Top ▲

BLT1 receptor

Click here for help

Immunopharmacology Ligand  Target has curated data in GtoImmuPdb

Target id: 267

Nomenclature: BLT1 receptor

Family: Leukotriene receptors

Gene and Protein Information Click here for help
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 352 14q12 LTB4R leukotriene B4 receptor 3,69
Mouse 7 351 14 28.19 cM Ltb4r1 leukotriene B4 receptor 1 27
Rat 7 351 15p13 Ltb4r leukotriene B4 receptor 65
Previous and Unofficial Names Click here for help
BLTR | GPR16
Database Links Click here for help
Specialist databases
GPCRdb lt4r1_human (Hs), lt4r1_mouse (Mm), lt4r1_rat (Rn)
Other databases
Alphafold
ChEMBL Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Natural/Endogenous Ligands Click here for help
20-hydroxy-LTB4
LTB4
12R-HETE
Comments: LTB4 is the most potent endogenous agonist
Potency order of endogenous ligands
LTB4 >20-hydroxy-LTB4 >>12R-HETE  [71]

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[3H]LTB4 Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Full agonist 9.8 pKd 69
pKd 9.8 (Kd 1.5x10-10 M) [69]
[3H]LTB4 Small molecule or natural product Ligand is labelled Ligand is radioactive Mm Full agonist 9.2 pKd 27
pKd 9.2 (Kd 6x10-10 M) [27]
[3H]LTB4 Small molecule or natural product Ligand is labelled Ligand is radioactive Rn Full agonist 9.2 pKd 65
pKd 9.2 (Kd 6.7x10-10 M) [65]
LTB4 Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Immunopharmacology Ligand Hs Full agonist 9.4 pKi
pKi 9.4 (Ki 3.8x10-10 M)
20-hydroxy-LTB4 Small molecule or natural product Ligand is endogenous in the given species Hs Full agonist 8.1 pKi 69
pKi 8.1 (Ki 7.6x10-9 M) [69]
12R-HETE Small molecule or natural product Ligand is endogenous in the given species Hs Full agonist 7.5 pKi 69
pKi 7.5 (Ki 3x10-8 M) [69]
View species-specific agonist tables
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[3H]CGS23131 Small molecule or natural product Ligand is labelled Ligand is radioactive Hs Antagonist 7.9 pKd 31
pKd 7.9 (Kd 1.3x10-8 M) [31]
BIIL 260 Small molecule or natural product Ligand has a PDB structure Hs Antagonist 8.8 pKi 6,14
pKi 8.8 (Ki 1.7x10-9 M) [6,14]
ONO-4057 Small molecule or natural product Hs Antagonist 8.4 pKi 36
pKi 8.4 (Ki 3.7x10-9 M) [36]
CP-195543 Small molecule or natural product Click here for species-specific activity table Immunopharmacology Ligand Hs Antagonist 8.2 pKi 55
pKi 8.2 (Ki 6.8x10-9 M) [55]
SC-41930 Small molecule or natural product Hs Antagonist 7.8 pKi 39
pKi 7.8 (Ki 1.7x10-8 M) [39]
etalocib Small molecule or natural product Hs Antagonist 7.8 pKi 32
pKi 7.8 (Ki 1.76x10-8 M) [32]
LY255283 Small molecule or natural product Click here for species-specific activity table Immunopharmacology Ligand Hs Antagonist 6.6 pKi 48
pKi 6.6 (Ki 2.6x10-7 M) [48]
U75302 Small molecule or natural product Hs Antagonist 6.4 pKi 7
pKi 6.4 (Ki 4.44x10-7 M) [7]
CP-195543 Small molecule or natural product Click here for species-specific activity table Immunopharmacology Ligand Hs Antagonist 8.6 pIC50 55
pIC50 8.6 (IC50 2.4x10-9 M) [55]
BIIL 260 Small molecule or natural product Ligand has a PDB structure Hs Antagonist 8.5 pIC50 6,14
pIC50 8.5 (IC50 2.9x10-9 M) [6,14]
etalocib Small molecule or natural product Hs Antagonist 7.5 – 9.3 pIC50 32
pIC50 7.5 – 9.3 (IC50 3.2x10-8 – 5x10-10 M) [32]
CP105696 Small molecule or natural product Immunopharmacology Ligand Hs Antagonist 8.1 pIC50 56
pIC50 8.1 (IC50 8.42x10-9 M) [56]
RO5101576 Small molecule or natural product Hs Antagonist 8.1 pIC50 24
pIC50 8.1 (IC50 8x10-9 M) [24]
SC-41930 Small molecule or natural product Hs Antagonist 6.1 pIC50 39
pIC50 6.1 (IC50 8.08x10-7 M) [39]
ONO-4057 Small molecule or natural product Hs Antagonist 5.5 – 6.2 pIC50 36
pIC50 5.5 – 6.2 (IC50 3x10-6 – 7x10-7 M) [36]
Immunopharmacology Comments
The human BLT1 receptor is the high affinity leukotriene B4 receptor, involved in mediating chemotaxis and activation of several leukocyte populations, including granulocytes, monocytes/macrophages, and lymphocytes [52].
Immuno Process Associations
Immuno Process:  Inflammation
Immuno Disease Associations
Disease Name:  Rheumatoid arthritis
Disease Synonyms:  no synonynms
Comment:  The expression of LTB4R (BLT1) and LTB4R2 (BLT2) mRNA is elevated in synovial tissues of RA patients compared to OA patients., with LTB4R2 > LTB4R. LTB4R2 is the principal mediator of leukotriene B4 effects in RA synovial tissues.
Disease X-refs:  Disease Ontology: DOID:7148
OMIM: 180300
References:  21
Primary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gi/Go family
Gq/G11 family
Adenylyl cyclase inhibition
Phospholipase C stimulation
Other - See Comments
Comments:  Mitogen-activated protein kinase activation. In CHO cells, LTB4-elicited activation of phospholipase C is mediated via BLT1/Gα16 pathway.
References:  8,11,16,20,50,69
Tissue Distribution Click here for help
Granulocytes
Species:  Human
Technique:  Western blot
References:  27
Leukocytes, spleen, thymus
Species:  Human
Technique: 
References: 
Bronchial smooth muscle cells
Species:  Human
Technique:  Immunohistochemistry
References:  67
Atherosclerotic lesions
Species:  Human
Technique:  Immunohistochemistry
References:  9
Synovial tissues derived from patients with rheumatoid arthritis
Species:  Human
Technique:  in situ hybridisation
References:  21
Abdominal aortic aneurysms
Species:  Human
Technique:  Immunohistochemistry
References:  26
Pancreatic and colon cancers
Species:  Human
Technique:  Immunohistochemistry
References:  28,58
Endothelial cells
Species:  Human
Technique:  Immunohistochemistry
References:  9
Coronary artery smooth muscle cells
Species:  Human
Technique:  Western blot
References:  9
Mast cells
Species:  Human
Technique:  RT-PCR
References:  68
Monocytes
Species:  Human
Technique:  FACS
References:  15
Dendritic cells
Species:  Human
Technique:  FACS
References:  64
T-Lymphocytes
Species:  Human
Technique:  FACS
References:  29
B-Lymphocytes
Species:  Human
Technique:  FACS
References:  49
Osteoclasts
Species:  Mouse
Technique:  PCR
References:  25
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays Click here for help
Coronary artery smooth muscle cells
Species:  Human
Tissue: 
Response measured:  Increase in whole cell currents
References:  9
CHO cells transfected with the human BLT1 receptor
Species:  Human
Tissue: 
Response measured:  Chemotaxis
References:  70
Airway epithelial conditioned medium-induced migration of human neutrophils.
Species:  Human
Tissue: 
Response measured:  Neutrophil migration
References:  66
Chemotaxis and Ca2+ fluxes in neutrophils
Species:  None
Tissue: 
Response measured: 
References: 
CHO cells transfected with the human BLT1 receptor
Species:  Human
Tissue: 
Response measured:  Increase in intracellular calcium
References:  69
Retinoic acid-differentiated HL-60 cells
Species:  Human
Tissue: 
Response measured:  Increase in intracellular calcium
References:  69
RAW264.7 cells, bronchial smooth muscle cells
Species:  Mouse
Tissue: 
Response measured:  MAP kinase activation
References:  44,67
RBL-2H3 cells
Species:  Rat
Tissue: 
Response measured:  PI3 kinase activation
References:  20
Physiological Functions Click here for help
Chemotaxis
Species:  Human
Tissue:  Neutrophils
References: 
Release of lysosomal enzymes
Species:  Human
Tissue:  Granulocytes
References:  63
Chemotaxis
Species:  Human
Tissue:  Granulocytes
References:  40
Phagocytosis
Species:  Mouse
Tissue:  Alveolar macrophages
References:  53
Phagocytosis
Species:  Mouse
Tissue:  Macrophages
References:  45
Production of IL-2
Species:  Mouse
Tissue:  CD4+ T-cells
References:  38
Physiological Functions Comments
Implicated in chemotaxis and leukocyte activation. Real-time imaging of BLT1/β-arrestin interaction and LTB4-induced cell migration is described by [33].
Physiological Consequences of Altering Gene Expression Click here for help
BLT1 knockout mice exhibit a decrease in bone resorption induced by either LPS or ovariectomy.
Species:  Mouse
Tissue:  Bone
Technique:  Gene knockouts
References:  25
BLT1 knockout mice exhibit decreased portal venule leukocyte adherence in response to systemic LPS
Species:  Mouse
Tissue: 
Technique:  Gene knockouts
References:  30
BLT1 knockout mice are protected in models of either collagen or K/BxN serum-induced arthritis.
Species:  Mouse
Tissue:  Joints
Technique:  Gene knockouts
References:  13,35,40,51,54
BLT1 knockout mice reject subcutaneous tumor chalenge of GM-CSF gene-transduced WEHI3B leukemia cells and elicit antitumor responses against second tumor challenge with WEHI3B cells.
Species:  Mouse
Tissue: 
Technique:  Gene knockouts
References:  72
Intermittent hypoxia-induced atherogenesis
Species:  Mouse
Tissue: 
Technique:  Gene knockout
References:  37
BLT1 receptor knockout mice exhibit decreased leukocyte chemotaxis and integrin-mediated leukocyte arrest in postcapillary venules in response to LTB4.
Species:  Mouse
Tissue:  Peritoneum
Technique:  Gene knockouts
References:  17,23,61
Transgenic mice expressing the human BLT1R under the CD11b promoter to obtain leukocyte specific expression exhibit an increased granulocyte infiltration in response to topical LTB4 application and ischemia reperfusion.
Species:  Mouse
Tissue:  Granulocytes
Technique:  Targeting in embryonic stem cells-hBLTR transgene injected embryos
References:  12
BLT1 receptor and apolipoprotein E (apoE) double knockout mice exhibit smaller atherosclerotic lesions compared with their apoE knock-out littermates, and are protected from abdominal aortic aneurysm development induced by angiotensin II infusion.
Species:  Mouse
Tissue:  Vasculature
Technique:  Gene knockouts
References:  1,22,59
BLT1 receptor knockout mice exhibit decreased airway responsiveness after OVA sensitization, associated with a decreased leukocyte accumulation.
Species:  Mouse
Tissue:  Airways
Technique:  Gene knockouts
References:  42,60,63
In experimental allergic encephalomyelitis (EAE), a murine model of multiple sclerosis (MS), 5-HT1A receptor knockout mice develop less severe clinical signs of disease and a exhibit significantly delayed onset of disease compared with WT mice, associated with decreased inflammatory infiltration in the spinal cord.
Species:  Mouse
Tissue:  Nervous system
Technique:  Gene knockouts
References:  34
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Ltb4r1tm1Tksh Ltb4r1tm1Tksh/Ltb4r1tm1Tksh
B6.CB-Ltb4r1
MGI:1309472  MP:0003009 abnormal cytokine secretion PMID: 16177061 
Ltb4r1tm1Tksh Ltb4r1tm1Tksh/Ltb4r1tm1Tksh
B6.CB-Ltb4r1
MGI:1309472  MP:0003953 abnormal hormone level PMID: 16177061 
Ltb4r1tm1Adl Ltb4r1tm1Adl/Ltb4r1tm1Adl
involves: 129S4/SvJae * C57BL/6
MGI:1309472  MP:0003628 abnormal leukocyte adhesion PMID: 10934232 
Ltb4r1tm1Adl Ltb4r1tm1Adl/Ltb4r1tm1Adl
involves: 129S4/SvJae * C57BL/6
MGI:1309472  MP:0003156 abnormal leukocyte migration PMID: 10934232 
Ltb4r1tm1Adl Ltb4r1tm1Adl/Ltb4r1tm1Adl
involves: 129S4/SvJae * C57BL/6
MGI:1309472  MP:0002451 abnormal macrophage physiology PMID: 10934232 
Ltb4r1tm1Adl Ltb4r1tm1Adl/Ltb4r1tm1Adl
involves: 129S4/SvJae * C57BL/6
MGI:1309472  MP:0002463 abnormal neutrophil physiology PMID: 10934232 
Ltb4r1tm1Tksh Ltb4r1tm1Tksh/Ltb4r1tm1Tksh
B6.CB-Ltb4r1
MGI:1309472  MP:0002133 abnormal respiratory system physiology PMID: 16177061 
Ltb4r1tm1Tksh Ltb4r1tm1Tksh/Ltb4r1tm1Tksh
B6.CB-Ltb4r1
MGI:1309472  MP:0002335 decreased airway responsiveness PMID: 16177061 
Ltb4r1tm1Tksh Ltb4r1tm1Tksh/Ltb4r1tm1Tksh
B6.CB-Ltb4r1
MGI:1309472  MP:0000352 decreased cell proliferation PMID: 16177061 
Ltb4r1tm1Tksh Ltb4r1tm1Tksh/Ltb4r1tm1Tksh
B6.CB-Ltb4r1
MGI:1309472  MP:0005012 decreased eosinophil cell number PMID: 16177061 
Ltb4r1tm1Tksh Ltb4r1tm1Tksh/Ltb4r1tm1Tksh
B6.CB-Ltb4r1
MGI:1309472  MP:0002492 decreased IgE level PMID: 16177061 
Apoetm1Bres|Ltb4r1tm1Adl Apoetm1Bres/Apoetm1Bres,Ltb4r1tm1Adl/Ltb4r1tm1Adl
involves: 129P2/OlaHsd * 129S4/SvJae * C57BL/6
MGI:1309472  MGI:88057  MP:0005341 decreased susceptibility to atherosclerosis PMID: 16043658 
Ltb4r1tm1Bodd Ltb4r1tm1Bodd/Ltb4r1tm1Bodd
involves: 129S4/SvJaeSor * C57BL/6
MGI:1309472  MP:0005351 decreased susceptibility to autoimmune disorder PMID: 16565390 
Ltb4r1/Ltb4r2tm2Bodd Ltb4r1/Ltb4r2tm2Bodd/Ltb4r1/Ltb4r2tm2Bodd
involves: 129S4/SvJaeSor * C57BL/6
MGI:1309472  MP:0003436 decreased susceptibility to induced arthritis PMID: 16670336 
Ltb4r1/Ltb4r2tm2Bodd|Ltb4r1+ Ltb4r1/Ltb4r2tm2Bodd/Ltb4r1+
involves: 129S4/SvJaeSor * C57BL/6
MGI:1309472  MP:0003436 decreased susceptibility to induced arthritis PMID: 16670336 
Ltb4r1tm1Bodd Ltb4r1tm1Bodd/Ltb4r1tm1Bodd
involves: 129S4/SvJaeSor
MGI:1309472  MP:0003436 decreased susceptibility to induced arthritis PMID: 16670336 
Ltb4r1tm1Bodd Ltb4r1tm1Bodd/Ltb4r1tm1Bodd
either: (involves: 129S4/SvJaeSor * BALB/c ) or (involves: 129S4/SvJaeSor * C57BL/6)
MGI:1309472  MP:0003436 decreased susceptibility to induced arthritis PMID: 20656922 
Ltb4r1tm1Adl Ltb4r1tm1Adl/Ltb4r1tm1Adl
involves: 129S4/SvJae * C57BL/6
MGI:1309472  MP:0008723 impaired eosinophil recruitment PMID: 10934232 
Ltb4r1/Ltb4r2tm2Bodd Ltb4r1/Ltb4r2tm2Bodd/Ltb4r1/Ltb4r2tm2Bodd
involves: 129S4/SvJaeSor * C57BL/6
MGI:1309472  MP:0008720 impaired neutrophil migration PMID: 20656922 
Ltb4r1tm1Adl Ltb4r1tm1Adl/Ltb4r1tm1Adl
involves: 129S4/SvJae * C57BL/6
MGI:1309472  MP:0008720 impaired neutrophil migration PMID: 10934232 
Ltb4r1tm1Bodd Ltb4r1tm1Bodd/Ltb4r1tm1Bodd
either: (involves: 129S4/SvJaeSor * BALB/c ) or (involves: 129S4/SvJaeSor * C57BL/6)
MGI:1309472  MP:0008720 impaired neutrophil migration PMID: 20656922 
Ltb4r1tm1Tksh Ltb4r1tm1Tksh/Ltb4r1tm1Tksh
B6.CB-Ltb4r1
MGI:1309472  MP:0001861 lung inflammation PMID: 16177061 
Clinically-Relevant Mutations and Pathophysiology Click here for help
Disease:  Atherosclerosis susceptibility
Disease Ontology: DOID:1936
OMIM: 108725
References:  2,9-10,59
Disease:  Atopic dermatitis
Disease Ontology: DOID:3310
OMIM: 603165
References:  47
Disease:  Bone resorption
References:  25
Disease:  Bronchial asthma
References:  41-43,62-64
Disease:  Cerebrovascular disease
Disease Ontology: DOID:6713
References:  5
Disease:  Inflammation
References:  12,19,61
Disease:  Intermittent hypoxia-induced atherogenesis
References:  37,57
Disease:  Multiple sclerosis
Disease Ontology: DOID:2377
OMIM: 126200
Orphanet: ORPHA802
References:  34
Disease:  Rheumatoid arthritis
Disease Ontology: DOID:7148
OMIM: 180300
References:  13,18,21,35,40,51,54
Biologically Significant Variants Click here for help
Type:  Single nucleotide polymorphism
Species:  Human
Description:  G+514T and C+1165G polymorphism of BLT1 and BLT2 genes are associated with an increased risk of stroke. C+1434A and C+3886T are associated with the cardioembolic subtype of stroke. The close proximity of these receptor genes suggests that those polymorphisms cannot be ascribed to either of the genes alone.
References:  5
General Comments
Helix 8 of C-terminal tail is important for the inactivation of BLT1 [46] and inhibits ligand-induced receptor internalization [4].

References

Show »

1. Ahluwalia N, Lin AY, Tager AM, Pruitt IE, Anderson TJ, Kristo F, Shen D, Cruz AR, Aikawa M, Luster AD et al.. (2007) Inhibited aortic aneurysm formation in BLT1-deficient mice. J Immunol, 179 (1): 691-7. [PMID:17579092]

2. Aiello RJ, Bourassa PA, Lindsey S, Weng W, Freeman A, Showell HJ. (2002) Leukotriene B4 receptor antagonism reduces monocytic foam cells in mice. Arterioscler Thromb Vasc Biol, 22 (3): 443-9. [PMID:11884288]

3. Akbar GK, Dasari VR, Webb TE, Ayyanathan K, Pillarisetti K, Sandhu AK, Athwal RS, Daniel JL, Ashby B, Barnard EA et al.. (1996) Molecular cloning of a novel P2 purinoceptor from human erythroleukemia cells. J Biol Chem, 271 (31): 18363-7. [PMID:8702478]

4. Aratake Y, Okuno T, Matsunobu T, Saeki K, Takayanagi R, Furuya S, Yokomizo T. (2012) Helix 8 of leukotriene B4 receptor 1 inhibits ligand-induced internalization. FASEB J, 26 (10): 4068-78. [PMID:22707565]

5. Bevan S, Dichgans M, Wiechmann HE, Gschwendtner A, Meitinger T, Markus HS. (2008) Genetic variation in members of the leukotriene biosynthesis pathway confer an increased risk of ischemic stroke: a replication study in two independent populations. Stroke, 39 (4): 1109-14. [PMID:18323512]

6. Birke FW, Meade CJ, Anderskewitz R, Speck GA, Jennewein HM. (2001) In vitro and in vivo pharmacological characterization of BIIL 284, a novel and potent leukotriene B(4) receptor antagonist. J Pharmacol Exp Ther, 297 (1): 458-66. [PMID:11259574]

7. Boie Y, Stocco R, Sawyer N, Greig GM, Kargman S, Slipetz DM, O'Neill GP, Shimizu T, Yokomizo T, Metters KM et al.. (1999) Characterization of the cloned guinea pig leukotriene B4 receptor: comparison to its human orthologue. Eur J Pharmacol, 380 (2-3): 203-13. [PMID:10513580]

8. Brink C, Dahlén SE, Drazen J, Evans JF, Hay DW, Nicosia S, Serhan CN, Shimizu T, Yokomizo T. (2003) International Union of Pharmacology XXXVII. Nomenclature for leukotriene and lipoxin receptors. Pharmacol Rev, 55 (1): 195-227. [PMID:12615958]

9. Bäck M, Bu DX, Bränström R, Sheikine Y, Yan ZQ, Hansson GK. (2005) Leukotriene B4 signaling through NF-kappaB-dependent BLT1 receptors on vascular smooth muscle cells in atherosclerosis and intimal hyperplasia. Proc Natl Acad Sci USA, 102 (48): 17501-6. [PMID:16293697]

10. Bäck M, Hansson GK. (2006) Leukotriene receptors in atherosclerosis. Ann Med, 38 (7): 493-502. [PMID:17101540]

11. Capra V, Bolla M, Belloni PA, Mezzetti M, Folco GC, Nicosia S, Rovati GE. (1998) Pharmacological characterization of the cysteinyl-leukotriene antagonists CGP 45715A (iralukast) and CGP 57698 in human airways in vitro. Br J Pharmacol, 123 (3): 590-8. [PMID:9504401]

12. Chiang N, Gronert K, Clish CB, O'Brien JA, Freeman MW, Serhan CN. (1999) Leukotriene B4 receptor transgenic mice reveal novel protective roles for lipoxins and aspirin-triggered lipoxins in reperfusion. J Clin Invest, 104 (3): 309-16. [PMID:10430612]

13. Chou RC, Kim ND, Sadik CD, Seung E, Lan Y, Byrne MH, Haribabu B, Iwakura Y, Luster AD. (2010) Lipid-cytokine-chemokine cascade drives neutrophil recruitment in a murine model of inflammatory arthritis. Immunity, 33 (2): 266-78. [PMID:20727790]

14. Díaz-González F, Alten RH, Bensen WG, Brown JP, Sibley JT, Dougados M, Bombardieri S, Durez P, Ortiz P, de-Miquel G et al.. (2007) Clinical trial of a leucotriene B4 receptor antagonist, BIIL 284, in patients with rheumatoid arthritis. Ann Rheum Dis, 66 (5): 628-32. [PMID:17170051]

15. Friedrich EB, Tager AM, Liu E, Pettersson A, Owman C, Munn L, Luster AD, Gerszten RE. (2003) Mechanisms of leukotriene B4--triggered monocyte adhesion. Arterioscler Thromb Vasc Biol, 23 (10): 1761-7. [PMID:12947016]

16. Gaudreau R, Le Gouill C, Métaoui S, Lemire S, Stankovà J, Rola-Pleszczynski M. (1998) Signalling through the leukotriene B4 receptor involves both alphai and alpha16, but not alphaq or alpha11 G-protein subunits. Biochem J, 335 ( Pt 1): 15-8. [PMID:9742207]

17. Goodarzi K, Goodarzi M, Tager AM, Luster AD, von Andrian UH. (2003) Leukotriene B4 and BLT1 control cytotoxic effector T cell recruitment to inflamed tissues. Nat Immunol, 4 (10): 965-73. [PMID:12949533]

18. Griffiths RJ, Pettipher ER, Koch K, Farrell CA, Breslow R, Conklyn MJ, Smith MA, Hackman BC, Wimberly DJ, Milici AJ et al.. (1995) Leukotriene B4 plays a critical role in the progression of collagen-induced arthritis. Proc Natl Acad Sci USA, 92 (2): 517-21. [PMID:7831322]

19. Haribabu B, Verghese MW, Steeber DA, Sellars DD, Bock CB, Snyderman R. (2000) Targeted disruption of the leukotriene B(4) receptor in mice reveals its role in inflammation and platelet-activating factor-induced anaphylaxis. J Exp Med, 192 (3): 433-8. [PMID:10934231]

20. Haribabu B, Zhelev DV, Pridgen BC, Richardson RM, Ali H, Snyderman R. (1999) Chemoattractant receptors activate distinct pathways for chemotaxis and secretion. Role of G-protein usage. J Biol Chem, 274 (52): 37087-92. [PMID:10601267]

21. Hashimoto A, Endo H, Hayashi I, Murakami Y, Kitasato H, Kono S, Matsui T, Tanaka S, Nishimura A, Urabe K et al.. (2003) Differential expression of leukotriene B4 receptor subtypes (BLT1 and BLT2) in human synovial tissues and synovial fluid leukocytes of patients with rheumatoid arthritis. J Rheumatol, 30 (8): 1712-8. [PMID:12913925]

22. Heller EA, Liu E, Tager AM, Sinha S, Roberts JD, Koehn SL, Libby P, Aikawa ER, Chen JQ, Huang P et al.. (2005) Inhibition of atherogenesis in BLT1-deficient mice reveals a role for LTB4 and BLT1 in smooth muscle cell recruitment. Circulation, 112 (4): 578-86. [PMID:16043658]

23. Herrera WG. (1990) Vestibular and other balance disorders in multiple sclerosis. Differential diagnosis of disequilibrium and topognostic localization. Neurol Clin, 8 (2): 407-20. [PMID:2193219]

24. Hicks A, Goodnow Jr R, Cavallo G, Tannu SA, Ventre JD, Lavelle D, Lora JM, Satjawatcharaphong J, Brovarney M, Dabbagh K et al.. (2010) Effects of LTB4 receptor antagonism on pulmonary inflammation in rodents and non-human primates. Prostaglandins Other Lipid Mediat, 92 (1-4): 33-43. [PMID:20214997]

25. Hikiji H, Ishii S, Yokomizo T, Takato T, Shimizu T. (2009) A distinctive role of the leukotriene B4 receptor BLT1 in osteoclastic activity during bone loss. Proc Natl Acad Sci USA, 106 (50): 21294-9. [PMID:19965376]

26. Houard X, Ollivier V, Louedec L, Michel JB, Bäck M. (2009) Differential inflammatory activity across human abdominal aortic aneurysms reveals neutrophil-derived leukotriene B4 as a major chemotactic factor released from the intraluminal thrombus. FASEB J, 23 (5): 1376-83. [PMID:19136615]

27. Huang WW, Garcia-Zepeda EA, Sauty A, Oettgen HC, Rothenberg ME, Luster AD. (1998) Molecular and biological characterization of the murine leukotriene B4 receptor expressed on eosinophils. J Exp Med, 188 (6): 1063-74. [PMID:9743525]

28. Ihara A, Wada K, Yoneda M, Fujisawa N, Takahashi H, Nakajima A. (2007) Blockade of leukotriene B4 signaling pathway induces apoptosis and suppresses cell proliferation in colon cancer. J Pharmacol Sci, 103 (1): 24-32. [PMID:17220595]

29. Islam SA, Thomas SY, Hess C, Medoff BD, Means TK, Brander C, Lilly CM, Tager AM, Luster AD. (2006) The leukotriene B4 lipid chemoattractant receptor BLT1 defines antigen-primed T cells in humans. Blood, 107 (2): 444-53. [PMID:16179368]

30. Ito S, Ito Y, Katagiri H, Suzuki T, Hoka S, Yokomizo T, Shimizu T, Majima M. (2008) Leukotriene B4/leukotriene B4 receptor pathway is involved in hepatic microcirculatory dysfunction elicited by endotoxin. Shock, 30 (1): 87-91. [PMID:18004232]

31. Jackson RH, Morrissey MM, Sills MA, Jarvis MF. (1992) Comparison of antagonist and agonist binding to the leukotriene B4 receptor intact human polymorphonuclear neutrophils (PMN). J Pharmacol Exp Ther, 262 (1): 80-9. [PMID:1320692]

32. Jackson WT, Froelich LL, Boyd RJ, Schrementi JP, Saussy Jr DL, Schultz RM, Sawyer JS, Sofia MJ, Herron DK, Goodson Jr T et al.. (1999) Pharmacologic actions of the second-generation leukotriene B4 receptor antagonist LY293111: in vitro studies. J Pharmacol Exp Ther, 288 (1): 286-94. [PMID:9862783]

33. Jala VR, Haribabu B. (2010) Real-time imaging of leukotriene B₄ mediated cell migration and BLT1 interactions with β-arrestin. J Vis Exp, (46). [PMID:21206474]

34. Kihara Y, Yokomizo T, Kunita A, Morishita Y, Fukayama M, Ishii S, Shimizu T. (2010) The leukotriene B4 receptor, BLT1, is required for the induction of experimental autoimmune encephalomyelitis. Biochem Biophys Res Commun, 394 (3): 673-8. [PMID:20226760]

35. Kim ND, Chou RC, Seung E, Tager AM, Luster AD. (2006) A unique requirement for the leukotriene B4 receptor BLT1 for neutrophil recruitment in inflammatory arthritis. J Exp Med, 203 (4): 829-35. [PMID:16567386]

36. Kishikawa K, Tateishi N, Maruyama T, Seo R, Toda M, Miyamoto T. (1992) ONO-4057, a novel, orally active leukotriene B4 antagonist: effects on LTB4-induced neutrophil functions. Prostaglandins, 44 (4): 261-75. [PMID:1332129]

37. Li RC, Haribabu B, Mathis SP, Kim J, Gozal D. (2011) Leukotriene B4 receptor-1 mediates intermittent hypoxia-induced atherogenesis. Am J Respir Crit Care Med, 184 (1): 124-31. [PMID:21493735]

38. Marcinkiewicz J, Grabowska A, Bryniarski K, Chain BM. (1997) Enhancement of CD4+ T-cell-dependent interleukin-2 production in vitro by murine alveolar macrophages: the role of leukotriene B4. Immunology, 91 (3): 369-74. [PMID:9301525]

39. Marder P, Sawyer JS, Froelich LL, Mann LL, Spaethe SM. (1995) Blockade of human neutrophil activation by 2-[2-propyl-3-[3-[2-ethyl-4-(4-fluorophenyl)-5- hydroxyphenoxy]propoxy]phenoxy]benzoic acid (LY293111), a novel leukotriene B4 receptor antagonist. Biochem Pharmacol, 49 (11): 1683-90. [PMID:7786309]

40. Mathis SP, Jala VR, Lee DM, Haribabu B. (2010) Nonredundant roles for leukotriene B4 receptors BLT1 and BLT2 in inflammatory arthritis. J Immunol, 185 (5): 3049-56. [PMID:20656922]

41. Miyahara N, Ohnishi H, Matsuda H, Miyahara S, Takeda K, Koya T, Matsubara S, Okamoto M, Dakhama A, Haribabu B et al.. (2008) Leukotriene B4 receptor 1 expression on dendritic cells is required for the development of Th2 responses and allergen-induced airway hyperresponsiveness. J Immunol, 181 (2): 1170-8. [PMID:18606670]

42. Miyahara N, Takeda K, Miyahara S, Matsubara S, Koya T, Joetham A, Krishnan E, Dakhama A, Haribabu B, Gelfand EW. (2005) Requirement for leukotriene B4 receptor 1 in allergen-induced airway hyperresponsiveness. Am J Respir Crit Care Med, 172 (2): 161-7. [PMID:15849325]

43. Miyahara N, Takeda K, Miyahara S, Taube C, Joetham A, Koya T, Matsubara S, Dakhama A, Tager AM, Luster AD et al.. (2005) Leukotriene B4 receptor-1 is essential for allergen-mediated recruitment of CD8+ T cells and airway hyperresponsiveness. J Immunol, 174 (8): 4979-84. [PMID:15814727]

44. Nieves D, Moreno JJ. (2006) Role of 5-lipoxygenase pathway in the regulation of RAW 264.7 macrophage proliferation. Biochem Pharmacol, 72 (8): 1022-30. [PMID:16934759]

45. Okamoto F, Saeki K, Sumimoto H, Yamasaki S, Yokomizo T. (2010) Leukotriene B4 augments and restores Fc gammaRs-dependent phagocytosis in macrophages. J Biol Chem, 285 (52): 41113-21. [PMID:20959460]

46. Okuno T, Ago H, Terawaki K, Miyano M, Shimizu T, Yokomizo T. (2003) Helix 8 of the leukotriene B4 receptor is required for the conformational change to the low affinity state after G-protein activation. J Biol Chem, 278 (42): 41500-9. [PMID:12902330]

47. Oyoshi MK, He R, Li Y, Mondal S, Yoon J, Afshar R, Chen M, Lee DM, Luo HR, Luster AD et al.. (2012) Leukotriene B4-driven neutrophil recruitment to the skin is essential for allergic skin inflammation. Immunity, 37 (4): 747-58. [PMID:23063331]

48. Richards IM, Sun FF, Taylor BM, Shields SK, Griffin RL, Morris J, Wishka DG, Smith HW, Johnson RA, Dunn CJ. (1991) Contribution of leukotriene B4 to airway inflammation and the effect of antagonists. Ann N Y Acad Sci, 629: 274-87. [PMID:1659282]

49. Runarsson G, Liu A, Mahshid Y, Feltenmark S, Pettersson A, Klein E, Björkholm M, Claesson HE. (2005) Leukotriene B4 plays a pivotal role in CD40-dependent activation of chronic B lymphocytic leukemia cells. Blood, 105 (3): 1274-9. [PMID:15454480]

50. Sabirsh A, Bristulf J, Owman C. (2004) Exploring the pharmacology of the leukotriene B4 receptor BLT1, without the confounding effects of BLT2. Eur J Pharmacol, 499 (1-2): 53-65. [PMID:15363951]

51. Sadik CD, Kim ND, Iwakura Y, Luster AD. (2012) Neutrophils orchestrate their own recruitment in murine arthritis through C5aR and FcγR signaling. Proc Natl Acad Sci USA, 109 (46): E3177-85. [PMID:23112187]

52. Saeki K, Yokomizo T. (2017) Identification, signaling, and functions of LTB4 receptors. Semin Immunol, 33: 30-36. [PMID:29042026]

53. Serezani CH, Aronoff DM, Sitrin RG, Peters-Golden M. (2009) FcgammaRI ligation leads to a complex with BLT1 in lipid rafts that enhances rat lung macrophage antimicrobial functions. Blood, 114 (15): 3316-24. [PMID:19657115]

54. Shao WH, Del Prete A, Bock CB, Haribabu B. (2006) Targeted disruption of leukotriene B4 receptors BLT1 and BLT2: a critical role for BLT1 in collagen-induced arthritis in mice. J Immunol, 176 (10): 6254-61. [PMID:16670336]

55. Showell HJ, Conklyn MJ, Alpert R, Hingorani GP, Wright KF, Smith MA, Stam E, Salter ED, Scampoli DN, Meltzer S et al.. (1998) The preclinical pharmacological profile of the potent and selective leukotriene B4 antagonist CP-195543. J Pharmacol Exp Ther, 285 (3): 946-54. [PMID:9618393]

56. Showell HJ, Pettipher ER, Cheng JB, Breslow R, Conklyn MJ, Farrell CA, Hingorani GP, Salter ED, Hackman BC, Wimberly DJ. (1995) The in vitro and in vivo pharmacologic activity of the potent and selective leukotriene B4 receptor antagonist CP-105696. J Pharmacol Exp Ther, 273 (1): 176-84. [PMID:7714764]

57. Stanke-Labesque F, Pépin JL, de Jouvencel T, Arnaud C, Baguet JP, Petri MH, Tamisier R, Jourdil JF, Lévy P, Bäck M. (2012) Leukotriene B4 pathway activation and atherosclerosis in obstructive sleep apnea. J Lipid Res, 53 (9): 1944-51. [PMID:22761257]

58. Stuart CA, Meehan RT, Neale LS, Cintron NM, Furlanetto RW. (1991) Insulin-like growth factor-I binds selectively to human peripheral blood monocytes and B-lymphocytes. J Clin Endocrinol Metab, 72 (5): 1117-22. [PMID:1850753]

59. Subbarao K, Jala VR, Mathis S, Suttles J, Zacharias W, Ahamed J, Ali H, Tseng MT, Haribabu B. (2004) Role of leukotriene B4 receptors in the development of atherosclerosis: potential mechanisms. Arterioscler Thromb Vasc Biol, 24 (2): 369-75. [PMID:14656734]

60. Tager AM, Bromley SK, Medoff BD, Islam SA, Bercury SD, Friedrich EB, Carafone AD, Gerszten RE, Luster AD. (2003) Leukotriene B4 receptor BLT1 mediates early effector T cell recruitment. Nat Immunol, 4 (10): 982-90. [PMID:12949531]

61. Tager AM, Dufour JH, Goodarzi K, Bercury SD, von Andrian UH, Luster AD. (2000) BLTR mediates leukotriene B(4)-induced chemotaxis and adhesion and plays a dominant role in eosinophil accumulation in a murine model of peritonitis. J Exp Med, 192 (3): 439-46. [PMID:10934232]

62. Taube C, Miyahara N, Ott V, Swanson B, Takeda K, Loader J, Shultz LD, Tager AM, Luster AD, Dakhama A et al.. (2006) The leukotriene B4 receptor (BLT1) is required for effector CD8+ T cell-mediated, mast cell-dependent airway hyperresponsiveness. J Immunol, 176 (5): 3157-64. [PMID:16493075]

63. Terawaki K, Yokomizo T, Nagase T, Toda A, Taniguchi M, Hashizume K, Yagi T, Shimizu T. (2005) Absence of leukotriene B4 receptor 1 confers resistance to airway hyperresponsiveness and Th2-type immune responses. J Immunol, 175 (7): 4217-25. [PMID:16177061]

64. Toda A, Terawaki K, Yamazaki S, Saeki K, Shimizu T, Yokomizo T. (2010) Attenuated Th1 induction by dendritic cells from mice deficient in the leukotriene B4 receptor 1. Biochimie, 92 (6): 682-91. [PMID:20004699]

65. Toda A, Yokomizo T, Masuda K, Nakao A, Izumi T, Shimizu T. (1999) Cloning and characterization of rat leukotriene B(4) receptor. Biochem Biophys Res Commun, 262 (3): 806-12. [PMID:10471406]

66. Uddin M, Seumois G, Lau LC, Rytila P, Davies DE, Djukanovic R. (2008) Enhancement of neutrophil function by the bronchial epithelium stimulated by epidermal growth factor. Eur Respir J, 31 (4): 714-24. [PMID:18094008]

67. Watanabe S, Yamasaki A, Hashimoto K, Shigeoka Y, Chikumi H, Hasegawa Y, Sumikawa T, Takata M, Okazaki R, Watanabe M et al.. (2009) Expression of functional leukotriene B4 receptors on human airway smooth muscle cells. J Allergy Clin Immunol, 124 (1): 59-65.e1-3. [PMID:19477492]

68. Weller CL, Collington SJ, Brown JK, Miller HR, Al-Kashi A, Clark P, Jose PJ, Hartnell A, Williams TJ. (2005) Leukotriene B4, an activation product of mast cells, is a chemoattractant for their progenitors. J Exp Med, 201 (12): 1961-71. [PMID:15955837]

69. Yokomizo T, Izumi T, Chang K, Takuwa Y, Shimizu T. (1997) A G-protein-coupled receptor for leukotriene B4 that mediates chemotaxis. Nature, 387 (6633): 620-4. [PMID:9177352]

70. Yokomizo T, Izumi T, Shimizu T. (2001) Co-expression of two LTB4 receptors in human mononuclear cells. Life Sci, 68 (19-20): 2207-12. [PMID:11358329]

71. Yokomizo T, Kato K, Hagiya H, Izumi T, Shimizu T. (2001) Hydroxyeicosanoids bind to and activate the low affinity leukotriene B4 receptor, BLT2. J Biol Chem, 276 (15): 12454-9. [PMID:11278893]

72. Yokota Y, Inoue H, Matsumura Y, Nabeta H, Narusawa M, Watanabe A, Sakamoto C, Hijikata Y, Iga-Murahashi M, Takayama K et al.. (2012) Absence of LTB4/BLT1 axis facilitates generation of mouse GM-CSF-induced long-lasting antitumor immunologic memory by enhancing innate and adaptive immune systems. Blood, 120 (17): 3444-54. [PMID:22936657]

Contributors

Show »

How to cite this page