2-adrenoceptor form a heterodimer leading to uncoupling of the β2-adrenoceptor from Gαs[37].

Mouse EP1 receptor potentiates TRPV1 activity in a PKC-dependent manner in mouse DRG neurons [42].

EP1 receptor stimulation augments both dopamine D1 and D2 signaling in striatal slices [32].

References

Show »

1. Abramovitz M, Adam M, Boie Y, Carrière M, Denis D, Godbout C, Lamontagne S, Rochette C, Sawyer N, Tremblay NM et al.. (2000) The utilization of recombinant prostanoid receptors to determine the affinities and selectivities of prostaglandins and related analogs. Biochim Biophys Acta, 1483 (2): 285-93. [PMID:10634944]

2. Ahmad AS, Maruyama T, Narumiya S, Doré S. (2013) PGE2 EP1 receptor deletion attenuates 6-OHDA-induced Parkinsonism in mice: old switch, new target. Neurotox Res, 23 (3): 260-6. [PMID:23385625]

3. Ando T, Ichijo T, Katafuchi T, Hori T. (1995) Intracerebroventricular injection of prostaglandin E2 increases splenic sympathetic nerve activity in rats. Am J Physiol, 269 (3 Pt 2): R662-8. [PMID:7573569]

4. Anthony TL, Lindsey JD, Aihara M, Weinreb RN. (2001) Detection of prostaglandin EP(1), EP(2), and FP receptor subtypes in human sclera. Invest Ophthalmol Vis Sci, 42 (13): 3182-6. [PMID:11726620]

5. Araki H, Ukawa H, Sugawa Y, Yagi K, Suzuki K, Takeuchi K. (2000) The roles of prostaglandin E receptor subtypes in the cytoprotective action of prostaglandin E2 in rat stomach. Aliment Pharmacol Ther, 14 Suppl 1: 116-24. [PMID:10807413]

6. Asbóth G, Phaneuf S, López Bernal AL. (1997) Prostaglandin E receptors in myometrial cells. Acta Physiol Hung, 85 (1): 39-50. [PMID:9530435]

7. Audoly LP, Tilley SL, Goulet J, Key M, Nguyen M, Stock JL, McNeish JD, Koller BH, Coffman TM. (1999) Identification of specific EP receptors responsible for the hemodynamic effects of PGE2. Am J Physiol, 277 (3): H924-30. [PMID:10484412]

8. Biswas S, Bhattacherjee P, Paterson CA, Maruyama T, Narumiya S. (2007) Modulation of ocular inflammatory responses by EP1 receptors in mice. Exp Eye Res, 84 (1): 39-43. [PMID:17052707]

9. Boie Y, Stocco R, Sawyer N, Slipetz DM, Ungrin MD, Neuschäfer-Rube F, Püschel GP, Metters KM, Abramovitz M. (1997) Molecular cloning and characterization of the four rat prostaglandin E2 prostanoid receptor subtypes. Eur J Pharmacol, 340 (2-3): 227-41. [PMID:9537820]

10. Breyer MD, Davis L, Jacobson HR, Breyer RM. (1996) Differential localization of prostaglandin E receptor subtypes in human kidney. Am J Physiol, 270 (5 Pt 2): F912-8. [PMID:8928854]

11. Båtshake B, Nilsson C, Sundelin J. (1995) Molecular characterization of the mouse prostanoid EP1 receptor gene. Eur J Biochem, 231 (3): 809-14. [PMID:7649181]

12. Caggiano AO, Kraig RP. (1999) Prostaglandin E receptor subtypes in cultured rat microglia and their role in reducing lipopolysaccharide-induced interleukin-1beta production. J Neurochem, 72 (2): 565-75. [PMID:9930728]

13. Candelario-Jalil E, Slawik H, Ridelis I, Waschbisch A, Akundi RS, Hüll M, Fiebich BL. (2005) Regional distribution of the prostaglandin E2 receptor EP1 in the rat brain: accumulation in Purkinje cells of the cerebellum. J Mol Neurosci, 27 (3): 303-10. [PMID:16280600]

14. Clark P, Rowland SE, Denis D, Mathieu MC, Stocco R, Poirier H, Burch J, Han Y, Audoly L, Therien AG et al.. (2008) MF498 [N-{[4-(5,9-Diethoxy-6-oxo-6,8-dihydro-7H-pyrrolo[3,4-g]quinolin-7-yl)-3-methylbenzyl]sulfonyl}-2-(2-methoxyphenyl)acetamide], a selective E prostanoid receptor 4 antagonist, relieves joint inflammation and pain in rodent models of rheumatoid and osteoarthritis. J Pharmacol Exp Ther, 325 (2): 425-34. [PMID:18287210]

15. Ding M, Kinoshita Y, Kishi K, Nakata H, Hassan S, Kawanami C, Sugimoto Y, Katsuyama M, Negishi M, Narumiya S et al.. (1997) Distribution of prostaglandin E receptors in the rat gastrointestinal tract. Prostaglandins, 53 (3): 199-216. [PMID:9206801]

16. Dong YJ, Jones RL, Wilson NH. (1986) Prostaglandin E receptor subtypes in smooth muscle: agonist activities of stable prostacyclin analogues. Br J Pharmacol, 87 (1): 97-107. [PMID:2420404]

17. Foudi N, Gomez I, Benyahia C, Longrois D, Norel X. (2012) Prostaglandin E2 receptor subtypes in human blood and vascular cells. Eur J Pharmacol, 695 (1-3): 1-6. [PMID:22964467]

18. Funk CD, Furci L, FitzGerald GA, Grygorczyk R, Rochette C, Bayne MA, Abramovitz M, Adam M, Metters KM. (1993) Cloning and expression of a cDNA for the human prostaglandin E receptor EP1 subtype. J Biol Chem, 268 (35): 26767-72. [PMID:8253813]

19. Giblin GM, Bit RA, Brown SH, Chaignot HM, Chowdhury A, Chessell IP, Clayton NM, Coleman T, Hall A, Hammond B et al.. (2007) The discovery of 6-[2-(5-chloro-2-{[(2,4-difluorophenyl)methyl]oxy}phenyl)-1-cyclopenten-1-yl]-2-pyridinecarboxylic acid, GW848687X, a potent and selective prostaglandin EP1 receptor antagonist for the treatment of inflammatory pain. Bioorg Med Chem Lett, 17 (2): 385-9. [PMID:17084082]

20. Guan Y, Zhang Y, Wu J, Qi Z, Yang G, Dou D, Gao Y, Chen L, Zhang X, Davis LS et al.. (2007) Antihypertensive effects of selective prostaglandin E2 receptor subtype 1 targeting. J Clin Invest, 117 (9): 2496-505. [PMID:17710229]

21. Hallinan EA, Stapelfeld A, , Reichman M. (1994) 8-chlorodibenz[b,f][1,4]oxazepine-10(11H)-carboxylic acid,2-[3-[2-(furanylmethyl)thio]-1-oxopropyl]hydrazide (SC-51322): A potent PGE2 antagonist and analgesic. Bioorg Med Chem Lett, 4: 509-514.

22. Hung GH, Jones RL, Lam FF, Chan KM, Hidaka H, Suzuki M, Sasaki Y. (2006) Investigation of the pronounced synergism between prostaglandin E2 and other constrictor agents on rat femoral artery. Prostaglandins Leukot Essent Fatty Acids, 74 (6): 401-15. [PMID:16737803]

23. Ikeda M, Kawatani M, Maruyama T, Ishihama H. (2006) Prostaglandin facilitates afferent nerve activity via EP1 receptors during urinary bladder inflammation in rats. Biomed Res, 27 (2): 49-54. [PMID:16707842]

24. Ishikawa TO, Tamai Y, Rochelle JM, Hirata M, Namba T, Sugimoto Y, Ichikawa A, Narumiya S, Taketo MM, Seldin MF. (1996) Mapping of the genes encoding mouse prostaglandin D, E, and F and prostacyclin receptors. Genomics, 32 (2): 285-8. [PMID:8833158]

25. Jensen BL, Mann B, Skøtt O, Kurtz A. (1999) Differential regulation of renal prostaglandin receptor mRNAs by dietary salt intake in the rat. Kidney Int, 56 (2): 528-37. [PMID:10432392]

26. Johansson T, Narumiya S, Zeilhofer HU. (2011) Contribution of peripheral versus central EP1 prostaglandin receptors to inflammatory pain. Neurosci Lett, 495 (2): 98-101. [PMID:21440042]

27. Katoh H, Watabe A, Sugimoto Y, Ichikawa A, Negishi M. (1995) Characterization of the signal transduction of prostaglandin E receptor EP1 subtype in cDNA-transfected Chinese hamster ovary cells. Biochim Biophys Acta, 1244 (1): 41-8. [PMID:7766667]

28. Kawahara H, Sakamoto A, Takeda S, Onodera H, Imaki J, Ogawa R. (2001) A prostaglandin E2 receptor subtype EP1 receptor antagonist (ONO-8711) reduces hyperalgesia, allodynia, and c-fos gene expression in rats with chronic nerve constriction. Anesth Analg, 93 (4): 1012-7. [PMID:11574375]

29. Kawamori T, Kitamura T, Watanabe K, Uchiya N, Maruyama T, Narumiya S, Sugimura T, Wakabayashi K. (2005) Prostaglandin E receptor subtype EP(1) deficiency inhibits colon cancer development. Carcinogenesis, 26 (2): 353-7. [PMID:15564292]

30. Kawano T, Anrather J, Zhou P, Park L, Wang G, Frys KA, Kunz A, Cho S, Orio M, Iadecola C. (2006) Prostaglandin E2 EP1 receptors: downstream effectors of COX-2 neurotoxicity. Nat Med, 12 (2): 225-9. [PMID:16432513]

31. Kiriyama M, Ushikubi F, Kobayashi T, Hirata M, Sugimoto Y, Narumiya S. (1997) Ligand binding specificities of the eight types and subtypes of the mouse prostanoid receptors expressed in Chinese hamster ovary cells. Br J Pharmacol, 122 (2): 217-24. [PMID:9313928]

32. Kitaoka S, Furuyashiki T, Nishi A, Shuto T, Koyasu S, Matsuoka T, Miyasaka M, Greengard P, Narumiya S. (2007) Prostaglandin E2 acts on EP1 receptor and amplifies both dopamine D1 and D2 receptor signaling in the striatum. J Neurosci, 27 (47): 12900-7. [PMID:18032663]

33. Kunikata T, Araki H, Takeeda M, Kato S, Takeuchi K. (2001) Prostaglandin E prevents indomethacin-induced gastric and intestinal damage through different EP receptor subtypes. J Physiol Paris, 95 (1-6): 157-63. [PMID:11595431]

34. Maruyama T, Okada H, Konemura T. (2015) Therapeutic agent for urinary excretion disorder. Patent number: US9181187B2. Assignee: Ono Pharmaceutical Co Ltd. Priority date: 16/02/2007. Publication date: 10/11/2015.

35. Matsuoka Y, Furuyashiki T, Bito H, Ushikubi F, Tanaka Y, Kobayashi T, Muro S, Satoh N, Kayahara T, Higashi M et al.. (2003) Impaired adrenocorticotropic hormone response to bacterial endotoxin in mice deficient in prostaglandin E receptor EP1 and EP3 subtypes. Proc Natl Acad Sci USA, 100 (7): 4132-7. [PMID:12642666]

36. Matsuoka Y, Furuyashiki T, Yamada K, Nagai T, Bito H, Tanaka Y, Kitaoka S, Ushikubi F, Nabeshima T, Narumiya S. (2005) Prostaglandin E receptor EP1 controls impulsive behavior under stress. Proc Natl Acad Sci USA, 102 (44): 16066-71. [PMID:16247016]

37. McGraw DW, Mihlbachler KA, Schwarb MR, Rahman FF, Small KM, Almoosa KF, Liggett SB. (2006) Airway smooth muscle prostaglandin-EP1 receptors directly modulate beta2-adrenergic receptors within a unique heterodimeric complex. J Clin Invest, 116 (5): 1400-9. [PMID:16670773]

38. Minami T, Nakano H, Kobayashi T, Sugimoto Y, Ushikubi F, Ichikawa A, Narumiya S, Ito S. (2001) Characterization of EP receptor subtypes responsible for prostaglandin E2-induced pain responses by use of EP1 and EP3 receptor knockout mice. Br J Pharmacol, 133 (3): 438-44. [PMID:11375261]

39. Mizuguchi S, Ohno T, Hattori Y, Ae T, Minamino T, Satoh T, Arai K, Saeki T, Hayashi I, Sugimoto Y et al.. (2010) Roles of prostaglandin E2-EP1 receptor signaling in regulation of gastric motor activity and emptying. Am J Physiol Gastrointest Liver Physiol, 299 (5): G1078-86. [PMID:20798358]

40. Morath R, Klein T, Seyberth HW, Nüsing RM. (1999) Immunolocalization of the four prostaglandin E2 receptor proteins EP1, EP2, EP3, and EP4 in human kidney. J Am Soc Nephrol, 10 (9): 1851-60. [PMID:10477136]

41. Morimoto K, Sugimoto Y, Katsuyama M, Oida H, Tsuboi K, Kishi K, Kinoshita Y, Negishi M, Chiba T, Narumiya S et al.. (1997) Cellular localization of mRNAs for prostaglandin E receptor subtypes in mouse gastrointestinal tract. Am J Physiol, 272 (3 Pt 1): G681-7. [PMID:9124591]

42. Moriyama T, Higashi T, Togashi K, Iida T, Segi E, Sugimoto Y, Tominaga T, Narumiya S, Tominaga M. (2005) Sensitization of TRPV1 by EP1 and IP reveals peripheral nociceptive mechanism of prostaglandins. Mol Pain, 1: 3. [PMID:15813989]

43. Morsy MA, Isohama Y, Miyata T. (2001) Prostaglandin E(2) increases surfactant secretion via the EP(1) receptor in rat alveolar type II cells. Eur J Pharmacol, 426 (1-2): 21-4. [PMID:11525766]

44. Mukhopadhyay P, Bian L, Yin H, Bhattacherjee P, Paterson C. (2001) Localization of EP(1) and FP receptors in human ocular tissues by in situ hybridization. Invest Ophthalmol Vis Sci, 42 (2): 424-8. [PMID:11157877]

45. Nagamachi M, Sakata D, Kabashima K, Furuyashiki T, Murata T, Segi-Nishida E, Soontrapa K, Matsuoka T, Miyachi Y, Narumiya S. (2007) Facilitation of Th1-mediated immune response by prostaglandin E receptor EP1. J Exp Med, 204 (12): 2865-74. [PMID:17967902]

46. Nakayama Y, Omote K, Namiki A. (2002) Role of prostaglandin receptor EP1 in the spinal dorsal horn in carrageenan-induced inflammatory pain. Anesthesiology, 97 (5): 1254-62. [PMID:12411813]

47. Noguchi K, Shitashige M, Endo H, Kondo H, Ishikawa I. (2002) Binary regulation of interleukin (IL)-6 production by EP1 and EP2/EP4 subtypes of PGE2 receptors in IL-1beta-stimulated human gingival fibroblasts. J Periodont Res, 37 (1): 29-36. [PMID:11842936]

48. Norel X, de Montpreville V, Brink C. (2004) Vasoconstriction induced by activation of EP1 and EP3 receptors in human lung: effects of ONO-AE-248, ONO-DI-004, ONO-8711 or ONO-8713. Prostaglandins Other Lipid Mediat, 74 (1-4): 101-12. [PMID:15560119]

49. Nüsing RM, Treude A, Weissenberger C, Jensen B, Bek M, Wagner C, Narumiya S, Seyberth HW. (2005) Dominant role of prostaglandin E2 EP4 receptor in furosemide-induced salt-losing tubulopathy: a model for hyperprostaglandin E syndrome/antenatal Bartter syndrome. J Am Soc Nephrol, 16 (8): 2354-62. [PMID:15976003]

50. Oka T, Aou S, Hori T. (1994) Intracerebroventricular injection of prostaglandin E2 induces thermal hyperalgesia in rats: the possible involvement of EP3 receptors. Brain Res, 663 (2): 287-92. [PMID:7874513]

51. Oka T, Hori T. (1994) EP1-receptor mediation of prostaglandin E2-induced hyperthermia in rats. Am J Physiol, 267 (1 Pt 2): R289-94. [PMID:7914071]

52. Oka T, Hori T, Hosoi M, Oka K, Abe M, Kubo C. (1997) Biphasic modulation in the trigeminal nociceptive neuronal responses by the intracerebroventricular prostaglandin E2 may be mediated through different EP receptors subtypes in rats. Brain Res, 771 (2): 278-84. [PMID:9401748]

53. Okada Y, Hara A, Ma H, Xiao CY, Takahata O, Kohgo Y, Narumiya S, Ushikubi F. (2000) Characterization of prostanoid receptors mediating contraction of the gastric fundus and ileum: studies using mice deficient in prostanoid receptors. Br J Pharmacol, 131 (4): 745-55. [PMID:11030724]

54. Okuda-Ashitaka E, Sakamoto K, Ezashi T, Miwa K, Ito S, Hayaishi O. (1996) Suppression of prostaglandin E receptor signaling by the variant form of EP1 subtype. J Biol Chem, 271 (49): 31255-61. [PMID:8940129]

55. Purdy KE, Arendshorst WJ. (2000) EP(1) and EP(4) receptors mediate prostaglandin E(2) actions in the microcirculation of rat kidney. Am J Physiol Renal Physiol, 279 (4): F755-64. [PMID:10997926]

56. Root JA, Davey DA, Af Forselles KJ. (2015) Prostanoid receptors mediating contraction in rat, macaque and human bladder smooth muscle in vitro. Eur J Pharmacol, 769: 274-9. [PMID:26607459]

57. Ruel R, Lacombe P, Abramovitz M, Godbout C, Lamontagne S, Rochette C, Sawyer N, Stocco R, Tremblay NM, Metters KM et al.. (1999) New class of biphenylene dibenzazocinones as potent ligands for the human EP1 prostanoid receptor. Bioorg Med Chem Lett, 9 (18): 2699-704. [PMID:10509919]

58. Sakai M, Minami T, Hara N, Nishihara I, Kitade H, Kamiyama Y, Okuda K, Takahashi H, Mori H, Ito S. (1998) Stimulation of nitric oxide release from rat spinal cord by prostaglandin E2. Br J Pharmacol, 123: 890-894. [PMID:9535017]

59. Sarkar S, Hobson AR, Hughes A, Growcott J, Woolf CJ, Thompson DG, Aziz Q. (2003) The prostaglandin E2 receptor-1 (EP-1) mediates acid-induced visceral pain hypersensitivity in humans. Gastroenterology, 124 (1): 18-25. [PMID:12512025]

60. Schlötzer-Schrehardt U, Zenkel M, Nüsing RM. (2002) Expression and localization of FP and EP prostanoid receptor subtypes in human ocular tissues. Invest Ophthalmol Vis Sci, 43 (5): 1475-87. [PMID:11980863]

61. Schwaner I, Offermanns S, Spicher K, Seifert R, Schultz G. (1995) Differential activation of Gi and Gs proteins by E- and I-type prostaglandins in membranes from the human erythroleukaemia cell line, HEL. Biochim Biophys Acta, 1265 (1): 8-14. [PMID:7532011]

62. Schweda F, Klar J, Narumiya S, Nüsing RM, Kurtz A. (2004) Stimulation of renin release by prostaglandin E2 is mediated by EP2 and EP4 receptors in mouse kidneys. Am J Physiol Renal Physiol, 287 (3): F427-33. [PMID:15113745]

63. Sharif NA, Davis TL. (2002) Cloned human EP1 prostanoid receptor pharmacology characterized using radioligand binding techniques. J Pharm Pharmacol, 54 (4): 539-47. [PMID:11999132]

64. Stock JL, Shinjo K, Burkhardt J, Roach M, Taniguchi K, Ishikawa T, Kim HS, Flannery PJ, Coffman TM, McNeish JD et al.. (2001) The prostaglandin E2 EP1 receptor mediates pain perception and regulates blood pressure. J Clin Invest, 107 (3): 325-31. [PMID:11160156]

65. Suzawa T, Miyaura C, Inada M, Maruyama T, Sugimoto Y, Ushikubi F, Ichikawa A, Narumiya S, Suda T. (2000) The role of prostaglandin E receptor subtypes (EP1, EP2, EP3, and EP4) in bone resorption: an analysis using specific agonists for the respective EPs. Endocrinology, 141 (4): 1554-9. [PMID:10746663]

66. Suzuki C, Miyamoto C, Furuyashiki T, Narumiya S, Ohinata K. (2011) Central PGE2 exhibits anxiolytic-like activity via EP1 and EP4 receptors in a manner dependent on serotonin 5-HT1A, dopamine D1 and GABAA receptors. FEBS Lett, 585 (14): 2357-62. [PMID:21693121]

67. Sylvia VL, Del Toro Jr F, Hardin RR, Dean DD, Boyan BD, Schwartz Z. (2001) Characterization of PGE(2) receptors (EP) and their role as mediators of 1alpha,25-(OH)(2)D(3) effects on growth zone chondrocytes. J Steroid Biochem Mol Biol, 78 (3): 261-74. [PMID:11595507]

68. Säfholm J, Dahlén SE, Delin I, Maxey K, Stark K, Cardell LO, Adner M. (2013) PGE2 maintains the tone of the guinea pig trachea through a balance between activation of contractile EP1 receptors and relaxant EP2 receptors. Br J Pharmacol, 168 (4): 794-806. [PMID:22934927]

69. Takeuchi K, Aihara E, Hayashi M, Sasaki Y. (2005) Role of prostaglandin E receptor subtypes in gastroduodenal HCO3- secretion. Med Chem, 1 (4): 395-403. [PMID:16789896]

70. Takeuchi K, Araki H, Umeda M, Komoike Y, Suzuki K. (2001) Adaptive gastric cytoprotection is mediated by prostaglandin EP1 receptors: a study using rats and knockout mice. J Pharmacol Exp Ther, 297 (3): 1160-5. [PMID:11356942]

71. Takeuchi K, Ukawa H, Furukawa O, Kawauchi S, Araki H, Sugimoto Y, Ishikawa A, Ushikubi F, Narumiya S. (1999) Prostaglandin E receptor subtypes involved in stimulation of gastroduodenal bicarbonate secretion in rats and mice. J Physiol Pharmacol, 50 (2): 155-67. [PMID:10424714]

72. Takeuchi K, Yagi K, Kato S, Ukawa H. (1997) Roles of prostaglandin E-receptor subtypes in gastric and duodenal bicarbonate secretion in rats. Gastroenterology, 113 (5): 1553-9. [PMID:9352857]

73. Tanaka K, Furuyashiki T, Kitaoka S, Senzai Y, Imoto Y, Segi-Nishida E, Deguchi Y, Breyer RM, Breyer MD, Narumiya S. (2012) Prostaglandin E2-mediated attenuation of mesocortical dopaminergic pathway is critical for susceptibility to repeated social defeat stress in mice. J Neurosci, 32 (12): 4319-29. [PMID:22442093]

74. Tanaka K, Shibuya I, Kabashima N, Ueta Y, Yamashita H. (1998) Inhibition of voltage-dependent calcium channels by prostaglandin E2 in rat melanotrophs. Endocrinology, 139 (12): 4801-10. [PMID:9832416]

75. Tanaka Y, Furuyashiki T, Momiyama T, Namba H, Mizoguchi A, Mitsumori T, Kayahara T, Shichi H, Kimura K, Matsuoka T et al.. (2009) Prostaglandin E receptor EP1 enhances GABA-mediated inhibition of dopaminergic neurons in the substantia nigra pars compacta and regulates dopamine level in the dorsal striatum. Eur J Neurosci, 30 (12): 2338-46. [PMID:20092576]

76. Tilley SL, Hartney JM, Erikson CJ, Jania C, Nguyen M, Stock J, McNeisch J, Valancius C, Panettieri Jr RA, Penn RB et al.. (2003) Receptors and pathways mediating the effects of prostaglandin E2 on airway tone. Am J Physiol Lung Cell Mol Physiol, 284 (4): L599-606. [PMID:12618422]

77. Tsuchiya Y, Minami I, Kadotani H, Nishida E. (2005) Resetting of peripheral circadian clock by prostaglandin E2. EMBO Rep, 6 (3): 256-61. [PMID:15723041]

78. Ungrin MD, Carrière MC, Denis D, Lamontagne S, Sawyer N, Stocco R, Tremblay N, Metters KM, Abramovitz M. (2001) Key structural features of prostaglandin E(2) and prostanoid analogs involved in binding and activation of the human EP(1) prostanoid receptor. Mol Pharmacol, 59 (6): 1446-56. [PMID:11353805]

79. Walch L, de Montpreville V, Brink C, Norel X. (2001) Prostanoid EP(1)- and TP-receptors involved in the contraction of human pulmonary veins. Br J Pharmacol, 134 (8): 1671-8. [PMID:11739243]

80. Wang X, Momota Y, Yanase H, Narumiya S, Maruyama T, Kawatani M. (2008) Urothelium EP1 receptor facilitates the micturition reflex in mice. Biomed Res, 29 (2): 105-11. [PMID:18480552]

81. Watabe A, Sugimoto Y, Honda A, Irie A, Namba T, Negishi M, Ito S, Narumiya S, Ichikawa A. (1993) Cloning and expression of cDNA for a mouse EP1 subtype of prostaglandin E receptor. J Biol Chem, 268 (27): 20175-8. [PMID:7690750]

82. Watanabe K, Kawamori T, Nakatsugi S, Ohta T, Ohuchida S, Yamamoto H, Maruyama T, Kondo K, Narumiya S, Sugimura T et al.. (2000) Inhibitory effect of a prostaglandin E receptor subtype EP(1) selective antagonist, ONO-8713, on development of azoxymethane-induced aberrant crypt foci in mice. Cancer Lett, 156 (1): 57-61. [PMID:10840160]

83. Watanabe K, Kawamori T, Nakatsugi S, Ohta T, Ohuchida S, Yamamoto H, Maruyama T, Kondo K, Ushikubi F, Narumiya S et al.. (1999) Role of the prostaglandin E receptor subtype EP1 in colon carcinogenesis. Cancer Res, 59 (20): 5093-6. [PMID:10537280]

84. Whittle BJ, Silverstein AM, Mottola DM, Clapp LH. (2012) Binding and activity of the prostacyclin receptor (IP) agonists, treprostinil and iloprost, at human prostanoid receptors: treprostinil is a potent DP1 and EP2 agonist. Biochem Pharmacol, 84 (1): 68-75. [PMID:22480736]

85. Wilson RJ, Giblin GM, Roomans S, Rhodes SA, Cartwright KA, Shield VJ, Brown J, Wise A, Chowdhury J, Pritchard S et al.. (2006) GW627368X ((N-{2-[4-(4,9-diethoxy-1-oxo-1,3-dihydro-2H-benzo[f]isoindol-2-yl)phenyl]acetyl} benzene sulphonamide): a novel, potent and selective prostanoid EP4 receptor antagonist. Br J Pharmacol, 148 (3): 326-39. [PMID:16604093]

86. Wolkowicz PE, Ku DD, Grenett HE, Urthaler F. (2002) Occupation of the prostaglandin E2-type 1 receptor increases rat atrial contractility via a Y-27632-sensitive pathway. Prostaglandins Other Lipid Mediat, 70 (1-2): 91-105. [PMID:12428681]

87. Yoshida Y, Matsumura H, Nakajima T, Mandai M, Urakami T, Kuroda K, Yoneda H. (2000) Prostaglandin E (EP) receptor subtypes and sleep: promotion by EP4 and inhibition by EP1/EP2. Neuroreport, 11 (10): 2127-31. [PMID:10923657]

88. Zhang M, Ho HC, Sheu TJ, Breyer MD, Flick LM, Jonason JH, Awad HA, Schwarz EM, O'Keefe RJ. (2011) EP1(-/-) mice have enhanced osteoblast differentiation and accelerated fracture repair. J Bone Miner Res, 26 (4): 792-802. [PMID:20939055]

89. Zhang Z, Yin H. (2002) Detection of EP1 and FP receptor mRNAs in the iris-ciliary body using in situ hybridization. Chin Med J (Engl), 115: 1226-1228. [PMID:12215298]

90. Zhen G, Kim YT, Li RC, Yocum J, Kapoor N, Langer J, Dobrowolski P, Maruyama T, Narumiya S, Doré S. (2012) PGE2 EP1 receptor exacerbated neurotoxicity in a mouse model of cerebral ischemia and Alzheimer's disease. Neurobiol Aging, 33 (9): 2215-9. [PMID:22015313]

Contributors

Show »

How to cite this page