Top ▲
Target not currently curated in GtoImmuPdb
Target id: 386
Nomenclature: KNa1.2
Family: Calcium- and sodium-activated potassium channels (KCa, KNa)
Gene and Protein Information | |||||||
Species | TM | P Loops | AA | Chromosomal Location | Gene Symbol | Gene Name | Reference |
Human | 6 | 0 | 1135 | 1q31.3 | KCNT2 | potassium sodium-activated channel subfamily T member 2 | 5,18 |
Mouse | 6 | 0 | 1142 | 1F | Kcnt2 | potassium channel, subfamily T, member 2 | 18,22 |
Rat | 6 | 0 | 1142 | 13q21 | Kcnt2 | potassium sodium-activated channel subfamily T member 2 | 5,13 |
Database Links | |
Alphafold | Q6UVM3 (Hs), Q6UVM4 (Rn) |
ChEMBL Target | CHEMBL4739693 (Hs) |
Ensembl Gene | ENSG00000162687 (Hs), ENSMUSG00000052726 (Mm), ENSRNOG00000013312 (Rn) |
Entrez Gene | 343450 (Hs), 240776 (Mm), 304827 (Rn) |
Human Protein Atlas | ENSG00000162687 (Hs) |
KEGG Gene | hsa:343450 (Hs), mmu:240776 (Mm), rno:304827 (Rn) |
OMIM | 610044 (Hs) |
Pharos | Q6UVM3 (Hs) |
RefSeq Nucleotide | NM_198503 (Hs), NM_001081027 (Mm), NM_198762 (Rn) |
RefSeq Protein | NP_940905 (Hs), NP_001074496 (Mm), NP_942057 (Rn) |
UniProtKB | Q6UVM3 (Hs), Q6UVM4 (Rn) |
Wikipedia | KCNT2 (Hs) |
Functional Characteristics | |
KNa |
Ion Selectivity and Conductance | ||||||
|
||||||
|
||||||
|
Voltage Dependence | ||||||||||||||||||||||
|
||||||||||||||||||||||
|
Download all structure-activity data for this target as a CSV file
Activators | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | View all chemical structures | Click column headers to sort | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
View species-specific activator tables | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Activator Comments | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Cytoplasmic Na+; 5-fold increase in NPo from 1-100mM Na+, with 30mM Cl- and Cytoplasmic Cl-; 5-fold increase in NPo from 3-130mM Cl-, with 5 mM Na+. [1] |
Gating inhibitors | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | View all chemical structures | Click column headers to sort | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
View species-specific gating inhibitor tables |
Channel Blockers | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | View all chemical structures | Click column headers to sort | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
View species-specific channel blocker tables |
Tissue Distribution | ||||||||
|
||||||||
|
||||||||
|
General Comments |
KCNT1 and KCNT2 likely encode native KNa channels [8,15,25]. Native KNa channels were first recorded from guinea pig cardiac myocytes [16], then later found widely in neurons in the vertebrate central nervous system [9-10,14,17,19-20,24] and dorsal root ganglia [3]. KNa1.2 channels can form heteromultimers with the Slack-B isoform of KNa1.1 channels [4]. KNa1.2 channels are more widely distributed than KNa1.1 channels. They are also more sensitive to Cl- and slightly less sensitive to Na+ than KNa1.1 [1]. The primary residue allowing regulation of KNa1.2 channels by intracellular Na+ is Asp757 in the cytoplasmic C-terminal domain [23], which is allosterically coupled to channel activation [11]. |
1. Bhattacharjee A, Joiner WJ, Wu M, Yang Y, Sigworth FJ, Kaczmarek LK. (2003) Slick (Slo2.1), a rapidly-gating sodium-activated potassium channel inhibited by ATP. J Neurosci, 23 (37): 11681-91. [PMID:14684870]
2. Bhattacharjee A, von Hehn CA, Mei X, Kaczmarek LK. (2005) Localization of the Na+-activated K+ channel Slick in the rat central nervous system. J Comp Neurol, 484 (1): 80-92. [PMID:15717307]
3. Bischoff U, Vogel W, Safronov BV. (1998) Na+-activated K+ channels in small dorsal root ganglion neurones of rat. J Physiol (Lond.), 510 ( Pt 3): 743-54. [PMID:9660890]
4. Chen H, Kronengold J, Yan Y, Gazula VR, Brown MR, Ma L, Ferreira G, Yang Y, Bhattacharjee A, Sigworth FJ et al.. (2009) The N-terminal domain of Slack determines the formation and trafficking of Slick/Slack heteromeric sodium-activated potassium channels. J Neurosci, 29 (17): 5654-65. [PMID:19403831]
5. Chen Y, Yu FH, Surmeier DJ, Scheuer T, Catterall WA. (2006) Neuromodulation of Na+ channel slow inactivation via cAMP-dependent protein kinase and protein kinase C. Neuron, 49 (3): 409-20. [PMID:16446144]
6. Dai L, Garg V, Sanguinetti MC. (2010) Activation of Slo2.1 channels by niflumic acid. J Gen Physiol, 135 (3): 275-95. [PMID:20176855]
7. de Los Angeles Tejada M, Stolpe K, Meinild AK, Klaerke DA. (2012) Clofilium inhibits Slick and Slack potassium channels. Biologics, 6: 465-70. [PMID:23271893]
8. Dryer SE. (2003) Molecular identification of the Na+-activated K+ channel. Neuron, 37 (5): 727-8. [PMID:12628162]
9. Egan TM, Dagan D, Kupper J, Levitan IB. (1992) Na(+)-activated K+ channels are widely distributed in rat CNS and in Xenopus oocytes. Brain Res, 584 (1-2): 319-21. [PMID:1515948]
10. Egan TM, Dagan D, Kupper J, Levitan IB. (1992) Properties and rundown of sodium-activated potassium channels in rat olfactory bulb neurons. J Neurosci, 12 (5): 1964-76. [PMID:1578280]
11. Garg P, Gardner A, Garg V, Sanguinetti MC. (2013) Structural basis of ion permeation gating in Slo2.1 K+ channels. J Gen Physiol, 142 (5): 523-42. [PMID:24166878]
12. Garg P, Sanguinetti MC. (2012) Structure-activity relationship of fenamates as Slo2.1 channel activators. Mol Pharmacol, 82 (5): 795-802. [PMID:22851714]
13. Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, Scherer S, Scott G, Steffen D, Worley KC, Burch PE et al.. (2004) Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature, 428 (6982): 493-521. [PMID:15057822]
14. Hess D, Nanou E, El Manira A. (2007) Characterization of Na+-activated K+ currents in larval lamprey spinal cord neurons. J Neurophysiol, 97 (5): 3484-93. [PMID:17329626]
15. Kaczmarek LK. (2013) Slack, Slick and Sodium-Activated Potassium Channels. ISRN Neurosci, 2013 (2013). [PMID:24319675]
16. Kameyama M, Kakei M, Sato R, Shibasaki T, Matsuda H, Irisawa H. (1984) Intracellular Na+ activates a K+ channel in mammalian cardiac cells. Nature, 309 (5966): 354-6. [PMID:6328309]
17. Koh DS, Jonas P, Vogel W. (1994) Na(+)-activated K+ channels localized in the nodal region of myelinated axons of Xenopus. J Physiol (Lond.), 479 ( Pt 2): 183-97. [PMID:7799220]
18. Mouse Genome Sequencing Consortium, Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M et al.. (2002) Initial sequencing and comparative analysis of the mouse genome. Nature, 420 (6915): 520-62. [PMID:12466850]
19. Nanou E, El Manira A. (2007) A postsynaptic negative feedback mediated by coupling between AMPA receptors and Na+-activated K+ channels in spinal cord neurones. Eur J Neurosci, 25 (2): 445-50. [PMID:17284185]
20. Safronov BV, Vogel W. (1996) Properties and functions of Na(+)-activated K+ channels in the soma of rat motoneurones. J Physiol (Lond.), 497 ( Pt 3): 727-34. [PMID:9003557]
21. Santi CM, Ferreira G, Yang B, Gazula VR, Butler A, Wei A, Kaczmarek LK, Salkoff L. (2006) Opposite regulation of Slick and Slack K+ channels by neuromodulators. J Neurosci, 26 (19): 5059-68. [PMID:16687497]
22. Strausberg RL, Feingold EA, Grouse LH, Derge JG, Klausner RD, Collins FS, Wagner L, Shenmen CM, Schuler GD, Altschul SF et al.. (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci USA, 99 (26): 16899-903. [PMID:12477932]
23. Thomson SJ, Hansen A, Sanguinetti MC. (2015) Identification of the Intracellular Na+ Sensor in Slo2.1 Potassium Channels. J Biol Chem, 290 (23): 14528-35. [PMID:25903137]
24. Yang B, Desai R, Kaczmarek LK. (2007) Slack and Slick K(Na) channels regulate the accuracy of timing of auditory neurons. J Neurosci, 27 (10): 2617-27. [PMID:17344399]
25. Yuan A, Santi CM, Wei A, Wang ZW, Pollak K, Nonet M, Kaczmarek L, Crowder CM, Salkoff L. (2003) The sodium-activated potassium channel is encoded by a member of the Slo gene family. Neuron, 37 (5): 765-73. [PMID:12628167]