fezolinetant [Ligand Id: 10422] activity data from GtoPdb and ChEMBL

Click here for a description of the charts and data table

Please tell us if you are using this feature and what you think!

ChEMBL ligand: CHEMBL3608680 (A-2693, A2693, AS-3472693-00, AS3472693-00, ES-256364, Esn364, ESN-364, ESN364, Fezolinetant, Veoza, Veozah)
  • NK3 receptor/Neuromedin-K receptor in Human [ChEMBL: CHEMBL4429] [GtoPdb: 362] [UniProtKB: P29371]
  • NK3 receptor/Neuromedin-K receptor in Rat [ChEMBL: CHEMBL3154] [GtoPdb: 362] [UniProtKB: P16177]
There should be some charts here, you may need to enable JavaScript!
  • NK2 receptor/Substance-K receptor in Human [ChEMBL: CHEMBL2327] [GtoPdb: 361] [UniProtKB: P21452]
There should be some charts here, you may need to enable JavaScript!
  • NK1 receptor/Substance-P receptor in Human [ChEMBL: CHEMBL249] [GtoPdb: 360] [UniProtKB: P25103]
There should be some charts here, you may need to enable JavaScript!
  • Kv11.1/Voltage-gated inwardly rectifying potassium channel KCNH2 in Human [ChEMBL: CHEMBL240] [GtoPdb: 572] [UniProtKB: Q12809]
There should be some charts here, you may need to enable JavaScript!
DB Assay description Assay Type Standard value Standard parameter Original value Original units Original parameter Reference
NK3 receptor/Neuromedin-K receptor in Human (target type: SINGLE PROTEIN) [ChEMBL: CHEMBL4429] [GtoPdb: 362] [UniProtKB: P29371]
ChEMBL Binding affinity to human recombinant NK3R by radioligand binding assay B 7.6 pKi 25.12 nM Ki ACS Med Chem Lett (2015) 6: 736-740 [PMID:26191358]
GtoPdb Binding to recombinant human NK3R expressed in CHO cells. - 7.6 pKi 25.1 nM Ki ACS Med Chem Lett (2015) 6: 736-40 [PMID:26191358]
ChEMBL Competitive Binding Assay: The affinity of compounds of the invention for the human NK-3 receptor was determined by measuring the ability of compounds of the invention to competitively and reversibly displace a well-characterized NK-3 radioligand in a concentration-dependent manner.3H-SB222200 Binding Competition Assay with Human NK-3 ReceptorThe ability of compounds of the invention to inhibit the binding of the NK-3 receptor selective antagonist 3H-SB222200 was assessed by an in vitro radioligand binding assay. Membranes were prepared from Chinese hamster ovary recombinant cells stably expressing the human NK-3 receptor. The membranes were incubated with 5 nM 3H-SB222200 (ARC) in a HEPES 25 mM/NaCl 0.1M/CaCl2 1 mM/MgCl2 5 mM/BSA 0.5%/Saponin 10 μg/ml buffer at pH 7.4 and various concentrations of compounds of the invention. The amount of 3H-SB222200 bound to the receptor was determined after filtration by the quantification of membrane associated radioactivity using the TopCount-NXT reader (Packard). B 7.64 pKi 23 nM Ki US-9422299-B2. Substituted [1,2,4]triazolo[4,3-a]pyrazines as selective NK-3 receptor antagonists (2016)
ChEMBL Competitive Binding Assays NK-3 receptor: The affinity of compounds of the invention for the human NK-3 receptor was determined by measuring the ability of compounds of the invention to competitively and reversibly displace a well-characterized NK-3 radioligand in a concentration-dependent manner.3H-SB222200 binding competition assay with human NK-3 receptorThe ability of compounds of the invention to inhibit the binding of the NK-3 receptor selective antagonist 3H-SB222200 was assessed by an in vitro radioligand binding assay. Membranes were prepared from Chinese hamster ovary recombinant cells stably expressing the human NK-3 receptor. The membranes were incubated with 5 nM 3H-SB222200 (ARC) in a HEPES 25 mM/NaCl 0.1M/CaCl2 1 mM/MgCl2 5 mM/BSA 0.5%/Saponin 10 μg/ml buffer at pH 7.4 and various concentrations of compounds of the invention. The amount of 3H-SB222200 bound to the receptor was determined after filtration by the quantification of membrane associated radioactivity using the TopCount-NXT reader (Packard). Competition curves were obtained for compounds of the invention and the concentration that displaced 50% of bound radioligand (IC50) were determined by linear regression analysis and then the apparent inhibition constant (Ki) values were calculated by the following equation: Ki=IC50/(1+[L]/Kd) where [L] is the concentration of free radioligand and Kd is its dissociation constant at the receptor, derived from saturation binding experiments (Cheng and Prusoff, 1973) B 7.64 pKi 23 nM Ki US-10030025-B2. Substituted [1,2,4]triazolo[4,3-a]pyrazines as selective NK-3 receptor antagonists (2018)
ChEMBL Binding Competition Assay: Human NK-3: The ability of compounds of the invention to inhibit the binding of the NK-3 receptor selective antagonist 3H-SB222200 was assessed by an in vitro radioligand binding assay. Membranes were prepared from Chinese hamster ovary recombinant cells stably expressing the human NK-3 receptor. The membranes were incubated with 5 nM 3H-SB222200 (ARC) in a HEPES 25 mM/NaCl 0.1M/CaCl2 1 mM/MgCl2 5 mM/BSA 0.5%/Saponin 10 μg/ml buffer at pH 7.4 and various concentrations of compounds of the invention. The amount of 3H-SB222200 bound to the receptor was determined after filtration by the quantification of membrane associated radioactivity using the TopCount-NXT reader (Packard). Competition curves were obtained for compounds of the invention and the concentration that displaced 50% of bound radioligand (IC50) were determined by linear regression analysis and then the apparent inhibition constant (Ki) values were calculated by the following equation: Ki=IC50/(1+[L]/Kd) where [L] is the concentration of free radioligand and Kd is its dissociation constant at the receptor, derived from saturation binding experiments. B 7.64 pKi 23 nM Ki US-9987274-B2. N-acyl-(3-substituted)-(8-substituted)-5,6-dihydro-[1,2,4]triazolo[4,3-a]pyrazines as selective NK-3 receptor antagonists (2018)
ChEMBL Competitive Binding Assays: The affinity of compounds of the invention for the human NK-3 receptor was determined by measuring the ability of compounds of the invention to competitively and reversibly displace a well-characterized NK-3 radioligand in a concentration-dependent manner.3H-SB222200 binding competition assay with human NK-3 receptorThe ability of compounds of the invention to inhibit the binding of the NK-3 receptor selective antagonist 3H-SB222200 was assessed by an in vitro radioligand binding assay. Membranes were prepared from Chinese hamster ovary recombinant cells stably expressing the human NK-3 receptor. The membranes were incubated with 5 nM 3H-SB222200 (ARC) in a HEPES 25 mM/NaCl 0.1M/CaCl2 1 mM/MgCl2 5 mM/BSA 0.5%/Saponin 10 μg/ml buffer at pH 7.4 and various concentrations of compounds of the invention. The amount of 3H-SB222200 bound to the receptor was determined after filtration by the quantification of membrane associated radioactivity using the TopCount-NXT reader (Packard). Competition curves were obtained for compounds of the invention and the concentration that displaced 50% of bound radioligand (IC50) were determined by linear regression analysis and then the apparent inhibition constant (Ki) values were calculated by the following equation: Ki═IC50/(1+[L]/Kd) where [L] is the concentration of free radioligand and Kd is its dissociation constant at the receptor, derived from saturation binding experiments (Cheng and Prusoff, 1973). B 7.64 pKi 23 nM Ki US-10836768-B2. N-acyl-(3-substituted)-(8-substituted)-5,6-dihydro-[1,2,4]triazolo[4,3-a]pyrazines as selective NK-3 receptor antagonists (2020)
ChEMBL Antagonist activity at human NK3R expressed in HEK293T cells assessed as reduction in NKB induced calcium signal incubated for 30 mins by FLIPR assay F 6.3 pIC50 500.83 nM IC50 Eur J Med Chem (2023) 257: 115486-115486 [PMID:37247507]
ChEMBL Displacement of [3H]-SB-222200 from recombinant human NK3R expressed in CHO-K1 cells membrane incubated for 2 hrs by microbeta scintillation counting method B 6.96 pIC50 109.78 nM IC50 Eur J Med Chem (2023) 257: 115486-115486 [PMID:37247507]
ChEMBL Antagonist activity against human recombinant NK3R expressed in CHO cells by aequorin functional assay B 7.7 pIC50 19.95 nM IC50 ACS Med Chem Lett (2015) 6: 736-740 [PMID:26191358]
ChEMBL Functional Assay: Chinese Hamster Ovary recombinant cells expressing the human NK-3 receptor and a construct that encodes the photoprotein apoaequorin were used for this assay. The antagonist activity of compounds of the invention is measured following pre-incubation (3 minutes) of the compound (at various concentrations) with the cells, followed by addition of the reference agonist (NKA) at a final concentration equivalent to the EC80 (3 nM) and recording of emitted light (FDSS 6000 Hamamatsu) over the subsequent 90-second period. The intensity of the emitted light is integrated using the reader software. Compound antagonist activity is measured based on the concentration-dependent inhibition of the luminescence response to the addition of Neurokinin A. B 7.74 pIC50 18 nM IC50 US-9422299-B2. Substituted [1,2,4]triazolo[4,3-a]pyrazines as selective NK-3 receptor antagonists (2016)
ChEMBL Aequorin Assay with Human NK-3 Receptor: Changes in intracellular calcium levels are a recognized indicator of G protein-coupled receptor activity. The efficacy of compounds of the invention to inhibit NKA-mediated NK-3 receptor activation was assessed by an in vitro Aequorin functional assay. Chinese Hamster Ovary recombinant cells expressing the human NK-3 receptor and a construct that encodes the photoprotein apoaequorin were used for this assay. In the presence of the cofactor coelenterazine, apoaequorin emits a measurable luminescence that is proportional to the amount of intracellular (cytoplasmic) free calcium.Antagonist TestingThe antagonist activity of compounds of the invention is measured following pre-incubation (3 minutes) of the compound (at various concentrations) with the cells, followed by addition of the reference agonist (NKA) at a final concentration equivalent to the EC80 (3 nM) and recording of emitted light (FDSS 6000 Hamamatsu) over the subsequent 90-second period. The intensity of the emitted light is integrated using the reader software. Compound antagonist activity is measured based on the concentration-dependent inhibition of the luminescence response to the addition of Neurokinin A.Inhibition curves are obtained for compounds of the invention and the concentrations of compounds which inhibit 50% of reference agonist response (IC50) were determined (see results in table 2 below). The IC50 values shown in table 2 indicate that compounds of the invention are potent NK-3 antagonist compounds. B 7.74 pIC50 18 nM IC50 US-10030025-B2. Substituted [1,2,4]triazolo[4,3-a]pyrazines as selective NK-3 receptor antagonists (2018)
ChEMBL Aequorin Assay with Human NK-3 Receptor: Changes in intracellular calcium levels are a recognized indicator of G protein-coupled receptor activity. The efficacy of compounds of the invention to inhibit NKA-mediated NK-3 receptor activation was assessed by an in vitro Aequorin functional assay.Chinese Hamster Ovary recombinant cells expressing the human NK-3 receptor and a construct that encodes the photoprotein apoaequorin were used for this assay. In the presence of the cofactor coelenterazine, apoaequorin emits a measurable luminescence that is proportional to the amount of intracellular (cytoplasmic) free calcium.Antagonist TestingThe antagonist activity of compounds of the invention is measured following pre-incubation (3 minutes) of the compound (at various concentrations) with the cells, followed by addition of the reference agonist (NKA) at a final concentration equivalent to the EC50 (3 nM) and recording of emitted light (FDSS 6000 Hamamatsu) over the subsequent 90-second period. The intensity of the emitted light is integrated using the reader software. Compound antagonist activity is measured based on the concentration-dependent inhibition of the luminescence response to the addition of Neurokinin A. B 7.74 pIC50 18 nM IC50 US-10836768-B2. N-acyl-(3-substituted)-(8-substituted)-5,6-dihydro-[1,2,4]triazolo[4,3-a]pyrazines as selective NK-3 receptor antagonists (2020)
NK3 receptor/Neuromedin-K receptor in Rat (target type: SINGLE PROTEIN) [ChEMBL: CHEMBL3154] [GtoPdb: 362] [UniProtKB: P16177]
ChEMBL Binding affinity to rat NK3R B 6.66 pKi 219 nM Ki ACS Med Chem Lett (2015) 6: 736-740 [PMID:26191358]
NK2 receptor/Substance-K receptor in Human (target type: SINGLE PROTEIN) [ChEMBL: CHEMBL2327] [GtoPdb: 361] [UniProtKB: P21452]
ChEMBL Binding Assay: The affinity of compounds of the invention for the NK-2 receptor was evaluated in CHO recombinant cells which express the human NK-2 receptor. Membrane suspensions were prepared from these cells. The following radioligand [125I]-Neurokinin A (PerkinElmer Cat#NEX252) was used in this assay. Binding assays were performed in a 25 mM HEPES/1 mM CaCl2/5 mM MgCl2/0.5% BSA/10 μg/ml saponin, at pH 7.4. Binding assays consisted of 25 μl of membrane suspension (approximately 3.75 μg of protein/well in a 96 well plate), 50 μl of compound or reference ligand (Neurokinin A) at increasing concentrations (diluted in assay buffer) and 0.1 nM [125I]-Neurokinin A. The plate was incubated 60 min at 25° C. in a water bath and then filtered over GF/C filters (Perkin Elmer, 6005174, presoaked in assay buffer without saponine for 2 h at room temperature) with a Filtration unit (Perkin Elmer). The radioactivity retained on the filters was measured by using the TopCount-NXT reader (Packard). B 4.52 pKi >30000 nM Ki US-9422299-B2. Substituted [1,2,4]triazolo[4,3-a]pyrazines as selective NK-3 receptor antagonists (2016)
ChEMBL Selectivity Assay with Human NK-2: The affinity of compounds of the invention for the NK-2 receptor was evaluated in CHO recombinant cells which express the human NK-2 receptor. Membrane suspensions were prepared from these cells. The following radioligand [125I]-Neurokinin A (PerkinElmer Cat#NEX252) was used in this assay. Binding assays were performed in a 25 mM HEPES/1 mM CaCl2/5 mM MgCl2/0.5% BSA/10 μg/ml saponin, at pH 7.4. Binding assays consisted of 25 μl of membrane suspension (approximately 3.75 μg of protein/well in a 96 well plate), 50 μl of compound or reference ligand (Neurokinin A) at increasing concentrations (diluted in assay buffer) and 0.1 nM [125I]-Neurokinin A. The plate was incubated 60 min at 25° C. in a water bath and then filtered over GF/C filters (Perkin Elmer, 6005174, presoaked in assay buffer without saponine for 2 h at room temperature) with a Filtration unit (Perkin Elmer). The radioactivity retained on the filters was measured by using the TopCount-NXT reader (Packard). Competition curves were obtained for compounds of the invention and the concentrations of compounds which displaced 50% of bound radioligand (IC50) were determined and then apparent inhibition constant Ki values were calculated by the following equation: Ki=IC50/(1+[L]/KD) where [L] is the concentration of free radioligand and KD is its dissociation constant at the receptor, derived from saturation binding experiments (Cheng and Prusoff, 1973).The compounds of the invention, which were tested in the above NK-1 and NK-2 described assays, demonstrated a low affinity at the human NK-1 and human NK-2 receptors: more than 200 fold shift of the Ki compared to the human NK-3 receptor (table 3). Thus, compounds according to the invention have been shown to be selective over NK-1 and NK-2 receptors. B 4.52 pKi >30000 nM Ki US-10030025-B2. Substituted [1,2,4]triazolo[4,3-a]pyrazines as selective NK-3 receptor antagonists (2018)
ChEMBL Inhibition Assay: Human NK-2 The affinity of compounds of the invention for the NK-2 receptor was evaluated in CHO recombinant cells which express the human NK-2 receptor. Membrane suspensions were prepared from these cells. The following radioligand [125I]-Neurokinin A (PerkinElmer Cat#NEX252) was used in this assay. Binding assays were performed in a 25 mM HEPES/1 mM CaCl2/5 mM MgCl2/0.5% BSA/10 μg/ml saponin, at pH 7.4. Binding assays consisted of 25 μl of membrane suspension (approximately 3.75 μg of protein/well in a 96 well plate), 50 μl of compound or reference ligand (Neurokinin A) at increasing concentrations (diluted in assay buffer) and 0.1 nM [125]-Neurokinin A. The plate was incubated 60 min at 25° C. in a water bath and then filtered over GF/C filters (Perkin Elmer, 6005174, presoaked in assay buffer without saponine for 2 h at room temperature) with a Filtration unit (Perkin Elmer). The radioactivity retained on the filters was measured by using the TopCount-NXT reader (Packard). Competition curves were obtained for compounds of the invention and the concentrations of compounds which displaced 50% of bound radioligand (IC50) were determined and then apparent inhibition constant Ki values were calculated by the following equation: Ki=IC50/(1+[L]/KD) where [L] is the concentration of free radioligand and KD is its dissociation constant at the receptor, derived from saturation binding experiments. B 4.52 pKi >30000 nM Ki US-9987274-B2. N-acyl-(3-substituted)-(8-substituted)-5,6-dihydro-[1,2,4]triazolo[4,3-a]pyrazines as selective NK-3 receptor antagonists (2018)
ChEMBL Human NK-2 assay: The affinity of compounds of the invention for the NK-2 receptor was evaluated in CHO recombinant cells which express the human NK-2 receptor. Membrane suspensions were prepared from these cells. The following radioligand [125I]-Neurokinin A (PerkinElmer Cat #NEX252) was used in this assay. Binding assays were performed in a 25 mM HEPES/1 mM CaC2/5 mM MgCl2/0.5% BSA/10 μg/ml saponin, at pH 7.4. Binding assays consisted of 25 μl of membrane suspension (approximately 3.75 μg of protein/well in a 96 well plate), 50 μl of compound or reference ligand (Neurokinin A) at increasing concentrations (diluted in assay buffer) and 0.1 nM [125I]-Neurokinin A. The plate was incubated 60 min at 25° C. in a water bath and then filtered over GF/C filters (Perkin Elmer, 6005174, presoaked in assay buffer without saponine for 2 h at room temperature) with a Filtration unit (Perkin Elmer). The radioactivity retained on the filters was measured by using the TopCount-NXT reader (Packard). Competition curves were obtained for compounds of the invention and the concentrations of compounds which displaced 50% of bound radioligand (IC50) were determined and then apparent inhibition constant Ki values were calculated by the following equation: Ki=IC5/(1+[L]/KD) where [L] is the concentration of free radioligand and KD is its dissociation constant at the receptor, derived from saturation binding experiments (Cheng and Prusoff, 1973). B 4.52 pKi >30000 nM Ki US-10836768-B2. N-acyl-(3-substituted)-(8-substituted)-5,6-dihydro-[1,2,4]triazolo[4,3-a]pyrazines as selective NK-3 receptor antagonists (2020)
NK1 receptor/Substance-P receptor in Human (target type: SINGLE PROTEIN) [ChEMBL: CHEMBL249] [GtoPdb: 360] [UniProtKB: P25103]
ChEMBL Binding Assay: The affinity of compounds of the invention for the NK-1 receptor was evaluated in CHO recombinant cells which express the human NK-1 receptor. Membrane suspensions were prepared from these cells. The following radioligand: [3H] substance P (PerkinElmer Cat#NET111520) was used in this assay. Binding assays were performed in a 50 mM Tris/5 mM MnCl2/150 mM NaCl/0.1% BSA at pH 7.4. Binding assays consisted of 25 μl of membrane suspension (approximately 5 μg of protein/well in a 96 well plate), 50 μl of compound or reference ligand (Substance P) at increasing concentrations (diluted in assay buffer) and 2 nM [3H] substance P. The plate was incubated 60 min at 25° C. in a water bath and then filtered over GF/C filters (Perkin Elmer, 6005174, presoaked in 0.5% PEI for 2 h at room temperature) with a Filtration unit (Perkin Elmer). The radioactivity retained on the filters was measured by using the TopCount-NXT reader (Packard). B 4.52 pKi >30000 nM Ki US-9422299-B2. Substituted [1,2,4]triazolo[4,3-a]pyrazines as selective NK-3 receptor antagonists (2016)
ChEMBL Selectivity Assay with Human NK-1: The affinity of compounds of the invention for the NK-1 receptor was evaluated in CHO recombinant cells which express the human NK-1 receptor. Membrane suspensions were prepared from these cells. The following radioligand: [3H] substance P (PerkinElmer Cat#NET111520) was used in this assay. Binding assays were performed in a 50 mM Tris/5 mM MnC12/150 mM NaCl/0.1% BSA at pH 7.4. Binding assays consisted of 25 μl of membrane suspension (approximately 5 μg of protein/well in a 96 well plate), 50 μl of compound or reference ligand (Substance P) at increasing concentrations (diluted in assay buffer) and 2 nM [3H] substance P. The plate was incubated 60 min at 25° C. in a water bath and then filtered over GF/C filters (Perkin Elmer, 6005174, presoaked in 0.5% PEI for 2 h at room temperature) with a Filtration unit (Perkin Elmer). The radioactivity retained on the filters was measured by using the TopCount-NXT reader (Packard). Competition curves were obtained for compounds of the invention and the concentrations of compounds which displaced 50% of bound radioligand (IC50) were determined and then apparent inhibition constant Ki values were calculated by the following equation: Ki=IC50/(1+[L]/KD) where [L] is the concentration of free radioligand and KD is its dissociation constant at the receptor, derived from saturation binding experiments (Cheng and Prusoff, 1973). B 4.52 pKi >30000 nM Ki US-10030025-B2. Substituted [1,2,4]triazolo[4,3-a]pyrazines as selective NK-3 receptor antagonists (2018)
ChEMBL Inhibition Assay: Human NK-1: The affinity of compounds of the invention for the NK-1 receptor was evaluated in CHO recombinant cells which express the human NK-1 receptor. Membrane suspensions were prepared from these cells. The following radioligand: [3H] substance P (PerkinElmer Cat#NET111520) was used in this assay. Binding assays were performed in a 50 mM Tris/5 mM MnCl2/150 mM NaCl/0.1% BSA at pH 7.4. Binding assays consisted of 25 μl of membrane suspension (approximately 5 μg of protein/well in a 96 well plate), 50 μl of compound or reference ligand (Substance P) at increasing concentrations (diluted in assay buffer) and 2 nM [3H] substance P. The plate was incubated 60 min at 25° C. in a water bath and then filtered over GF/C filters (Perkin Elmer, 6005174, presoaked in 0.5% PEI for 2 h at room temperature) with a Filtration unit (Perkin Elmer). The radioactivity retained on the filters was measured by using the TopCount-NXT reader (Packard). Competition curves were obtained for compounds of the invention and the concentrations of compounds which displaced 50% of bound radioligand (IC50) were determined and then apparent inhibition constant Ki values were calculated by the following equation: Ki=IC50/(1+[L]/KD) where [L] is the concentration of free radioligand and KD is its dissociation constant at the receptor, derived from saturation binding experiments. B 4.52 pKi >30000 nM Ki US-9987274-B2. N-acyl-(3-substituted)-(8-substituted)-5,6-dihydro-[1,2,4]triazolo[4,3-a]pyrazines as selective NK-3 receptor antagonists (2018)
ChEMBL Human NK-1 assay: The affinity of compounds of the invention for the NK-1 receptor was evaluated in CHO recombinant cells which express the human NK-1 receptor. Membrane suspensions were prepared from these cells. The following radioligand: [3H] substance P (PerkinElmer Cat #NET111520) was used in this assay. Binding assays were performed in a 50 mM Tris/5 mM MnCl2/150 mM NaCl/0.1% BSA at pH 7.4. Binding assays consisted of 25 μl of membrane suspension (approximately 5 μg of protein/well in a 96 well plate), 50 μl of compound or reference ligand (Substance P) at increasing concentrations (diluted in assay buffer) and 2 nM [3H] substance P. The plate was incubated 60 min at 25° C. in a water bath and then filtered over GF/C filters (Perkin Elmer, 6005174, presoaked in 0.5% PEI for 2 h at room temperature) with a Filtration unit (Perkin Elmer). The radioactivity retained on the filters was measured by using the TopCount-NXT reader (Packard). Competition curves were obtained for compounds of the invention and the concentrations of compounds which displaced 50% of bound radioligand (IC50) were determined and then apparent inhibition constant Ki values were calculated by the following equation: Ki=IC50/(1+[L]/KD) where [L] is the concentration of free radioligand and KD is its dissociation constant at the receptor, derived from saturation binding experiments (Cheng and Prusoff, 1973). B 4.52 pKi >30000 nM Ki US-10836768-B2. N-acyl-(3-substituted)-(8-substituted)-5,6-dihydro-[1,2,4]triazolo[4,3-a]pyrazines as selective NK-3 receptor antagonists (2020)
Kv11.1/Voltage-gated inwardly rectifying potassium channel KCNH2 in Human (target type: SINGLE PROTEIN) [ChEMBL: CHEMBL240] [GtoPdb: 572] [UniProtKB: Q12809]
ChEMBL Inhibition of human ERG B 4 pIC50 >100000 nM IC50 ACS Med Chem Lett (2015) 6: 736-740 [PMID:26191358]
ChEMBL Inhibition Assay: The hERG inhibition study aims at quantifying the in vitro effects of compounds of the invention on the potassium-selective IKr current generated in normoxic conditions in stably transfected HEK 293 cells with the human ether-a-go-go-related gene (hERG). Whole-cell currents (acquisition by manual patch-clamp) elicited during a voltage pulse were recorded in baseline conditions and following application of tested compounds (5 minutes of exposure). The concentrations of tested compounds (0.3 μM; 3 μM; 10 μM; 30 μM) reflect a range believed to exceed the concentrations at expected efficacy doses in preclinical models. The pulses protocol applied is described as follow: the holding potential (every 3 seconds) was stepped from −80 mV to a maximum value of +40 mV, starting with −40 mV, in eight increments of +10 mV, for a period of 1 second. The membrane potential was then returned to −55 mV, after each of these incremented steps, for 1 second and finally repolarized to −80 mV for 1 second. B 4.15 pIC50 70000 nM IC50 US-9422299-B2. Substituted [1,2,4]triazolo[4,3-a]pyrazines as selective NK-3 receptor antagonists (2016)
ChEMBL hERG Inhibition Assay: The human ether-a-go-go related gene (hERG) encodes the inward rectifying voltage gated potassium channel in the heart (IKr) which is involved in cardiac repolarisation. IKr current inhibition has been shown to elongate the cardiac action potential, a phenomenon associated with increased risk of arrhythmia. IKr current inhibition accounts for the vast majority of known cases of drug-induced QT-prolongation. A number of drugs have been withdrawn from late stage clinical trials due to these cardiotoxic effects, therefore it is important to identify inhibitors early in drug discovery.The hERG inhibition study aims at quantifying the in vitro effects of compounds of the invention on the potassium-selective IKr current generated in normoxic conditions in stably transfected HEK 293 cells with the human ether-a-go-go-related gene (hERG).Whole-cell currents (acquisition by manual patch-clamp) elicited during a voltage pulse were recorded in baseline conditions and following application of tested compounds (5 minutes of exposure). The concentrations of tested compounds (0.3 μM; 3 μM; 10 μM; 30 μM) reflect a range believed to exceed the concentrations at expected efficacy doses in preclinical models.The pulses protocol applied is described as follow: the holding potential (every 3 seconds) was stepped from −80 mV to a maximum value of +40 mV, starting with −40 mV, in eight increments of +10 mV, for a period of 1 second. The membrane potential was then returned to −55 mV, after each of these incremented steps, for 1 second and finally repolarized to −80 mV for 1 second.The current density recorded were normalized against the baseline conditions and corrected for solvent effect and time-dependent current run-down using experimental design in test compound free conditions.Inhibition curves were obtained for compounds and the concentrations which decreased 50% of the current density determined in the baseline conditions (IC50) were determined. All compounds for which the IC50 value is above 10 μM are not considered to be potent inhibitors of the hERG channel whereas compounds with IC50 values below 1 μM are considered potent hERG channel inhibitors. B 4.15 pIC50 70000 nM IC50 US-10030025-B2. Substituted [1,2,4]triazolo[4,3-a]pyrazines as selective NK-3 receptor antagonists (2018)
ChEMBL hERG Inhibition Assay: The human ether-a-go-go related gene (hERG) encodes the inward rectifying voltage gated potassium channel in the heart (Igr) which is involved in cardiac repolarisation. IK r current inhibition has been shown to elongate the cardiac action potential, a phenomenon associated with increased risk of arrhythmia. IK r current inhibition accounts for the vast majority of known cases of drug-induced QT-prolongation. A number of drugs have been withdrawn from late stage clinical trials due to these cardiotoxic effects, therefore it is important to identify inhibitors early in drug discovery.The hERG inhibition study aims at quantifying the in vitro effects of compounds of the invention on the potassium-selective IK r current generated in normoxic conditions in stably transfected HEK 293 cells with the human ether-a-go-go-related gene (hERG).Whole-cell currents (acquisition by manual patch-clamp) elicited during a voltage pulse were recorded in baseline conditions and following application of tested compounds (5 minutes of exposure). The concentrations of tested compounds (0.3 μM; 3 μM; 10 μM; 30 μM) reflect a range believed to exceed the concentrations at expected efficacy doses in preclinical models.The pulses protocol applied is described as follow: the holding potential (every 3 seconds) was stepped from −80 mV to a maximum value of +40 mV, starting with −40 mV, in eight increments of +10 mV, for a period of 1 second. The membrane potential was then returned to −55 mV, after each of these incremented steps, for 1 second and finally repolarized to −80 mV for 1 second.The current density recorded were normalized against the baseline conditions and corrected for solvent effect and time-dependent current run-down using experimental design in test compound free conditions.Inhibition curves were obtained for compounds and the concentrations which decreased 50% of the current density determined in the baseline conditions (IC50) were determined. All compounds for which the IC50 value is above 10 μM are not considered to be potent inhibitors of the hERG channel whereas compounds with IC50 values below 1 μM are considered potent hERG channel inhibitors. B 4.15 pIC50 70000 nM IC50 US-10836768-B2. N-acyl-(3-substituted)-(8-substituted)-5,6-dihydro-[1,2,4]triazolo[4,3-a]pyrazines as selective NK-3 receptor antagonists (2020)

ChEMBL data shown on this page come from version 36:

Zdrazil B, Felix E, Hunter F, Manners EJ, Blackshaw J, Corbett S, de Veij M, Ioannidis H, Lopez DM, Mosquera JF, Magarinos MP, Bosc N, Arcila R, Kizilören T, Gaulton A, Bento AP, Adasme MF, Monecke P, Landrum GA, Leach AR. (2024). The ChEMBL Database in 2023: a drug discovery platform spanning multiple bioactivity data types and time periods. Nucleic Acids Res., 52(D1). DOI: 10.1093/nar/gkad1004. [EPMCID:10767899] [PMID:37933841]
Davies M, Nowotka M, Papadatos G, Dedman N, Gaulton A, Atkinson F, Bellis L, Overington JP. (2015) 'ChEMBL web services: streamlining access to drug discovery data and utilities.' Nucleic Acids Res., 43(W1). DOI: 10.1093/nar/gkv352. [EPMCID:25883136]