Top ▲

chemerin receptor 2

Click here for help

Target not currently curated in GtoImmuPdb

Target id: 82

Nomenclature: chemerin receptor 2

Abbreviated Name: Chemerin2

Family: Chemerin receptors

Gene and Protein Information Click here for help
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 355 2q33.3 CMKLR2 chemerin chemokine-like receptor 2 16
Mouse 7 353 1 C2 Cmklr2 chemerin chemokine-like receptor 2 24
Rat 7 353 9q32 Cmklr2 chemerin chemokine-like receptor 2 15
Previous and Unofficial Names Click here for help
Gpr1 | GPR1 | G protein-coupled receptor 1 | Chemerin2 [13]
Database Links Click here for help
Specialist databases
GPCRdb gpr1_human (Hs), gpr1_mouse (Mm), gpr1_rat (Rn)
Other databases
Alphafold
ChEMBL Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Natural/Endogenous Ligands Click here for help
chemerin {Sp: Human}

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
chemerin {Sp: Human} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Hs Full agonist 8.3 pKd 1
pKd 8.3 (Kd 5.3x10-9 M) [1]
chemerin {Sp: Human} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Hs Full agonist 8.8 – 9.6 pEC50 1,23
pEC50 8.8 – 9.6 (EC50 2.4x10-10 M) [1,23]
chemerin C-terminal peptide Peptide Click here for species-specific activity table Hs Agonist 9.0 pEC50 1
pEC50 9.0 (EC50 1x10-9 M) [1]
OSTN (81-102) Peptide Hs Agonist 6.2 pEC50 7
pEC50 6.2 (EC50 6.6x10-7 M) [7]
Agonist Comments
GPR1 has been described as a receptor for chemerin, although its functional relevance is currently unknown [2,23]. vMIP-I was found to be a strong inhibitor of HIV infection mediated by GPR1 [21].
Tissue Distribution Click here for help
Fetal astrocytes
Species:  Human
Technique:  RT-PCR
References:  3
Hippocampus
Species:  Human
Technique:  Northern blot
References:  16
Trophoblastic cells from early placenta
Species:  Human
Technique:  RT-PCR
References:  17
Oral keratinocytes
Species:  Human
Technique:  RT-PCR
References:  12
CD4+ alveolar macrophages
Species:  Human
Technique:  RT-PCR
References:  6
Mesangial cells
Species:  Human
Technique:  RT-PCR, Western blot
References:  25
Diencephalon, dorsal root ganglion, tongue, fetal liver, spongiotrophoblast layer of the placenta
Species:  Mouse
Technique:  In situ hybridisation
References:  9
Hippocampus
Species:  Rat
Technique:  Northern blot
References:  15
Tissue Distribution Comments
Rhesus macaque brain capillary endothelial cells express GPR1 [5], as do simian astrocytes [3]. GPR1 is upregulated in normal human oral keratinocytes in cell senescence (microarray analysis) [12]. GPR1 has been identified in simian brain progenitor cells by RT-PCR [11].

In addition to the tissue distribution studies outlined above, GPR1 has also been shown to be expressed in the following cells lines:

CEMss, U87, HeLa and 293T mouse cell lines using RT-PCR [4]

BT-3,U87/CD4 (high); BT-20/Nm (medium); C8166 (low) human cell lines using RT-PCR [19]
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Gene Expression and Pathophysiology Comments
GPR1 serves as a coreceptor for SIV and HIV [6,8,18,26], although use of receptors other than CCR5 by HIV has been shown to be rare in vitro [27]. Only one SIV Env protein, BK28, can mediate infection via GPR1 in a CD4-dependent manner [4,14,25]. Utilisation of orphan receptors as coreceptors is variable and heterogenous [22], although one paper demonstrates GPR1's action as a coreceptor allowing replication of HIV type 1 and 2 in brain derived cell lines [19]. Inhibition of HIV-1 infection can be achieved with synthetic peptide analogues derived from the NH2 terminal extracellular region of GPR1 [10]. A small domain of a few amino acids containing a tyrosine is critical for the co-receptor activity of GPR1 [20].
Biologically Significant Variants Click here for help
Type:  Single nucleotide polymorphism
Species:  Human
Amino acid change:  I307V
Global MAF (%):  47
Subpopulation MAF (%):  AFR|AMR|ASN|EUR: 63|58|25|49
Minor allele count:  C=0.471/1029
SNP accession: 
Validation:  1000 Genomes, HapMap, Frequency

References

Show »

1. Barnea G, Strapps W, Herrada G, Berman Y, Ong J, Kloss B, Axel R, Lee KJ. (2008) The genetic design of signaling cascades to record receptor activation. Proc Natl Acad Sci USA, 105 (1): 64-9. [PMID:18165312]

2. Bondue B, Wittamer V, Parmentier M. (2011) Chemerin and its receptors in leukocyte trafficking, inflammation and metabolism. Cytokine Growth Factor Rev, 22 (5-6): 331-8. [PMID:22119008]

3. Croitoru-Lamoury J, Guillemin GJ, Boussin FD, Mognetti B, Gigout LI, Chéret A, Vaslin B, Le Grand R, Brew BJ, Dormont D. (2003) Expression of chemokines and their receptors in human and simian astrocytes: evidence for a central role of TNF alpha and IFN gamma in CXCR4 and CCR5 modulation. Glia, 41 (4): 354-70. [PMID:12555203]

4. Edinger AL, Hoffman TL, Sharron M, Lee B, O'Dowd B, Doms RW. (1998) Use of GPR1, GPR15, and STRL33 as coreceptors by diverse human immunodeficiency virus type 1 and simian immunodeficiency virus envelope proteins. Virology, 249 (2): 367-78. [PMID:9791028]

5. Edinger AL, Mankowski JL, Doranz BJ, Margulies BJ, Lee B, Rucker J, Sharron M, Hoffman TL, Berson JF, Zink MC, Hirsch VM, Clements JE, Doms RW. (1997) CD4-independent, CCR5-dependent infection of brain capillary endothelial cells by a neurovirulent simian immunodeficiency virus strain. Proc Natl Acad Sci USA, 94 (26): 14742-7. [PMID:9405683]

6. Farzan M, Choe H, Martin K, Marcon L, Hofmann W, Karlsson G, Sun Y, Barrett P, Marchand N, Sullivan N, Gerard N, Gerard C, Sodroski J. (1997) Two orphan seven-transmembrane segment receptors which are expressed in CD4-positive cells support simian immunodeficiency virus infection. J Exp Med, 186 (3): 405-11. [PMID:9236192]

7. Foster SR, Hauser AS, Vedel L, Strachan RT, Huang XP, Gavin AC, Shah SD, Nayak AP, Haugaard-Kedström LM, Penn RB et al.. (2019) Discovery of Human Signaling Systems: Pairing Peptides to G Protein-Coupled Receptors. Cell, 179 (4): 895-908.e21. [PMID:31675498]

8. Gabuzda D, Wang J. (1999) Chemokine receptors and virus entry in the central nervous system. J Neurovirol, 5 (6): 643-58. [PMID:10602405]

9. Hiura H, Sugawara A, Ogawa H, John RM, Miyauchi N, Miyanari Y, Horiike T, Li Y, Yaegashi N, Sasaki H, Kono T, Arima T. (2010) A tripartite paternally methylated region within the Gpr1-Zdbf2 imprinted domain on mouse chromosome 1 identified by meDIP-on-chip. Nucleic Acids Res, 38 (15): 4929-45. [PMID:20385583]

10. Ikeda K, Konishi K, Sato M, Hoshino H, Tanaka K. (2001) Inhibition of HIV-1 infection by synthetic peptide analogues derived from the NH(2)-Terminal extracellular region of GPR1. Bioorg Med Chem Lett, 11 (19): 2607-9. [PMID:11551760]

11. Iwata N, Yoshida H, Tobiume M, Ono F, Shimazaki T, Sata T, Nakajima N. (2007) Simian fetal brain progenitor cells for studying viral neuropathogenesis. J Neurovirol, 13 (1): 11-22. [PMID:17454444]

12. Kang MK, Kameta A, Shin KH, Baluda MA, Kim HR, Park NH. (2003) Senescence-associated genes in normal human oral keratinocytes. Exp Cell Res, 287 (2): 272-81. [PMID:12837283]

13. Kennedy AJ, Davenport AP. (2018) International Union of Basic and Clinical Pharmacology CIII: Chemerin Receptors CMKLR1 (Chemerin1) and GPR1 (Chemerin2) Nomenclature, Pharmacology, and Function. Pharmacol Rev, 70 (1): 174-196. [PMID:29279348]

14. Liu HY, Soda Y, Shimizu N, Haraguchi Y, Jinno A, Takeuchi Y, Hoshino H. (2000) CD4-Dependent and CD4-independent utilization of coreceptors by human immunodeficiency viruses type 2 and simian immunodeficiency viruses. Virology, 278 (1): 276-88. [PMID:11112502]

15. Marchese A, Cheng R, Lee MC, Porter CA, Heiber M, Goodman M, George SR, O'Dowd BF. (1994) Mapping studies of two G protein-coupled receptor genes: an amino acid difference may confer a functional variation between a human and rodent receptor. Biochem Biophys Res Commun, 205 (3): 1952-8. [PMID:7811287]

16. Marchese A, Docherty JM, Nguyen T, Heiber M, Cheng R, Heng HH, Tsui LC, Shi X, George SR, O'Dowd BF. (1994) Cloning of human genes encoding novel G protein-coupled receptors. Genomics, 23 (3): 609-18. [PMID:7851889]

17. Mognetti B, Moussa M, Croitoru J, Menu E, Dormont D, Roques P, Chaouat G. (2000) HIV-1 co-receptor expression on trophoblastic cells from early placentas and permissivity to infection by several HIV-1 primary isolates. Clin Exp Immunol, 119 (3): 486-92. [PMID:10691921]

18. Ohagen A, Devitt A, Kunstman KJ, Gorry PR, Rose PP, Korber B, Taylor J, Levy R, Murphy RL, Wolinsky SM, Gabuzda D. (2003) Genetic and functional analysis of full-length human immunodeficiency virus type 1 env genes derived from brain and blood of patients with AIDS. J Virol, 77 (22): 12336-45. [PMID:14581570]

19. Shimizu N, Soda Y, Kanbe K, Liu HY, Jinno A, Kitamura T, Hoshino H. (1999) An orphan G protein-coupled receptor, GPR1, acts as a coreceptor to allow replication of human immunodeficiency virus types 1 and 2 in brain-derived cells. J Virol, 73 (6): 5231-9. [PMID:10233994]

20. Shimizu N, Tanaka A, Oue A, Mori T, Apichartpiyakul C, Hoshino H. (2008) A short amino acid sequence containing tyrosine in the N-terminal region of G protein-coupled receptors is critical for their potential use as co-receptors for human and simian immunodeficiency viruses. J Gen Virol, 89 (Pt 12): 3126-36. [PMID:19008402]

21. Simmons G, Reeves JD, Hibbitts S, Stine JT, Gray PW, Proudfoot AE, Clapham PR. (2000) Co-receptor use by HIV and inhibition of HIV infection by chemokine receptor ligands. Immunol Rev, 177: 112-26. [PMID:11138769]

22. Singh A, Besson G, Mobasher A, Collman RG. (1999) Patterns of chemokine receptor fusion cofactor utilization by human immunodeficiency virus type 1 variants from the lungs and blood. J Virol, 73 (8): 6680-90. [PMID:10400765]

23. Southern C, Cook JM, Neetoo-Isseljee Z, Taylor DL, Kettleborough CA, Merritt A, Bassoni DL, Raab WJ, Quinn E, Wehrman TS et al.. (2013) Screening β-Arrestin Recruitment for the Identification of Natural Ligands for Orphan G-Protein-Coupled Receptors. J Biomol Screen, 18 (5): 599-609. [PMID:23396314]

24. Tanaka TS, Jaradat SA, Lim MK, Kargul GJ, Wang X, Grahovac MJ, Pantano S, Sano Y, Piao Y, Nagaraja R et al.. (2000) Genome-wide expression profiling of mid-gestation placenta and embryo using a 15,000 mouse developmental cDNA microarray. Proc Natl Acad Sci USA, 97 (16): 9127-32. [PMID:10922068]

25. Tokizawa S, Shimizu N, Hui-Yu L, Deyu F, Haraguchi Y, Oite T, Hoshino H. (2000) Infection of mesangial cells with HIV and SIV: identification of GPR1 as a coreceptor. Kidney Int, 58 (2): 607-17. [PMID:10916084]

26. Vödrös D, Thorstensson R, Doms RW, Fenyö EM, Reeves JD. (2003) Evolution of coreceptor use and CD4-independence in envelope clones derived from SIVsm-infected macaques. Virology, 316 (1): 17-28. [PMID:14599787]

27. Zhang YJ, Dragic T, Cao Y, Kostrikis L, Kwon DS, Littman DR, KewalRamani VN, Moore JP. (1998) Use of coreceptors other than CCR5 by non-syncytium-inducing adult and pediatric isolates of human immunodeficiency virus type 1 is rare in vitro. J Virol, 72 (11): 9337-44. [PMID:9765485]

Contributors

Show »

How to cite this page