Top ▲

S1P1 receptor

Click here for help

Immunopharmacology Ligand  Target has curated data in GtoImmuPdb

Target id: 275

Nomenclature: S1P1 receptor

Family: Lysophospholipid (S1P) receptors

Gene and Protein Information Click here for help
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 382 1p21.2 S1PR1 sphingosine-1-phosphate receptor 1
Mouse 7 382 3 G1 S1pr1 sphingosine-1-phosphate receptor 1
Rat 7 383 2q41 S1pr1 sphingosine-1-phosphate receptor 1
Previous and Unofficial Names Click here for help
CD363 | EDG1 (Edg1) | endothelial differentiation G protein-coupled receptor 1
Database Links Click here for help
Specialist databases
GPCRdb s1pr1_human (Hs), s1pr1_mouse (Mm), s1pr1_rat (Rn)
Other databases
Alphafold
ChEMBL Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Selected 3D Structures Click here for help
Image of receptor 3D structure from RCSB PDB
Description:  Crystal structure of the S1P1 receptor in complex with sphingolipid mimic ML056
PDB Id:  3V2Y
Ligand:  W146
Resolution:  2.8Å
Species:  Human
References:  29
Image of receptor 3D structure from RCSB PDB
Description:  Crystal Structure of a Lipid G protein-Coupled Receptor at 3.35A
PDB Id:  3V2W
Ligand:  W146
Resolution:  3.35Å
Species:  Human
References:  29
Image of receptor 3D structure from RCSB PDB
Description:  Sphingosine-1-phosphate receptor 1-Gi complex bound to S1P
PDB Id:  7TD3
Ligand:  sphingosine 1-phosphate
Resolution:  3.0Å
Species:  Human
References:  41
Natural/Endogenous Ligands Click here for help
dihydrosphingosine 1-phosphate
sphingosine 1-phosphate
sphingosylphosphorylcholine
Comments: Sphingosine 1-phosphate exhibits greater potency than sphingosylphosphorylcholine. LPA is a low potency agonist.
Potency order of endogenous ligands
sphingosine 1-phosphate > dihydrosphingosine 1-phosphate  [5,47]

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
sphingosine 1-phosphate Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Agonist 7.9 – 9.4 pKd 17,38
pKd 7.9 – 9.4 (Kd 1.32x10-8 – 3.9x10-10 M) [17,38]
SEW2871 Small molecule or natural product Ligand has a PDB structure Hs Agonist 5.5 – 7.7 pKi 57
pKi 5.5 – 7.7 (Ki 2.89x10-6 – 1.8x10-8 M) [57]
RP-001 Small molecule or natural product Hs Agonist 11.1 pEC50 13
pEC50 11.1 (EC50 9x10-12 M) [13]
amiselimod phosphate Small molecule or natural product Immunopharmacology Ligand Hs Agonist 10.1 – 10.9 pEC50 64,68
pEC50 10.9 (EC50 1.3x10-11 M) [64]
pEC50 10.1 (EC50 7.5x10-11 M) [68]
Description: In an intracellular Ca2+ mobilization assay.
siponimod Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Immunopharmacology Ligand Hs Agonist 9.4 – 10.1 pEC50 26,50,64
pEC50 10.1 (EC50 7.8x10-11 M) [64]
pEC50 9.4 (EC50 4x10-10 M) [26,50]
Description: In a GTPγS binding assay
ozanimod Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Immunopharmacology Ligand Hs Agonist 9.4 – 9.8 pEC50 27,44,63-64
pEC50 9.8 (EC50 1.6x10-10 M) [27,44,63]
Description: In a cAMP assay.
pEC50 9.5 (EC50 3.3x10-10 M) [64]
pEC50 9.4 (EC50 4.1x10-10 M) [63]
Description: In a GTPγS assay.
RP-101075 Small molecule or natural product Primary target of this compound Click here for species-specific activity table Immunopharmacology Ligand Hs Agonist 9.6 pEC50 69
pEC50 9.6 (EC50 2.7x10-10 M) [69]
Description: As measured in a GTPγS assay.
BMS-986166 Small molecule or natural product Immunopharmacology Ligand Hs Partial agonist 9.2 pEC50 25
pEC50 9.2 (EC50 6x10-10 M) [25]
Description: Data generated using the phosphate metabolite, in a GTPγS recruitment assay
mocravimod-phosphate Small molecule or natural product Click here for species-specific activity table Immunopharmacology Ligand Mm Agonist 9.1 pEC50 65
pEC50 9.1 [65]
AUY954 Small molecule or natural product Click here for species-specific activity table Mm Agonist 9.1 pEC50 51
pEC50 9.1 (EC50 9x10-10 M) [51]
cenerimod Small molecule or natural product Primary target of this compound Ligand has a PDB structure Immunopharmacology Ligand Hs Agonist 9.0 pEC50 53
pEC50 9.0 (EC50 1x10-9 M) [53]
AUY954 Small molecule or natural product Click here for species-specific activity table Hs Agonist 8.9 pEC50 51
pEC50 8.9 (EC50 1.2x10-9 M) [51]
CYM5442 Small molecule or natural product Hs Agonist 8.9 pEC50 27
pEC50 8.9 [27]
sphingosine 1-phosphate Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Mm Agonist 8.9 pEC50 51,57
pEC50 8.9 (EC50 1.4x10-9 M) [51,57]
fingolimod-phosphate Small molecule or natural product Click here for species-specific activity table Mm Agonist 8.2 – 9.5 pEC50 9,65
pEC50 8.2 – 9.5 [9,65]
fingolimod-phosphate Small molecule or natural product Click here for species-specific activity table Hs Agonist 8.1 – 9.5 pEC50 9,20
pEC50 9.5 (EC50 3x10-10 M) [20]
pEC50 8.1 – 9.5 [9,20]
compound 43 [PMID: 26751273] Small molecule or natural product Primary target of this compound Click here for species-specific activity table Immunopharmacology Ligand Hs Agonist 8.8 pEC50 16
pEC50 8.8 [16]
Description: In β-arrestin and receptor internalisation assays.
mocravimod-phosphate Small molecule or natural product Click here for species-specific activity table Immunopharmacology Ligand Rn Full agonist 8.8 pEC50 22
pEC50 8.8 (EC50 1.74x10-9 M) [22]
Description: Potency determined in CHO-K1 cells were stably expressing rat S1P1R using a calcium mobilization assay.
etrasimod Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Immunopharmacology Ligand Hs Agonist 8.2 – 9.2 pEC50 12,64
pEC50 9.2 (EC50 5.7x10-10 M) [64]
pEC50 8.2 (EC50 6.1x10-9 M) [12]
Description: In a β-arrestin recruitment assay.
BMS-986104 derivative 12 Small molecule or natural product Immunopharmacology Ligand Hs Biased agonist 8.7 pEC50 24
pEC50 8.7 (EC50 2.1x10-9 M) [24]
BMS-986104 derivative 24 Small molecule or natural product Immunopharmacology Ligand Hs Biased agonist 8.7 pEC50 24
pEC50 8.7 (EC50 2.1x10-9 M) [24]
AFD(R) Small molecule or natural product Click here for species-specific activity table Hs Agonist 8.4 – 8.8 pEC50 9
pEC50 8.4 – 8.8 [9]
CYM5181 Small molecule or natural product Hs Agonist 8.5 pEC50 27
pEC50 8.5 [27]
sphingosine 1-phosphate Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Hs Agonist 7.1 – 9.5 pEC50 9,34,47,51,57,64
pEC50 9.5 (EC50 2.9x10-10 M) [64]
pEC50 7.1 – 9.4 (EC50 7.94x10-8 – 4x10-10 M) [9,34,47,51,57]
ponesimod Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Immunopharmacology Ligand Hs Agonist 8.0 pEC50 8
pEC50 8.0 (EC50 9.1x10-9 M) [8]
Description: In a radioligand binding assay using membranes from CHO cells expressing human S1P1
icanbelimod Small molecule or natural product Ligand has a PDB structure Immunopharmacology Ligand Hs Agonist 8.0 pEC50 75
pEC50 8.0 (EC50 9.83x10-9 M) [75]
SEW2871 Small molecule or natural product Ligand has a PDB structure Hs Agonist 7.5 – 7.9 pEC50 27,57
pEC50 7.5 – 7.9 (EC50 2.88x10-8 – 1.26x10-8 M) [27,57]
GSK2018682 Small molecule or natural product Click here for species-specific activity table Hs Agonist 7.7 pEC50 72
pEC50 7.7 (EC50 1.99x10-8 M) [72]
SEW2871 Small molecule or natural product Ligand has a PDB structure Mm Agonist 7.7 pEC50 57
pEC50 7.7 (EC50 2.07x10-8 M) [57]
SAR247799 Small molecule or natural product Hs Biased agonist ~6.3 – 7.9 pEC50 54
pEC50 ~6.3 – 7.9 (EC50 ~4.93x10-7 – 1.26x10-8 M) Preferentially activates downstream G protein signaling to a greater extent than β-arrestin and internalization signaling pathways. [54]
Description: Measurements of inhibition of cAMP production in S1P1-CHO cells.
ST-2191 Small molecule or natural product Hs Agonist 5.7 pEC50 66
pEC50 5.7 (EC50 1.99x10-6 M) [66]
fingolimod-phosphate Small molecule or natural product Click here for species-specific activity table Hs Agonist 9.5 pIC50 20
pIC50 9.5 (IC50 3x10-10 M) [20]
compound 26 [PMID: 16190743] Small molecule or natural product Click here for species-specific activity table Hs Agonist 9.2 pIC50 39
pIC50 9.2 [39]
ASP4058 Small molecule or natural product Primary target of this compound Click here for species-specific activity table Immunopharmacology Ligand Hs Agonist 8.1 pIC50 73
pIC50 8.1 (IC50 7.4x10-9 M) [73]
Description: In a GTPγS binding assay.
A-971432 Small molecule or natural product Click here for species-specific activity table Hs Agonist 6.4 pIC50 30
pIC50 6.4 (IC50 3.62x10-7 M) [30]
fingolimod Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Immunopharmacology Ligand Hs Agonist 6.1 pIC50 28
pIC50 6.1 (IC50 8.4x10-7 M) [28]
ST-1505 Small molecule or natural product Click here for species-specific activity table Hs Agonist - - 35
[35]
ST-1478 Small molecule or natural product Click here for species-specific activity table Hs Agonist - - 35
[35]
View species-specific agonist tables
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
SPM-354 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.8 pA2 58
pA2 7.8 [58]
Description: In a β-arrestin assay.
NIBR-0213 Small molecule or natural product Hs Antagonist 9.4 pKd 56
pKd 9.4 (Kd 3.7x10-10 M) [56]
VPC44116 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.5 pKi 21
pKi 8.5 (Ki 3x10-9 M) [21]
VPC23019 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.9 pKi 15
pKi 7.9 [15]
VPC03090-P Small molecule or natural product Mm Antagonist 7.7 – 7.8 pKi 37
pKi 7.7 – 7.8 (Ki 2.13x10-8 – 1.4x10-8 M) [37]
VPC03090-P Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.6 – 7.7 pKi 37
pKi 7.6 – 7.7 (Ki 2.4x10-8 – 2.1x10-8 M) [37]
W146 Small molecule or natural product Ligand has a PDB structure Hs Antagonist 7.1 pKi 59
pKi 7.1 (Ki 7.7x10-8 M) [59]
NIBR-0213 Small molecule or natural product Hs Antagonist 8.6 pIC50 56
pIC50 8.6 (IC50 2.5x10-9 M) [56]
VPC44116 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.6 pIC50 21
pIC50 7.6 [21]
View species-specific antagonist tables
Immunopharmacology Comments
S1P1R activation by agonists downregulates allergic inflammation (i.e. it has an inhibitory effect) [31-32,61]. In human cord blood mast cells, S1P1R is required for migration but not for degranulation or cytokine and chemokine release [48,55]. S1P1R expression is elevated by allergen challenge in allergic rhinitis patients, but not in corticosteroid treated patients [43]. As a drug target selective S1P1R agonists are in development.
Cell Type Associations
Immuno Cell Type:  Granulocytes
Cell Ontology Term:   eosinophil (CL:0000771)
Comment:  Eosinophils express all S1P receptors except S1P2R.
References:  33
Immuno Cell Type:  T cells
Cell Ontology Term:   T cell (CL:0000084)
Comment:  B- and T-lymphocytes predominantly express S1P1 receptors.
References:  67
Immuno Cell Type:  B cells
Cell Ontology Term:   B cell (CL:0000236)
Comment:  B- and T-lymphocytes predominantly express S1P1 receptors.
References:  67
Immuno Cell Type:  Stromal cells
Comment:  Pharmacological targeting of the S1P/S1PR1 signalling pathway (and its regulation of MMP-2-mediated extracellular matrix remodelling) in bone marrow-derived mesenchymal stromal cells (BM-MSCs) may potentiate the beneficial effects of these cells in tissue repair. Exploiting S1P/S1PR1 signalling is suggested as a novel option for BM-MSC-based therapy for potential in the regenerative medicine field.
References:  60
Immuno Cell Type:  Mast cells
Cell Ontology Term:   mast cell (CL:0000097)
Comment:  Cord blood mast cells express S1P1R and S1P2R
References:  43
Immuno Process Associations
Immuno Process:  Inflammation
Immuno Process:  Cytokine production & signalling
Immuno Process:  Chemotaxis & migration
Primary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gi/Go family Adenylyl cyclase inhibition
Phospholipase C stimulation
Calcium channel
Phospholipase D stimulation
Other - See Comments
Comments:  Involved in ERK phosphorylation [49] and stimulation of the PI3K/PKB and MEK/ERK pathways [10], and activation of Rac [19].
References:  11,38,47
Tissue Distribution Click here for help
Naive T cell and regulatory T cell
Species:  Mouse
Technique:  RT-PCR
References:  71
Brain, heart, lung, liver, spleen, kidney, thymus, and muscle
Species:  Mouse
Technique:  Northern blot
References:  74
Bone marrow hematopoietic stem and progenitor cells
Species:  Mouse
Technique: 
References:  7
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Physiological Functions Click here for help
S1P1 receptor is the predominant S1P receptor expressed on lymphocytesn and it is a major regulator of lymphocyte trafficking.
Species:  Human
Tissue: 
References:  6,62
Physiological Consequences of Altering Gene Expression Click here for help
Incomplete vascular maturation
Species:  Mouse
Tissue: 
Technique:  Gene knockouts
References:  3,42
Blockade of regulatory T cell differentiation in knockout mice
Species:  Mouse
Tissue: 
Technique:  Gene knockouts
References:  40
Reduction of NKT cell distribution in peripheral tissues
Species:  Mouse
Tissue: 
Technique:  Gene knockouts
References:  4
Attenuation of autoimmune demyelination in astrocyte-specific receptor knockout mice
Species:  Mouse
Tissue: 
Technique:  Gene knockouts
References:  14
Embryonic lethality, defective vascular maturation due to lack of pericytes and alterations in signalling indicated by a decrease in Rac-mediated chemotaxis
Species:  Mouse
Tissue: 
Technique:  Gene targeting:- replacement vector, deletion of ORF, creation of s1p1–LacZ hybrid transcript
References:  42
Blockade in the egress of mature T-cells into the periphery in knockout mice
Species:  Mouse
Tissue: 
Technique:  Gene knockouts
References:  1,45
Blockade of plasma cell homing and immature B cell migration in knockout mice
Species:  Mouse
Tissue: 
Technique:  Gene knockouts
References:  2,36,52
Attenuation of vascular inflammation.
Species:  Mouse
Tissue: 
Technique:  Endothelial cells Cre-mediated gene knockout.
References:  23
Loss of common lymphocyte progenitors in receptor transgenic mice.
Species:  Mouse
Tissue: 
Technique:  Bone marrow genetic overexpression.
References:  7
Suppression or induction of oxygen-induced retinopathy (OIR) neovascular tuft formation in receptor transgenic or knockout mice, respectively.
Species:  Mouse
Tissue:  Endothelial cells.
Technique:  Tamoxifen-inducible Cre-mediated transgene expression or knockout
References:  46
Imparied hepatic sinusoidal vascular regeneration in receptor knockout mice.
Species:  Mouse
Tissue:  Endothelial cells.
Technique:  Tamoxifen-inducible Cre-mediated knockout.
References:  18
Regulation of transendothelial HDL transport.
Species:  Mouse
Tissue:  Endothelial cells.
Technique:  Tamoxifen-inducible Cre-mediated transgene.
References:  70
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
S1pr1tm1Rlp|S1pr2tm1Rlp S1pr1tm1Rlp/S1pr1tm1Rlp,S1pr2tm1Rlp/S1pr2tm1Rlp
involves: 129S6/SvEvTac * C57BL/6
MGI:1096355  MGI:99569  MP:0000260 abnormal angiogenesis PMID: 15138255 
S1pr1tm1Rlp|S1pr2tm1Rlp|S1pr3tm1Rlp S1pr1tm1Rlp/S1pr1tm1Rlp,S1pr3tm1Rlp/S1pr3tm1Rlp,S1pr2tm1Rlp/S1pr2tm1Rlp
involves: 129S6/SvEvTac * C57BL/6
MGI:1096355  MGI:1339365  MGI:99569  MP:0000260 abnormal angiogenesis PMID: 15138255 
S1pr1tm1Rlp|S1pr1tm2Rlp|Tg(Tek-cre)1Ywa S1pr1tm1Rlp/S1pr1tm2Rlp,Tg(Tek-cre)1Ywa/?
involves: 129S6/SvEvTac * C57BL/6 * SJL
MGI:1096355  MGI:2450309  MP:0009865 abnormal aorta smooth muscle morphology PMID: 15138255 
S1pr1tm1Rlp S1pr1tm1Rlp/S1pr1tm1Rlp
involves: 129S6/SvEvTac * C57BL/6
MGI:1096355  MP:0001614 abnormal blood vessel morphology PMID: 11032855 
S1pr1tm1Rlp|S1pr1tm2Rlp|Tg(Tek-cre)1Ywa S1pr1tm1Rlp/S1pr1tm2Rlp,Tg(Tek-cre)1Ywa/?
involves: 129S6/SvEvTac * C57BL/6 * SJL
MGI:1096355  MGI:2450309  MP:0002127 abnormal cardiovascular system morphology PMID: 12869509 
S1pr1tm1Rlp|S1pr1tm2Rlp|Tg(Tek-cre)1Ywa S1pr1tm1Rlp/S1pr1tm2Rlp,Tg(Tek-cre)1Ywa/?
involves: 129S6/SvEvTac * C57BL/6 * SJL
MGI:1096355  MGI:2450309  MP:0001544 abnormal cardiovascular system physiology PMID: 12869509 
S1pr1tm1Rlp S1pr1tm1Rlp/S1pr1tm1Rlp
involves: 129S6/SvEvTac * C57BL/6
MGI:1096355  MP:0003091 abnormal cell migration PMID: 11032855 
S1pr1tm1Rlp S1pr1tm1Rlp/S1pr1tm1Rlp
involves: 129S6/SvEvTac
MGI:1096355  MP:0000830 abnormal diencephalon morphology PMID: 16314531 
S1pr1tm1Rlp S1pr1tm1Rlp/S1pr1tm1Rlp
involves: 129S6/SvEvTac
MGI:1096355  MP:0000783 abnormal forebrain morphology PMID: 16314531 
S1pr1tm1.1Thla S1pr1tm1.1Thla/S1pr1tm1.1Thla
B6.Cg-S1pr1
MGI:1096355  MP:0003156 abnormal leukocyte migration PMID: 20584883 
S1pr1tm1Rlp|S1pr1tm2Rlp|Tg(Tek-cre)1Ywa S1pr1tm1Rlp/S1pr1tm2Rlp,Tg(Tek-cre)1Ywa/?
involves: 129S6/SvEvTac * C57BL/6 * SJL
MGI:1096355  MGI:2450309  MP:0002109 abnormal limb morphology PMID: 12869509 
S1pr1tm1Rlp S1pr1tm1Rlp/S1pr1tm1Rlp
involves: 129S6/SvEvTac * C57BL/6
MGI:1096355  MP:0002109 abnormal limb morphology PMID: 11032855  15138255 
S1pr1tm1Rlp|S1pr3tm1Rlp S1pr1tm1Rlp/S1pr1tm1Rlp,S1pr3tm1Rlp/S1pr3tm1Rlp
involves: 129S6/SvEvTac * C57BL/6
MGI:1096355  MGI:1339365  MP:0002109 abnormal limb morphology PMID: 15138255 
S1pr1tm1.1Thla S1pr1tm1.1Thla/S1pr1tm1.1Thla
B6.Cg-S1pr1
MGI:1096355  MP:0003945 abnormal lymphocyte physiology PMID: 20584883 
S1pr1tm1Rlp S1pr1tm1Rlp/S1pr1tm1Rlp
involves: 129S6/SvEvTac
MGI:1096355  MP:0008053 abnormal NK cell differentiation PMID: 19808259 
S1pr1tm1Rlp S1pr1tm1Rlp/S1pr1tm1Rlp
involves: 129S6/SvEvTac * C57BL/6
MGI:1096355  MP:0003719 abnormal pericyte morphology PMID: 11032855 
S1pr1tm1Rlp S1pr1tm1Rlp/S1pr1tm1Rlp
involves: 129S6/SvEvTac
MGI:1096355  MP:0000787 abnormal telencephalon morphology PMID: 16314531 
S1pr1tm1Rlp S1pr1tm1Rlp/S1pr1tm1Rlp
involves: 129S6/SvEvTac * C57BL/6
MGI:1096355  MP:0006055 abnormal vascular endothelial cell morphology PMID: 11032855 
S1pr1tm1Rlp S1pr1tm1Rlp/S1pr1tm1Rlp
involves: 129S6/SvEvTac * C57BL/6
MGI:1096355  MP:0005592 abnormal vascular smooth muscle morphology PMID: 11032855 
S1pr1tm1Rlp|S1pr1tm2Rlp|Tg(Tek-cre)1Ywa S1pr1tm1Rlp/S1pr1tm2Rlp,Tg(Tek-cre)1Ywa/?
involves: 129S6/SvEvTac * C57BL/6 * SJL
MGI:1096355  MGI:2450309  MP:0001718 abnormal yolk sac morphology PMID: 12869509 
S1pr1tm1Rlp S1pr1tm1Rlp/S1pr1tm1Rlp
involves: 129S6/SvEvTac * C57BL/6
MGI:1096355  MP:0001718 abnormal yolk sac morphology PMID: 11032855 
S1pr1tm1Rlp S1pr1tm1Rlp/S1pr1tm1Rlp
involves: 129S6/SvEvTac
MGI:1096355  MP:0008045 decreased NK cell number PMID: 19808259 
S1pr1tm1.1Thla S1pr1tm1.1Thla/S1pr1tm1.1Thla
B6.Cg-S1pr1
MGI:1096355  MP:0008874 decreased physiological sensitivity to xenobiotic PMID: 20584883 
S1pr1tm1Rlp S1pr1tm1Rlp/S1pr1tm1Rlp
involves: 129S6/SvEvTac * C57BL/6
MGI:1096355  MP:0001785 edema PMID: 11032855 
S1pr1tm1Rlp|S1pr2tm1Rlp S1pr1tm1Rlp/S1pr1tm1Rlp,S1pr2tm1Rlp/S1pr2tm1Rlp
involves: 129S6/SvEvTac * C57BL/6
MGI:1096355  MGI:99569  MP:0006207 embryonic lethality during organogenesis PMID: 15138255 
S1pr1tm1Rlp|S1pr3tm1Rlp S1pr1tm1Rlp/S1pr1tm1Rlp,S1pr3tm1Rlp/S1pr3tm1Rlp
involves: 129S6/SvEvTac * C57BL/6
MGI:1096355  MGI:1339365  MP:0006207 embryonic lethality during organogenesis PMID: 15138255 
S1pr1tm1Rlp|S1pr2tm1Rlp|S1pr3tm1Rlp S1pr1tm1Rlp/S1pr1tm1Rlp,S1pr3tm1Rlp/S1pr3tm1Rlp,S1pr2tm1Rlp/S1pr2tm1Rlp
involves: 129S6/SvEvTac * C57BL/6
MGI:1096355  MGI:1339365  MGI:99569  MP:0006207 embryonic lethality during organogenesis PMID: 15138255 
S1pr1tm1Rlp|S1pr1tm2Rlp|Tg(Tek-cre)1Ywa S1pr1tm1Rlp/S1pr1tm2Rlp,Tg(Tek-cre)1Ywa/?
involves: 129S6/SvEvTac * C57BL/6 * SJL
MGI:1096355  MGI:2450309  MP:0000291 enlarged pericardium PMID: 12869509 
S1pr1tm1Rlp S1pr1tm1Rlp/S1pr1tm1Rlp
involves: 129S6/SvEvTac * C57BL/6
MGI:1096355  MP:0000291 enlarged pericardium PMID: 11032855 
S1pr1tm1Rlp|S1pr1tm2Rlp|Tg(Tek-cre)1Ywa S1pr1tm1Rlp/S1pr1tm2Rlp,Tg(Tek-cre)1Ywa/?
involves: 129S6/SvEvTac * C57BL/6 * SJL
MGI:1096355  MGI:2450309  MP:0001914 hemorrhage PMID: 12869509 
S1pr1tm1Rlp S1pr1tm1Rlp/S1pr1tm1Rlp
involves: 129S6/SvEvTac * C57BL/6
MGI:1096355  MP:0001914 hemorrhage PMID: 11032855  15138255 
S1pr1tm1Rlp S1pr1tm1Rlp/S1pr1tm1Rlp
involves: 129S6/SvEvTac
MGI:1096355  MP:0001914 hemorrhage PMID: 16314531 
S1pr1tm1Rlp|S1pr2tm1Rlp S1pr1tm1Rlp/S1pr1tm1Rlp,S1pr2tm1Rlp/S1pr2tm1Rlp
involves: 129S6/SvEvTac * C57BL/6
MGI:1096355  MGI:99569  MP:0001914 hemorrhage PMID: 15138255 
S1pr1tm1Rlp|S1pr3tm1Rlp S1pr1tm1Rlp/S1pr1tm1Rlp,S1pr3tm1Rlp/S1pr3tm1Rlp
involves: 129S6/SvEvTac * C57BL/6
MGI:1096355  MGI:1339365  MP:0001914 hemorrhage PMID: 15138255 
S1pr1tm1Rlp|S1pr2tm1Rlp|S1pr3tm1Rlp S1pr1tm1Rlp/S1pr1tm1Rlp,S1pr3tm1Rlp/S1pr3tm1Rlp,S1pr2tm1Rlp/S1pr2tm1Rlp
involves: 129S6/SvEvTac * C57BL/6
MGI:1096355  MGI:1339365  MGI:99569  MP:0001914 hemorrhage PMID: 15138255 
S1pr1tm1.1Thla S1pr1tm1.1Thla/S1pr1tm1.1Thla
B6.Cg-S1pr1
MGI:1096355  MP:0008074 increased CD4-positive T cell number PMID: 20584883 
S1pr1tm1.1Thla S1pr1tm1.1Thla/S1pr1tm1.1Thla
B6.Cg-S1pr1
MGI:1096355  MP:0008078 increased CD8-positive T cell number PMID: 20584883 
S1pr1tm1Rlp|S1pr1tm2Rlp|Tg(Tek-cre)1Ywa S1pr1tm1Rlp/S1pr1tm2Rlp,Tg(Tek-cre)1Ywa/?
involves: 129S6/SvEvTac * C57BL/6 * SJL
MGI:1096355  MGI:2450309  MP:0006208 lethality throughout fetal growth and development PMID: 12869509 
S1pr1tm1Rlp S1pr1tm1Rlp/S1pr1tm1Rlp
involves: 129S6/SvEvTac * C57BL/6
MGI:1096355  MP:0006208 lethality throughout fetal growth and development PMID: 11032855  15138255 
S1pr1tm2Rlp S1pr1tm2Rlp/S1pr1tm2Rlp
involves: 129S6/SvEvTac
MGI:1096355  MP:0002169 no abnormal phenotype detected PMID: 12869509 
S1pr1tm1Rlp S1pr1tm1Rlp/S1pr1tm1Rlp
involves: 129S6/SvEvTac * C57BL/6
MGI:1096355  MP:0001787 pericardial edema PMID: 11032855 
S1pr1tm1Rlp|S1pr1tm2Rlp|Tg(Tek-cre)1Ywa S1pr1tm1Rlp/S1pr1tm2Rlp,Tg(Tek-cre)1Ywa/?
involves: 129S6/SvEvTac * C57BL/6 * SJL
MGI:1096355  MGI:2450309  MP:0000262 poor arterial differentiation PMID: 12869509 
S1pr1tm1Rlp S1pr1tm1Rlp/S1pr1tm1Rlp
involves: 129S6/SvEvTac * C57BL/6
MGI:1096355  MP:0003814 vascular smooth muscle cell hypoplasia PMID: 11032855 

References

Show »

1. Allende ML, Dreier JL, Mandala S, Proia RL. (2004) Expression of the sphingosine 1-phosphate receptor, S1P1, on T-cells controls thymic emigration. J Biol Chem, 279 (15): 15396-401. [PMID:14732704]

2. Allende ML, Tuymetova G, Lee BG, Bonifacino E, Wu YP, Proia RL. (2010) S1P1 receptor directs the release of immature B cells from bone marrow into blood. J Exp Med, 207 (5): 1113-24. [PMID:20404103]

3. Allende ML, Yamashita T, Proia RL. (2003) G-protein-coupled receptor S1P1 acts within endothelial cells to regulate vascular maturation. Blood, 102 (10): 3665-7. [PMID:12869509]

4. Allende ML, Zhou D, Kalkofen DN, Benhamed S, Tuymetova G, Borowski C, Bendelac A, Proia RL. (2008) S1P1 receptor expression regulates emergence of NKT cells in peripheral tissues. FASEB J, 22 (1): 307-15. [PMID:17785606]

5. Ancellin N, Hla T. (1999) Differential pharmacological properties and signal transduction of the sphingosine 1-phosphate receptors EDG-1, EDG-3, and EDG-5. J Biol Chem, 274 (27): 18997-9002. [PMID:10383399]

6. Baeyens AAL, Schwab SR. (2020) Finding a Way Out: S1P Signaling and Immune Cell Migration. Annu Rev Immunol, 38: 759-784. [PMID:32340572]

7. Blaho VA, Galvani S, Engelbrecht E, Liu C, Swendeman SL, Kono M, Proia RL, Steinman L, Han MH, Hla T. (2015) HDL-bound sphingosine-1-phosphate restrains lymphopoiesis and neuroinflammation. Nature, 523 (7560): 342-6. [PMID:26053123]

8. Bolli MH, Abele S, Binkert C, Bravo R, Buchmann S, Bur D, Gatfield J, Hess P, Kohl C, Mangold C et al.. (2010) 2-imino-thiazolidin-4-one derivatives as potent, orally active S1P1 receptor agonists. J Med Chem, 53 (10): 4198-211. [PMID:20446681]

9. Brinkmann V, Davis MD, Heise CE, Albert R, Cottens S, Hof R, Bruns C, Prieschl E, Baumruker T, Hiestand P et al.. (2002) The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J Biol Chem, 277 (24): 21453-7. [PMID:11967257]

10. Brizuela L, Rábano M, Gangoiti P, Narbona N, Macarulla JM, Trueba M, Gómez-Muñoz A. (2007) Sphingosine-1-phosphate stimulates aldosterone secretion through a mechanism involving the PI3K/PKB and MEK/ERK 1/2 pathways. J Lipid Res, 48 (10): 2264-74. [PMID:17609523]

11. Brizuela L, Rábano M, Peña A, Gangoiti P, Macarulla JM, Trueba M, Gómez-Muñoz A. (2006) Sphingosine 1-phosphate: a novel stimulator of aldosterone secretion. J Lipid Res, 47 (6): 1238-49. [PMID:16554657]

12. Buzard DJ, Kim SH, Lopez L, Kawasaki A, Zhu X, Moody J, Thoresen L, Calderon I, Ullman B, Han S et al.. (2014) Discovery of APD334: Design of a Clinical Stage Functional Antagonist of the Sphingosine-1-phosphate-1 Receptor. ACS Med Chem Lett, 5 (12): 1313-7. [PMID:25516790]

13. Cahalan SM, Gonzalez-Cabrera PJ, Sarkisyan G, Nguyen N, Schaeffer MT, Huang L, Yeager A, Clemons B, Scott F, Rosen H. (2011) Actions of a picomolar short-acting S1P₁ agonist in S1P₁-eGFP knock-in mice. Nat Chem Biol, 7 (5): 254-6. [PMID:21445057]

14. Choi JW, Gardell SE, Herr DR, Rivera R, Lee CW, Noguchi K, Teo ST, Yung YC, Lu M, Kennedy G et al.. (2011) FTY720 (fingolimod) efficacy in an animal model of multiple sclerosis requires astrocyte sphingosine 1-phosphate receptor 1 (S1P1) modulation. Proc Natl Acad Sci USA, 108 (2): 751-6. [PMID:21177428]

15. Davis MD, Clemens JJ, Macdonald TL, Lynch KR. (2005) Sphingosine 1-phosphate analogs as receptor antagonists. J Biol Chem, 280 (11): 9833-41. [PMID:15590668]

16. Demont EH, Bailey JM, Bit RA, Brown JA, Campbell CA, Deeks N, Dowell SJ, Eldred C, Gaskin P, Gray JR et al.. (2016) Discovery of Tetrahydropyrazolopyridine as Sphingosine 1-Phosphate Receptor 3 (S1P3)-Sparing S1P1 Agonists Active at Low Oral Doses. J Med Chem, 59 (3): 1003-20. [PMID:26751273]

17. Deng Q, Clemas JA, Chrebet G, Fischer P, Hale JJ, Li Z, Mills SG, Bergstrom J, Mandala S, Mosley R et al.. (2007) Identification of Leu276 of the S1P1 receptor and Phe263 of the S1P3 receptor in interaction with receptor specific agonists by molecular modeling, site-directed mutagenesis, and affinity studies. Mol Pharmacol, 71 (3): 724-35. [PMID:17170199]

18. Ding BS, Liu CH, Sun Y, Chen Y, Swendeman SL, Jung B, Chavez D, Cao Z, Christoffersen C, Nielsen LB et al.. (2016) HDL activation of endothelial sphingosine-1-phosphate receptor-1 (S1P1) promotes regeneration and suppresses fibrosis in the liver. JCI Insight, 1 (21): e87058. [PMID:28018969]

19. Faroudi M, Hons M, Zachacz A, Dumont C, Lyck R, Stein JV, Tybulewicz VL. (2010) Critical roles for Rac GTPases in T-cell migration to and within lymph nodes. Blood, 116 (25): 5536-47. [PMID:20870900]

20. Forrest M, Sun SY, Hajdu R, Bergstrom J, Card D, Doherty G, Hale J, Keohane C, Meyers C, Milligan J et al.. (2004) Immune cell regulation and cardiovascular effects of sphingosine 1-phosphate receptor agonists in rodents are mediated via distinct receptor subtypes. J Pharmacol Exp Ther, 309 (2): 758-68. [PMID:14747617]

21. Foss FW, Snyder AH, Davis MD, Rouse M, Okusa MD, Lynch KR, Macdonald TL. (2007) Synthesis and biological evaluation of gamma-aminophosphonates as potent, subtype-selective sphingosine 1-phosphate receptor agonists and antagonists. Bioorg Med Chem, 15 (2): 663-77. [PMID:17113298]

22. Fujishiro J, Kudou S, Iwai S, Takahashi M, Hakamata Y, Kinoshita M, Iwanami S, Izawa S, Yasue T, Hashizume K et al.. (2006) Use of sphingosine-1-phosphate 1 receptor agonist, KRP-203, in combination with a subtherapeutic dose of cyclosporine A for rat renal transplantation. Transplantation, 82 (6): 804-12. [PMID:17006328]

23. Galvani S, Sanson M, Blaho VA, Swendeman SL, Obinata H, Conger H, Dahlbäck B, Kono M, Proia RL, Smith JD et al.. (2015) HDL-bound sphingosine 1-phosphate acts as a biased agonist for the endothelial cell receptor S1P1 to limit vascular inflammation. Sci Signal, 8 (389): ra79. [PMID:26268607]

24. Gilmore JL, Xiao HY, Dhar TGM, Yang M, Xiao Z, Yang X, Taylor TL, McIntyre KW, Warrack BM, Shi H et al.. (2021) Bicyclic Ligand-Biased Agonists of S1P1: Exploring Side Chain Modifications to Modulate the PK, PD, and Safety Profiles. J Med Chem, 64 (3): 1454-1480. [PMID:33492963]

25. Gilmore JL, Xiao HY, Dhar TGM, Yang MG, Xiao Z, Xie J, Lehman-McKeeman LD, Gong L, Sun H, Lecureux L et al.. (2019) Identification and Preclinical Pharmacology of ((1 R,3 S)-1-Amino-3-(( S)-6-(2-methoxyphenethyl)-5,6,7,8-tetrahydronaphthalen-2-yl)cyclopentyl)methanol (BMS-986166): A Differentiated Sphingosine-1-phosphate Receptor 1 (S1P1) Modulator Advanced into Clinical Trials. J Med Chem, 62 (5): 2265-2285. [PMID:30785748]

26. Glaenzel U, Jin Y, Nufer R, Li W, Schroer K, Adam-Stitah S, Peter van Marle S, Legangneux E, Borell H, James AD et al.. (2018) Metabolism and Disposition of Siponimod, a Novel Selective S1P1/S1P5 Agonist, in Healthy Volunteers and In Vitro Identification of Human Cytochrome P450 Enzymes Involved in Its Oxidative Metabolism. Drug Metab Dispos, 46 (7): 1001-1013. [PMID:29735753]

27. Gonzalez-Cabrera PJ, Jo E, Sanna MG, Brown S, Leaf N, Marsolais D, Schaeffer MT, Chapman J, Cameron M, Guerrero M et al.. (2008) Full pharmacological efficacy of a novel S1P1 agonist that does not require S1P-like headgroup interactions. Mol Pharmacol, 74 (5): 1308-18. [PMID:18708635]

28. Hale JJ, Lynch CL, Neway W, Mills SG, Hajdu R, Keohane CA, Rosenbach MJ, Milligan JA, Shei GJ, Parent SA et al.. (2004) A rational utilization of high-throughput screening affords selective, orally bioavailable 1-benzyl-3-carboxyazetidine sphingosine-1-phosphate-1 receptor agonists. J Med Chem, 47 (27): 6662-5. [PMID:15615513]

29. Hanson MA, Roth CB, Jo E, Griffith MT, Scott FL, Reinhart G, Desale H, Clemons B, Cahalan SM, Schuerer SC et al.. (2012) Crystal structure of a lipid G protein-coupled receptor. Science, 335 (6070): 851-5. [PMID:22344443]

30. Hobson AD, Harris CM, van der Kam EL, Turner SC, Abibi A, Aguirre AL, Bousquet P, Kebede T, Konopacki DB, Gintant G et al.. (2015) Discovery of A-971432, An Orally Bioavailable Selective Sphingosine-1-Phosphate Receptor 5 (S1P5) Agonist for the Potential Treatment of Neurodegenerative Disorders. J Med Chem, 58 (23): 9154-70. [PMID:26509640]

31. Högenauer K, Billich A, Pally C, Streiff M, Wagner T, Welzenbach K, Nussbaumer P. (2008) Phosphorylation by sphingosine kinase 2 is essential for in vivo potency of FTY720 analogues. ChemMedChem, 3 (7): 1027-9. [PMID:18383466]

32. Idzko M, Hammad H, van Nimwegen M, Kool M, Müller T, Soullié T, Willart MA, Hijdra D, Hoogsteden HC, Lambrecht BN. (2006) Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function. J Clin Invest, 116 (11): 2935-44. [PMID:17080194]

33. Idzko M, Panther E, Corinti S, Morelli A, Ferrari D, Herouy Y, Dichmann S, Mockenhaupt M, Gebicke-Haerter P, Di Virgilio F et al.. (2002) Sphingosine 1-phosphate induces chemotaxis of immature and modulates cytokine-release in mature human dendritic cells for emergence of Th2 immune responses. FASEB J, 16 (6): 625-7. [PMID:11919175]

34. Im DS, Clemens J, Macdonald TL, Lynch KR. (2001) Characterization of the human and mouse sphingosine 1-phosphate receptor, S1P5 (Edg-8): structure-activity relationship of sphingosine1-phosphate receptors. Biochemistry, 40 (46): 14053-60. [PMID:11705398]

35. Imeri F, Stepanovska Tanturovska B, Zivkovic A, Enzmann G, Schwalm S, Pfeilschifter J, Homann T, Kleuser B, Engelhardt B, Stark H et al.. (2021) Novel compounds with dual S1P receptor agonist and histamine H3 receptor antagonist activities act protective in a mouse model of multiple sclerosis. Neuropharmacology, 186: 108464. [PMID:33460688]

36. Kabashima K, Haynes NM, Xu Y, Nutt SL, Allende ML, Proia RL, Cyster JG. (2006) Plasma cell S1P1 expression determines secondary lymphoid organ retention versus bone marrow tropism. J Exp Med, 203 (12): 2683-90. [PMID:17101733]

37. Kennedy PC, Zhu R, Huang T, Tomsig JL, Mathews TP, David M, Peyruchaud O, Macdonald TL, Lynch KR. (2011) Characterization of a sphingosine 1-phosphate receptor antagonist prodrug. J Pharmacol Exp Ther, 338 (3): 879-89. [PMID:21632869]

38. Kon J, Sato K, Watanabe T, Tomura H, Kuwabara A, Kimura T, Tamama K, Ishizuka T, Murata N, Kanda T et al.. (1999) Comparison of intrinsic activities of the putative sphingosine 1-phosphate receptor subtypes to regulate several signaling pathways in their cDNA-transfected Chinese hamster ovary cells. J Biol Chem, 274 (34): 23940-7. [PMID:10446161]

39. Li Z, Chen W, Hale JJ, Lynch CL, Mills SG, Hajdu R, Keohane CA, Rosenbach MJ, Milligan JA, Shei GJ et al.. (2005) Discovery of potent 3,5-diphenyl-1,2,4-oxadiazole sphingosine-1-phosphate-1 (S1P1) receptor agonists with exceptional selectivity against S1P2 and S1P3. J Med Chem, 48 (20): 6169-73. [PMID:16190743]

40. Liu G, Burns S, Huang G, Boyd K, Proia RL, Flavell RA, Chi H. (2009) The receptor S1P1 overrides regulatory T cell-mediated immune suppression through Akt-mTOR. Nat Immunol, 10 (7): 769-77. [PMID:19483717]

41. Liu S, Paknejad N, Zhu L, Kihara Y, Ray M, Chun J, Liu W, Hite RK, Huang XY. (2022) Differential activation mechanisms of lipid GPCRs by lysophosphatidic acid and sphingosine 1-phosphate. Nat Commun, 13 (1): 731. [PMID:35136060]

42. Liu Y, Wada R, Yamashita T, Mi Y, Deng CX, Hobson JP, Rosenfeldt HM, Nava VE, Chae SS, Lee MJ et al.. (2000) Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J Clin Invest, 106 (8): 951-61. [PMID:11032855]

43. Mackle T, Gendy SS, Walsh M, McConn-Walsh R, Costello RW, Walsh MT. (2008) Role of sphingosine 1-phosphate receptor expression in eosinophils of patients with allergic rhinitis, and effect of topical nasal steroid treatment on this receptor expression. J Laryngol Otol, 122 (12): 1309-17. [PMID:18808729]

44. Martinborough E, Boehm MF, Yeager AR, Tamiya J, Huang L, Brahmachary E, Moorjani M, Timony GA, Brooks JL, Peach R et al.. (2011) Selective sphingosine 1 phosphate receptor modulators and methods of chiral synthesis. Patent number: US20110172202 A1. Assignee: Martinborough E, Boehm MF, Yeager AR, Tamiya J, Huang L, Brahmachary E, Moorjani M, Timony GA, Brooks JL, Peach R et al.. Priority date: 13/11/2009. Publication date: 14/07/2011.

45. Matloubian M, Lo CG, Cinamon G, Lesneski MJ, Xu Y, Brinkmann V, Allende ML, Proia RL, Cyster JG. (2004) Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature, 427 (6972): 355-60. [PMID:14737169]

46. Niaudet C, Jung B, Kuo A, Swendeman S, Bull E, Seno T, Crocker R, Fu Z, Smith LEH, Hla T. (2023) Therapeutic activation of endothelial sphingosine-1-phosphate receptor 1 by chaperone-bound S1P suppresses proliferative retinal neovascularization. EMBO Mol Med, 15 (5): e16645. [PMID:36912000]

47. Okamoto H, Takuwa N, Gonda K, Okazaki H, Chang K, Yatomi Y, Shigematsu H, Takuwa Y. (1998) EDG1 is a functional sphingosine-1-phosphate receptor that is linked via a Gi/o to multiple signaling pathways, including phospholipase C activation, Ca2+ mobilization, Ras-mitogen-activated protein kinase activation, and adenylate cyclase inhibition. J Biol Chem, 273 (42): 27104-10. [PMID:9765227]

48. Olivera A. (2008) Unraveling the complexities of sphingosine-1-phosphate function: the mast cell model. Prostaglandins Other Lipid Mediat, 86 (1-4): 1-11. [PMID:18403224]

49. Osinde M, Mullershausen F, Dev KK. (2007) Phosphorylated FTY720 stimulates ERK phosphorylation in astrocytes via S1P receptors. Neuropharmacology, 52 (5): 1210-8. [PMID:17379261]

50. Pan S, Gray NS, Gao W, Mi Y, Fan Y, Wang X, Tuntland T, Che J, Lefebvre S, Chen Y et al.. (2013) Discovery of BAF312 (Siponimod), a Potent and Selective S1P Receptor Modulator. ACS Med Chem Lett, 4 (3): 333-7. [PMID:24900670]

51. Pan S, Mi Y, Pally C, Beerli C, Chen A, Guerini D, Hinterding K, Nuesslein-Hildesheim B, Tuntland T, Lefebvre S et al.. (2006) A monoselective sphingosine-1-phosphate receptor-1 agonist prevents allograft rejection in a stringent rat heart transplantation model. Chem Biol, 13 (11): 1227-34. [PMID:17114004]

52. Pereira JP, Xu Y, Cyster JG. (2010) A role for S1P and S1P1 in immature-B cell egress from mouse bone marrow. PLoS ONE, 5 (2): e9277. [PMID:20174580]

53. Piali L, Birker-Robaczewska M, Lescop C, Froidevaux S, Schmitz N, Morrison K, Kohl C, Rey M, Studer R, Vezzali E et al.. (2017) Cenerimod, a novel selective S1P1receptor modulator with unique signaling properties. Pharmacol Res Perspect, 5 (6). [PMID:29226621]

54. Poirier B, Briand V, Kadereit D, Schäfer M, Wohlfart P, Philippo MC, Caillaud D, Gouraud L, Grailhe P, Bidouard JP et al.. (2020) A G protein-biased S1P1 agonist, SAR247799, protects endothelial cells without affecting lymphocyte numbers. Sci Signal, 13 (634). [PMID:32487716]

55. Price MM, Oskeritzian CA, Milstien S, Spiegel S. (2008) Sphingosine-1-phosphate synthesis and functions in mast cells. Future Lipidol, 3 (6): 665-674. [PMID:19802381]

56. Quancard J, Bollbuck B, Janser P, Angst D, Berst F, Buehlmayer P, Streiff M, Beerli C, Brinkmann V, Guerini D et al.. (2012) A potent and selective S1P(1) antagonist with efficacy in experimental autoimmune encephalomyelitis. Chem Biol, 19 (9): 1142-51. [PMID:22999882]

57. Sanna MG, Liao J, Jo E, Alfonso C, Ahn MY, Peterson MS, Webb B, Lefebvre S, Chun J, Gray N et al.. (2004) Sphingosine 1-phosphate (S1P) receptor subtypes S1P1 and S1P3, respectively, regulate lymphocyte recirculation and heart rate. J Biol Chem, 279 (14): 13839-48. [PMID:14732717]

58. Sanna MG, Vincent KP, Repetto E, Nguyen N, Brown SJ, Abgaryan L, Riley SW, Leaf NB, Cahalan SM, Kiosses WB et al.. (2016) Bitopic Sphingosine 1-Phosphate Receptor 3 (S1P3) Antagonist Rescue from Complete Heart Block: Pharmacological and Genetic Evidence for Direct S1P3 Regulation of Mouse Cardiac Conduction. Mol Pharmacol, 89 (1): 176-86. [PMID:26494861]

59. Sanna MG, Wang SK, Gonzalez-Cabrera PJ, Don A, Marsolais D, Matheu MP, Wei SH, Parker I, Jo E, Cheng WC et al.. (2006) Enhancement of capillary leakage and restoration of lymphocyte egress by a chiral S1P1 antagonist in vivo. Nat Chem Biol, 2 (8): 434-41. [PMID:16829954]

60. Sassoli C, Pierucci F, Tani A, Frati A, Chellini F, Matteini F, Vestri A, Anderloni G, Nosi D, Zecchi-Orlandini S et al.. (2018) Sphingosine 1-Phosphate Receptor 1 Is Required for MMP-2 Function in Bone Marrow Mesenchymal Stromal Cells: Implications for Cytoskeleton Assembly and Proliferation. Stem Cells Int, 2018: 5034679. [PMID:29713350]

61. Sawicka E, Zuany-Amorim C, Manlius C, Trifilieff A, Brinkmann V, Kemeny DM, Walker C. (2003) Inhibition of Th1- and Th2-mediated airway inflammation by the sphingosine 1-phosphate receptor agonist FTY720. J Immunol, 171 (11): 6206-14. [PMID:14634137]

62. Schwab SR, Cyster JG. (2007) Finding a way out: lymphocyte egress from lymphoid organs. Nat Immunol, 8 (12): 1295-301. [PMID:18026082]

63. Scott FL, Clemons B, Brooks J, Brahmachary E, Powell R, Dedman H, Desale HG, Timony GA, Martinborough E, Rosen H et al.. (2016) Ozanimod (RPC1063) is a potent sphingosine-1-phosphate receptor-1 (S1P1 ) and receptor-5 (S1P5 ) agonist with autoimmune disease-modifying activity. Br J Pharmacol, 173 (11): 1778-92. [PMID:26990079]

64. Shimano K, Maeda Y, Kataoka H, Murase M, Mochizuki S, Utsumi H, Oshita K, Sugahara K. (2019) Amiselimod (MT-1303), a novel sphingosine 1-phosphate receptor-1 functional antagonist, inhibits progress of chronic colitis induced by transfer of CD4+CD45RBhigh T cells. PLoS One, 14 (12): e0226154. [PMID:31805144]

65. Song J, Matsuda C, Kai Y, Nishida T, Nakajima K, Mizushima T, Kinoshita M, Yasue T, Sawa Y, Ito T. (2008) A novel sphingosine 1-phosphate receptor agonist, 2-amino-2-propanediol hydrochloride (KRP-203), regulates chronic colitis in interleukin-10 gene-deficient mice. J Pharmacol Exp Ther, 324 (1): 276-83. [PMID:17898319]

66. Stepanovska Tanturovska B, Zivkovic A, Imeri F, Homann T, Kleuser B, Stark H, Huwiler A. (2021) ST-2191, an Anellated Bismorpholino Derivative of Oxy-Fingolimod, Shows Selective S1P1 Agonist and Functional Antagonist Potency In Vitro and In Vivo. Molecules, 26 (17). [PMID:34500564]

67. Subei AM, Cohen JA. (2015) Sphingosine 1-phosphate receptor modulators in multiple sclerosis. CNS Drugs, 29 (7): 565-75. [PMID:26239599]

68. Sugahara K, Maeda Y, Shimano K, Mogami A, Kataoka H, Ogawa K, Hikida K, Kumagai H, Asayama M, Yamamoto T et al.. (2017) Amiselimod, a novel sphingosine 1-phosphate receptor-1 modulator, has potent therapeutic efficacy for autoimmune diseases, with low bradycardia risk. Br J Pharmacol, 174 (1): 15-27. [PMID:27714763]

69. Taylor Meadows KR, Steinberg MW, Clemons B, Stokes ME, Opiteck GJ, Peach R, Scott FL. (2018) Ozanimod (RPC1063), a selective S1PR1 and S1PR5 modulator, reduces chronic inflammation and alleviates kidney pathology in murine systemic lupus erythematosus. PLoS ONE, 13 (4): e0193236. [PMID:29608575]

70. Velagapudi S, Rohrer L, Poti F, Feuerborn R, Perisa D, Wang D, Panteloglou G, Potapenko A, Yalcinkaya M, Hülsmeier AJ et al.. (2021) Apolipoprotein M and Sphingosine-1-Phosphate Receptor 1 Promote the Transendothelial Transport of High-Density Lipoprotein. Arterioscler Thromb Vasc Biol, 41 (10): e468-e479. [PMID:34407633]

71. Wang W, Graeler MH, Goetzl EJ. (2004) Physiological sphingosine 1-phosphate requirement for optimal activity of mouse CD4+ regulatory T Cells. FASEB J, 18 (9): 1043-5. [PMID:15084513]

72. Xu J, Gray F, Henderson A, Hicks K, Yang J, Thompson P, Oliver J. (2014) Safety, pharmacokinetics, pharmacodynamics, and bioavailability of GSK2018682, a sphingosine-1-phosphate receptor modulator, in healthy volunteers. Clin Pharmacol Drug Dev, 3 (3): 170-8. [PMID:27128606]

73. Yamamoto R, Okada Y, Hirose J, Koshika T, Kawato Y, Maeda M, Saito R, Hattori K, Harada H, Nagasaka Y et al.. (2014) ASP4058, a novel agonist for sphingosine 1-phosphate receptors 1 and 5, ameliorates rodent experimental autoimmune encephalomyelitis with a favorable safety profile. PLoS ONE, 9 (10): e110819. [PMID:25347187]

74. Zhang G, Contos JJ, Weiner JA, Fukushima N, Chun J. (1999) Comparative analysis of three murine G-protein coupled receptors activated by sphingosine-1-phosphate. Gene, 227 (1): 89-99. [PMID:9931453]

75. Zheng W, Pan W, Yang X. (2015) Immune adjustment compound, use thereof and pharmaceutical composition comprising same. Patent number: WO2015039587A1. Assignee: Suzhou Kangnaide Biopharmaceutical. Priority date: 22/09/2013. Publication date: 26/03/2015.

Contributors

Show »

How to cite this page