Top ▲
Target has curated data in GtoImmuPdb
Target id: 2888
Nomenclature: ectonucleoside triphosphate diphosphohydrolase 1
Abbreviated Name: NTPDase-1
Systematic Nomenclature: CD39
Family: Hydrolases & Lipases
Gene and Protein Information | ||||||
Species | TM | AA | Chromosomal Location | Gene Symbol | Gene Name | Reference |
Human | 2 | 510 | 10q24.1 | ENTPD1 | ectonucleoside triphosphate diphosphohydrolase 1 | |
Mouse | 2 | 510 | 19 34.25 cM | Entpd1 | ectonucleoside triphosphate diphosphohydrolase 1 | |
Rat | 2 | 511 | 1q54 | Entpd1 | ectonucleoside triphosphate diphosphohydrolase 1 | |
Gene and Protein Information Comments | ||||||
Several transcript variants encoding different isoforms of human ENTPD1 (CD39) have been reported. We provide details for isoform 1. For the mouse gene we show isoform 2, which corresponds in length to human isoform 1. |
Previous and Unofficial Names |
NTPDase-1 | SPG64 | ATPDase | Ecto-ATPDase 1 | Ecto-apyrase |
Database Links | |
Alphafold | P49961 (Hs), P55772 (Mm), P97687 (Rn) |
BRENDA | 3.6.1.5 |
ChEMBL Target | CHEMBL5722 (Hs), CHEMBL4739681 (Mm), CHEMBL2767 (Rn) |
Ensembl Gene | ENSG00000138185 (Hs), ENSMUSG00000048120 (Mm), ENSRNOG00000014574 (Rn) |
Entrez Gene | 953 (Hs), 12495 (Mm), 64519 (Rn) |
Human Protein Atlas | ENSG00000138185 (Hs) |
KEGG Enzyme | 3.6.1.5 |
KEGG Gene | hsa:953 (Hs), mmu:12495 (Mm), rno:64519 (Rn) |
OMIM | 601752 (Hs) |
Pharos | P49961 (Hs) |
RefSeq Nucleotide | NM_001776 (Hs), NM_009848 (Mm) |
RefSeq Protein | NP_001767 (Hs), NP_033978 (Mm), NM_022587 (Rn), NP_072109 (Rn) |
UniProtKB | P49961 (Hs), P55772 (Mm), P97687 (Rn) |
Wikipedia | ENTPD1 (Hs) |
Enzyme Reaction | ||||||||||
|
Download all structure-activity data for this target as a CSV file
Inhibitors | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | View all chemical structures | Click column headers to sort | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
View species-specific inhibitor tables |
Antibodies | |||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | Click column headers to sort | ||||||||||||||||||||||||||||||||||||||||||||||||||
|
Immunopharmacology Comments |
Via the conversion of ADP/ATP to AMP (CD39; ENTPD1) and AMP to adenosine (CD73; NT5E) these ectonucleotidase enzymes are crucial to the regulation of purinergic signals delivered to immune cells [1]. CD39 is emerging as a promising molecular target in oncology [3]. Upregulated CD39 expression has been identified as a marker of cell exhaustion in tumour-infiltrating CD8+ T cells [6]. Inhibition of the CD39-CD73-adenosine pathway selectively inhibits Treg function and mitigates adenosine-induced immunosuppression in the tumour environment. Increased adenosine levels are reported in tumours, and drives a shift to an anti-inflammatory environment which can promote tumour growth [13]. Increasing evidence validates both of these enzymes as potential druggable targets in cancer [3,10,12]. Innate Pharma has an ongoing anti-CD39 programme (IPH52) in preclinical development (Feb 2017). |
Immuno Process Associations | ||
|
Tissue Distribution | ||||||||
|
||||||||
|
||||||||
|
Physiological Functions | ||||||||
|
||||||||
|
Physiological Consequences of Altering Gene Expression | ||||||||||
|
||||||||||
|
||||||||||
|
1. Antonioli L, Pacher P, Vizi ES, Haskó G. (2013) CD39 and CD73 in immunity and inflammation. Trends Mol Med, 19 (6): 355-67. [PMID:23601906]
2. Baqi Y, Lee SY, Iqbal J, Ripphausen P, Lehr A, Scheiff AB, Zimmermann H, Bajorath J, Müller CE. (2010) Development of potent and selective inhibitors of ecto-5'-nucleotidase based on an anthraquinone scaffold. J Med Chem, 53 (5): 2076-86. [PMID:20146483]
3. Bastid J, Cottalorda-Regairaz A, Alberici G, Bonnefoy N, Eliaou JF, Bensussan A. (2013) ENTPD1/CD39 is a promising therapeutic target in oncology. Oncogene, 32 (14): 1743-51. [PMID:22751118]
4. Brunschweiger A, Iqbal J, Umbach F, Scheiff AB, Munkonda MN, Sévigny J, Knowles AF, Müller CE. (2008) Selective nucleoside triphosphate diphosphohydrolase-2 (NTPDase2) inhibitors: nucleotide mimetics derived from uridine-5'-carboxamide. J Med Chem, 51 (15): 4518-28. [PMID:18630897]
5. Cai XY, Wang XF, Li J, Dong JN, Liu JQ, Li NP, Yun B, Xia RL. (2015) Overexpression of CD39 and high tumoral CD39(+)/CD8(+) ratio are associated with adverse prognosis in resectable gastric cancer. Int J Clin Exp Pathol, 8 (11): 14757-64. [PMID:26823801]
6. Canale FP, Ramello MC, Núñez N, Araujo Furlan CL, Bossio SN, Gorosito Serrán M, Tosello Boari J, Del Castillo A, Ledesma M, Sedlik C et al.. (2018) CD39 Expression Defines Cell Exhaustion in Tumor-Infiltrating CD8+ T Cells. Cancer Res, 78 (1): 115-128. [PMID:29066514]
7. Chappel S, Lake A, Warren M, Dulak A, Devereaux E, Holland PM, Zaidi T, Rausch M, Prinz B, Nielson NP et al.. (2020) Antibodies that bind CD39 and uses thereof. Patent number: US10738128B2. Assignee: Surface Oncology Inc. Priority date: 14/03/2018. Publication date: 11/08/2020.
8. Enjyoji K, Kotani K, Thukral C, Blumel B, Sun X, Wu Y, Imai M, Friedman D, Csizmadia E, Bleibel W et al.. (2008) Deletion of cd39/entpd1 results in hepatic insulin resistance. Diabetes, 57 (9): 2311-20. [PMID:18567823]
9. Enjyoji K, Sévigny J, Lin Y, Frenette PS, Christie PD, Esch 2nd JS, Imai M, Edelberg JM, Rayburn H, Lech M et al.. (1999) Targeted disruption of cd39/ATP diphosphohydrolase results in disordered hemostasis and thromboregulation. Nat Med, 5 (9): 1010-7. [PMID:10470077]
10. Häusler SF, Del Barrio IM, Diessner J, Stein RG, Strohschein J, Hönig A, Dietl J, Wischhusen J. (2014) Anti-CD39 and anti-CD73 antibodies A1 and 7G2 improve targeted therapy in ovarian cancer by blocking adenosine-dependent immune evasion. Am J Transl Res, 6 (2): 129-39. [PMID:24489992]
11. Kansas GS, Wood GS, Tedder TF. (1991) Expression, distribution, and biochemistry of human CD39. Role in activation-associated homotypic adhesion of lymphocytes. J Immunol, 146 (7): 2235-44. [PMID:1672348]
12. Stagg J. (2012) The double-edge sword effect of anti-CD73 cancer therapy. Oncoimmunology, 1 (2): 217-218. [PMID:22720247]
13. Wang L, Fan J, Thompson LF, Zhang Y, Shin T, Curiel TJ, Zhang B. (2011) CD73 has distinct roles in nonhematopoietic and hematopoietic cells to promote tumor growth in mice. J Clin Invest, 121 (6): 2371-82. [PMID:21537079]