Top ▲
L-arginine is a basic amino acid with a guanidino sidechain. As an amino acid, metabolism of L-arginine to form L-ornithine, catalysed by arginase, forms the last step of the urea production cycle. L-Ornithine may be utilised as a precursor of polyamines (see Carboxylases and Decarboxylases) or recycled via L-argininosuccinic acid to L-arginine. L-Arginine may itself be decarboxylated to form agmatine, although the prominence of this pathway in human tissues is uncertain. L-Arginine may be used as a precursor for guanidoacetic acid formation in the creatine synthesis pathway under the influence of arginine:glycine amidinotransferase with L-ornithine as a byproduct. Nitric oxide synthase uses L-arginine to generate nitric oxide, with L-citrulline also as a byproduct.
L-Arginine in proteins may be subject to post-translational modification through methylation, catalysed by protein arginine methyltransferases. Subsequent proteolysis can liberate asymmetric NG,NG-dimethyl-L-arginine (ADMA), which is an endogenous inhibitor of nitric oxide synthase activities. ADMA is hydrolysed by dimethylarginine dimethylhydrolase activities to generate L-citrulline and dimethylamine.
Families that contain targets of relevance to immunopharmacology are highlighted in blue |
|
Database page citation:
L-Arginine turnover. Accessed on 04/10/2024. IUPHAR/BPS Guide to PHARMACOLOGY, http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=239.
Concise Guide to PHARMACOLOGY citation:
Alexander SPH, Fabbro D, Kelly E, Mathie A, Peters JA, Veale EL, Armstrong JF, Faccenda E, Harding SD, Pawson AJ, Sharman JL, Southan C, Davies JA; CGTP Collaborators. (2019) The Concise Guide to PHARMACOLOGY 2019/20: Enzymes. Br J Pharmacol. 176 Issue S1: S297-S396.