Top ▲
Gene and Protein Information | ||||||
class A G protein-coupled receptor | ||||||
Species | TM | AA | Chromosomal Location | Gene Symbol | Gene Name | Reference |
Human | 7 | 328 | 8q11.23 | NPBWR1 | neuropeptides B and W receptor 1 | |
Mouse | 7 | 329 | 1 A1 | Npbwr1 | neuropeptides B/W receptor 1 | |
Rat | 7 | 329 | 5q12 | Npbwr1 | neuropeptides B and W receptor 1 |
Previous and Unofficial Names |
GPR7 | G protein-coupled receptor 7 | neuropeptides B/W receptor type 1 |
Database Links | |
Specialist databases | |
GPCRdb | npbw1_human (Hs), npbw1_mouse (Mm), npbw1_rat (Rn) |
Other databases | |
Alphafold | P48145 (Hs), P49681 (Mm), Q56UD9 (Rn) |
ChEMBL Target | CHEMBL1293293 (Hs), CHEMBL1938219 (Mm) |
Ensembl Gene | ENSG00000288611 (Hs), ENSMUSG00000033774 (Mm), ENSRNOG00000007640 (Rn) |
Entrez Gene | 2831 (Hs), 226304 (Mm), 297795 (Rn) |
Human Protein Atlas | ENSG00000288611 (Hs) |
KEGG Gene | hsa:2831 (Hs), mmu:226304 (Mm), rno:297795 (Rn) |
OMIM | 600730 (Hs) |
Pharos | P48145 (Hs) |
RefSeq Nucleotide | NM_005285 (Hs), NM_010342 (Mm), NM_001014784 (Rn) |
RefSeq Protein | NP_005276 (Hs), NP_034472 (Mm), NP_001014784 (Rn) |
UniProtKB | P48145 (Hs), P49681 (Mm), Q56UD9 (Rn) |
Wikipedia | NPBWR1 (Hs) |
Natural/Endogenous Ligands |
des-Br-neuropeptide B-23 {Sp: Human} |
des-Br-neuropeptide B-29 {Sp: Human} |
neuropeptide B-23 {Sp: Human} |
neuropeptide B-29 {Sp: Human} |
neuropeptide B-23 {Sp: Mouse} |
neuropeptide B-29 {Sp: Mouse} |
neuropeptide B-23 {Sp: Rat} |
neuropeptide B-29 {Sp: Rat} |
neuropeptide W-23 {Sp: Human} |
neuropeptide W-30 {Sp: Human} , neuropeptide W-30 {Sp: Mouse} |
neuropeptide W-23 {Sp: Mouse, Rat} |
neuropeptide W-30 {Sp: Rat} |
Potency order of endogenous ligands (Human) |
neuropeptide B-29 (NPB, Q8NG41) > neuropeptide B-23 (NPB, Q8NG41) > neuropeptide W-23 (NPW, Q8N729) > neuropeptide W-30 (NPW, Q8N729) [2] |
Download all structure-activity data for this target as a CSV file
Agonists | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | View all chemical structures | Click column headers to sort | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
View species-specific agonist tables | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Agonist Comments | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The potency data above is found from several binding assays where the experimental conditions may not be consistent. Results from functional studies give the rank order of affinity as: NPB-29 > NPB-23 > NPW-23 > NPW-30 [2]. This order of potency generated from functional assays is generally more accepted than the rank order generated from the binding data, shown below. Deletion of the first tryptophan residue in both NPB and NPW results in significant reduction in potency suggesting that the N-terminus is involved in receptor binding and signal transduction. There does not seem to be significant differences in the potency of peptides between humans, rats and mice which may be expected as the peptides share considerable homology with species. Immunocytochemical localisation studies have reported the presence of these peptides in discrete regions of the central nervous system, particularly within the amygdala and hypothalamus or within the cell bodies of neurones which project to areas expressing the NPBW1 receptor [3-4,14]. In the periphery, NPW-like immunoreactivity has been localised to the renal glomeruli, as well as the endothelium of both the left internal mammary artery and the endocardium. It has yet to be determined whether NPB or NPW circulate in human plasma. The de-brominated forms of the endogenous ligands neuropeptide B-23 and neuropeptide B-29, des-Br-neuropeptide B-29 and des-Br-neuropeptide-23 were not found to be major components of bovine hypothalamus [5]. |
Antagonist Comments | ||
No antagonists are currently available for NPBW1. |
Allosteric Modulator Comments | ||
It is currently unknown whether there are allosteric regulators for NPBW1. |
Primary Transduction Mechanisms | |
Transducer | Effector/Response |
Gi/Go family | Adenylyl cyclase inhibition |
Comments: NPB has been shown to stimulate the Gq/G11 phospholipase C pathway. However, it has not been conclusively determined whether this is through NPBW1 activation or via another receptor. | |
References: 2,5,13,15 |
Tissue Distribution | ||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
Expression Datasets | |
|
Functional Assays | ||||||||||
|
||||||||||
|
Physiological Functions | ||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
Physiological Consequences of Altering Gene Expression | ||||||||||
|
Phenotypes, Alleles and Disease Models | Mouse data from MGI | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
General Comments |
Fluorescence in situ hybridisation [11] identified NPBW1 chromosomal localisation to 10q11.2 to 10q21.11 whereas human genome and ensembl characteristics of NPBW1 have identified the chromosomal localisation to 8q11.23. NPBW1 is predominantly expressed in the central nervous system of mouse, rat and human. However, reports have suggested a peripheral distribution, in particular the renal tubular epithelial cells and the adrenal gland [9]. The distribution in the CNS appears to show good correlation with the function of modulating feeding. |
1. Baker JR, Cardinal K, Bober C, Taylor MM, Samson WK. (2003) Neuropeptide W acts in brain to control prolactin, corticosterone, and growth hormone release. Endocrinology, 144 (7): 2816-21. [PMID:12810535]
2. Brezillon S, Lannoy V, Franssen JD, Le Poul E, Dupriez V, Lucchetti J, Detheux M, Parmentier M. (2003) Identification of natural ligands for the orphan G protein-coupled receptors GPR7 and GPR8. J Biol Chem, 278 (2): 776-83. [PMID:12401809]
3. Dun SL, Brailoiu GC, Mizuo K, Yang J, Chang JK, Dun NJ. (2005) Neuropeptide B immunoreactivity in the central nervous system of the rat. Brain Res, 1045: 157-163. [PMID:15910774]
4. Dun SL, Brailoiu GC, Yang J, Chang JK, Dun NJ. (2003) Neuropeptide W-immunoreactivity in the hypothalamus and pituitary of the rat. Neurosci Lett, 349 (2): 71-4. [PMID:12946555]
5. Fujii R, Yoshida H, Fukusumi S, Habata Y, Hosoya M, Kawamata Y, Yano T, Hinuma S, Kitada C, Asami T et al.. (2002) Identification of a neuropeptide modified with bromine as an endogenous ligand for GPR7. J Biol Chem, 277 (37): 34010-6. [PMID:12118011]
6. Ishii M, Fei H, Friedman JM. (2003) Targeted disruption of GPR7, the endogenous receptor for neuropeptides B and W, leads to metabolic defects and adult-onset obesity. Proc Natl Acad Sci USA, 100 (18): 10540-5. [PMID:12925742]
7. Lee DK, Nguyen T, Porter CA, Cheng R, George SR, O'Dowd BF. (1999) Two related G protein-coupled receptors: the distribution of GPR7 in rat brain and the absence of GPR8 in rodents. Brain Res Mol Brain Res, 71 (1): 96-103. [PMID:10407191]
8. Levine AS, Winsky-Sommerer R, Huitron-Resendiz S, Grace MK, De Lecea L. (2005) Injection of neuropeptide W into paraventricular nucleus of hypothalamus increases food intake. Am J Physiol Regul Integr Comp Physiol, 288: R1727-R1732. [PMID:15886360]
9. Mazzocchi G, Rebuffat P, Ziolkowska A, Rossi GP, Malendowicz LK, Nussdorfer GG. (2005) G protein receptors 7 and 8 are expressed in human adrenocortical cells, and their endogenous ligands neuropeptides B and w enhance cortisol secretion by activating adenylate cyclase- and phospholipase C-dependent signaling cascades. J Clin Endocrinol Metab, 90 (6): 3466-71. [PMID:15797961]
10. Mondal MS, Yamaguchi H, Date Y, Shimbara T, Toshinai K, Shimomura Y, Mori M, Nakazato M. (2003) A role for neuropeptide W in the regulation of feeding behavior. Endocrinology, 144: 4729-4733. [PMID:12959997]
11. O'Dowd BF, Scheideler MA, Nguyen T, Cheng R, Rasmussen JS, Marchese A, Zastawny R, Heng HH, Tsui LC, Shi X et al.. (1995) The cloning and chromosomal mapping of two novel human opioid-somatostatin-like receptor genes, GPR7 and GPR8, expressed in discrete areas of the brain. Genomics, 28 (1): 84-91. [PMID:7590751]
12. Samson WK, Baker JR, Samson CK, Samson HW, Taylor MM. (2004) Central neuropeptide B administration activates stress hormone secretion and stimulates feeding in male rats. J Neuroendocrinol, 16: 842-849. [PMID:15500544]
13. Shimomura Y, Harada M, Goto M, Sugo T, Matsumoto Y, Abe M, Watanabe T, Asami T, Kitada C, Mori M et al.. (2002) Identification of neuropeptide W as the endogenous ligand for orphan G-protein-coupled receptors GPR7 and GPR8. J Biol Chem, 277 (39): 35826-32. [PMID:12130646]
14. Singh G, Maguire JJ, Kuc RE, Fidock M, Davenport AP. (2004) Identification and cellular localisation of NPW1 (GPR7) receptors for the novel neuropeptide W-23 by [125I]-NPW radioligand binding and immunocytochemistry. Brain Res, 1017 (1-2): 222-6. [PMID:15261118]
15. Tanaka H, Yoshida T, Miyamoto N, Motoike T, Kurosu H, Shibata K, Yamanaka A, Williams SC, Richardson JA, Tsujino N et al.. (2003) Characterization of a family of endogenous neuropeptide ligands for the G protein-coupled receptors GPR7 and GPR8. Proc Natl Acad Sci USA, 100 (10): 6251-6. [PMID:12719537]
16. Taylor MM, Yuill EA, Baker JR, Ferri CC, Ferguson AV, Samson WK. (2005) Actions of neuropeptide W in paraventricular hypothalamus: implications for the control of stress hormone secretion. Am J Physiol Regul Integr Comp Physiol, 288 (1): R270-5. [PMID:15345475]
17. Yamamoto T, Saito O, Shono K, Tanabe S. (2005) Anti-hyperalgesic effects of intrathecally administered neuropeptide W-23, and neuropeptide B, in tests of inflammatory pain in rats. Brain Res, 1045 (1-2): 97-106. [PMID:15910767]
18. Zaratin PF, Quattrini A, Previtali SC, Comi G, Hervieu G, Scheideler MA. (2005) Schwann cell overexpression of the GPR7 receptor in inflammatory and painful neuropathies. Mol Cell Neurosci, 28 (1): 55-63. [PMID:15607941]