Top ▲

FFA2 receptor

Click here for help

Immunopharmacology Ligand  Target has curated data in GtoImmuPdb

Target id: 226

Nomenclature: FFA2 receptor

Family: Free fatty acid receptors

Gene and Protein Information Click here for help
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 330 19q13.12 FFAR2 free fatty acid receptor 2 21
Mouse 7 330 7 B1 Ffar2 free fatty acid receptor 2 23
Rat 7 330 1q21 Ffar2 free fatty acid receptor 2 10
Previous and Unofficial Names Click here for help
FFA2R | GPCR3 | GPR43 [21] | G protein-coupled receptor 43
Database Links Click here for help
Specialist databases
GPCRdb ffar2_human (Hs), ffar2_mouse (Mm)
Other databases
Alphafold
ChEMBL Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Natural/Endogenous Ligands Click here for help
acetic acid
butyric acid
1-methylcyclopropanecarboxylic acid
propanoic acid
trans-2-methylcrotonic acid

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
TUG-1375 Small molecule or natural product Primary target of this compound Immunopharmacology Ligand Hs Agonist 6.7 pKi 5
pKi 6.7 (Ki 2.04x10-7 M) [5]
Description: Binding affinity for hFFA2.
compound 1 [PMID: 23589301] Small molecule or natural product Rn Agonist 7.1 pEC50 8
pEC50 7.1 [8]
TUG-1375 Small molecule or natural product Primary target of this compound Immunopharmacology Ligand Hs Agonist 6.1 – 7.1 pEC50 5
pEC50 7.1 (EC50 7.76x10-8 M) [5]
Description: Agonist activity in a cAMP inhibition assay.
pEC50 6.1 (EC50 7.94x10-7 M) [5]
Description: Agonist activity in a BRET-based β-arrestin-2 recruitment assay.
TUG-1375 Small molecule or natural product Immunopharmacology Ligand Mm Agonist 6.4 pEC50 5
pEC50 6.4 (EC50 3.63x10-7 M) [5]
(S)-4-CMTB Small molecule or natural product Hs Full agonist 6.4 pEC50 9,14
pEC50 6.4 [9,14]
propanoic acid Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Hs Full agonist 3.0 – 4.9 pEC50 2,13,18,22
pEC50 3.0 – 4.9 [2,13,18,22]
acetic acid Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Hs Full agonist 3.1 – 4.6 pEC50 2,13,18,22
pEC50 3.1 – 4.6 [2,13,18,22]
trans-2-methylcrotonic acid Small molecule or natural product Ligand is endogenous in the given species Hs Full agonist 3.8 pEC50 22
pEC50 3.8 [22]
butyric acid Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Immunopharmacology Ligand Hs Full agonist 2.9 – 4.6 pEC50 2,13,18,22
pEC50 2.9 – 4.6 [2,13,18,22]
isobutyric acid Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 3.2 – 3.8 pEC50 13
pEC50 3.2 – 3.8 [13]
pentanoic acid Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 2.8 – 3.0 pEC50 2
pEC50 2.8 – 3.0 [2]
1-methylcyclopropanecarboxylic acid Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Hs Agonist 2.6 pEC50 22
pEC50 2.6 [22]
CPTB Small molecule or natural product Hs Agonist 6.2 pIC50 31
pIC50 6.2 (IC50 7x10-7 M) [31]
Description: Determined in a cAMP assay measuring inhibition of forskolin-induced cAMP response in CHO cells expressing hFFA2
View species-specific agonist tables
Agonist Comments
A series of short chain fatty acids with varying degrees of selectivity for FFA2 over FFA3 have been reported [22]. It has been noted that there are differences in the potency of short chain fatty acids at FFA2 receptors from different species [9]. For example, the bovine varient of FFA2 is activated by longer chain fatty acids, such as caproic acid (C6) and enathic acid (C7) compared to human FFA2 [7].
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
TUG-2304 Small molecule or natural product Hs Antagonist 8.4 – 8.5 pIC50 29
pIC50 8.5 (IC50 3.5x10-9 M) [29]
Description: Measuring antagonism of agonist-induced GTPγS incorporation by liquid scintillation spectroscopy.
pIC50 8.4 (IC50 4.5x10-9 M) [29]
Description: Measuring inhibition of sodium propionate-induced intracellular calcium flux by TR-FRET.
GLPG0974 Small molecule or natural product Primary target of this compound Immunopharmacology Ligand Hs Antagonist 8.1 pIC50 17,19
pIC50 8.1 (IC50 9x10-9 M) [17,19]
Description: Inhibition of sodium acetate-induced calcium flux via the FFA2 receptor.
CATPB Small molecule or natural product Hs Antagonist 6.5 pIC50 9
pIC50 6.5 [9]
Antagonist Comments
To date no compounds that act as antagonists at FFA2 have been reported in the peer reviewed literature but FFA2 antagonists have been described in patent applications [28].
Allosteric Modulators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
AMG7703 Small molecule or natural product Hs Positive 5.9 – 6.3 pEC50 14,25
pEC50 5.9 – 6.3 (EC50 1.27x10-6 – 4.5x10-7 M) [14,25]
Allosteric Modulator Comments
Further allosteric modulators based on the structure of AMG7703 have been reported [25,31] but without any significant increase in potency.
Immunopharmacology Comments
FFAR2 is a GPCR activated by short-chain fatty acids, and evidence suggests that FFAR2 (and FFAR3) mediate beneficial effects associated with a fiber-rich diet. These GPCRs are of interest as targets for the treatment of inflammatory and metabolic diseases. FFAR2 is included in GtoImmuPdb as it is highly expressed on immune cells, in particular neutrophils, and evidence points to a role in diseases with dysfunctional neutrophil responses, such as inflammatory bowel disease (IBD). A Phase 2 trial of the clinical candidate GLPG0974 in ulcerative colitis has been completed (see NCT0182932).
In vitro and in vivo studies suggest that the short-chain fatty acid/FFAR2 axis is modulated by metabolites of cholera toxin, that are produced by gut microbiota, which leads to enhanced mucosal antibody responses against enteric pathogen infection [32]. These discoveries help to identify FFAR2 and intestinal microbiota as critical players that underly cholera toxin's adjuvant activity, and have the potential to drive the development of more effective immunisation adjuvants.
Cell Type Associations
Immuno Cell Type:  Granulocytes
Cell Ontology Term:   neutrophil (CL:0000775)
Comment:  FFA2 receptor is selectively expressed by leukocytes, especially neutrophils.
References:  3,13
Immuno Cell Type:  Macrophages & monocytes
Cell Ontology Term:   monocyte (CL:0000576)
References:  3
Immuno Process Associations
Immuno Process:  Inflammation
Immuno Process:  Immune regulation
Immuno Process:  Cytokine production & signalling
Immuno Process:  Chemotaxis & migration
Immuno Process:  Cellular signalling
Primary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gq/G11 family Phospholipase C stimulation
References:  2,13,18
Secondary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gi/Go family Adenylyl cyclase inhibition
References:  2,13,18
Tissue Distribution Click here for help
Neutrophils, monocytes, peripheral blood mononuclear cells and B-lymphocytes. No receptor expression detected in glioma, T-cells or Raji cells.
Species:  Human
Technique:  RT-PCR.
References:  2,13
Neutrophils and eosinophils.
Species:  Human
Technique:  Microarray analysis.
References:  16
Peripheral blood leukocytes, spleen, skeletal muscle, heart.
Species:  Human
Technique:  Northern blotting.
References:  18
Duodenal enteroendocrine L-cells.
Species:  Human
Technique:  Immunohistochemistry.
References:  11
Adipocytes.
Species:  Mouse
Technique:  RT-PCR.
References:  6
Pancreatic islets.
Species:  Mouse
Technique:  RT-PCR.
References:  12
Distal ileum, colon.
Species:  Rat
Technique:  RT-PCR.
References:  10
Tissue Distribution Comments
FFA2 expression has been shown to be down-regulated in human colorectal adenocarcinomas and in human colon cancer cell lines [26].
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays Click here for help
Measurement of Ca2+ levels in HEK 293 cells transfected with the human FFA2 receptor.
Species:  Human
Tissue:  HEK 293 cells.
Response measured:  Increase in Ca2+ concentration.
References:  2
Measurement of cAMP levels in CHO-K1 cells transfected with the human FFA2 receptor.
Species:  Human
Tissue:  CHO-K1 cells.
Response measured:  Inhibition of cAMP accumulation.
References:  13
Measurement of Ca2+ levels in polymorphonuclear cells endogenously expressing the FFA2 receptor.
Species:  Human
Tissue:  Polymorphonuclear cells.
Response measured:  Increase in intracellular Ca2+ concentration.
References:  13
Stimulation of [35S]GTPγS binding in HEK293 cell membranes expressing the human FFA2 receptor.
Species:  Human
Tissue:  HEK293 cells.
Response measured:  Increase in [35S]GTPγS binding.
References:  2
Measurement of chemotaxis in cells endogenously expresing the FFA2 receptor.
Species:  Human
Tissue:  Neutrophils.
Response measured:  Neutrophil migration.
References:  13,15
Measurement of extracellular-regulated kinase 1/2 (ERK1/2) phosphorylation in HEK293 cells expressing the human FFA2 receptor.
Species:  Human
Tissue:  HEK293 cells.
Response measured:  Phosphorylation of ERK1/2.
References:  25
Label-free dynamic mass redistribution measured on the Coring Epic biosensor system in HEK293 cells expressing the human FFA2 receptor.
Species:  Human
Tissue:  HEK293 cells.
Response measured:  Measurement of cell mass redistribution via a change in the optical density of the cells.
References:  22
Physiological Functions Click here for help
Stimulation of adipogenesis.
Species:  Mouse
Tissue:  3T3-L1 cells.
References:  6
Activation of polymorphonuclear cells.
Species:  Human
Tissue:  Polymorphonuclear cells.
References:  13
Short-chain fatty acid stimulation of glucagon-like peptide-1 (GLP-1) from intestinal L-cells.
Species:  Mouse
Tissue:  L-cells.
References:  27
Short-chain fatty acid stimulation of neutrophil chemotaxis.
Species:  Mouse
Tissue:  Neutrophils.
References:  30
Acetate stimulated leptin secretion from adipocytes via FFA2.
Species:  Rat
Tissue:  Adipocytes.
References:  33
Neutrophil chemotaxis.
Species:  Human
Tissue: 
References:  15
Physiological Functions Comments
A general function of FFA2 in nutrient sensing in the gut to maintain energy homoeostatsis has been suggested [20].
Physiological Consequences of Altering Gene Expression Click here for help
Short chain fatty acid inhibition of post-EFS contractions of the colon is unaltered in Gpr43 receptor knockout mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  4
Mice lacking FFA2 display reduced body mass and increased insulin sensitivity.
Species:  Mouse
Tissue:  in vivo.
Technique:  Gene knock-outs.
References:  1
FFA2 knockout mice display exacerbated and/or unresolving inflammation in models of colitis, arthritis and asthma.
Species:  Mouse
Tissue:  in vivo.
Technique:  Gene knock-outs.
References:  15
FFA2 knockout mice show reduced intestinal migration of polymorphonuclear leukocytes and inflammation mediated tissue distruction in dextrane sodium sulfate induced colitis.
Species:  None
Tissue:  in vivo.
Technique:  Gene knock-outs.
References:  24
Physiological Consequences of Altering Gene Expression Comments
FFA3 is found to be upregulated in FFA2 knockout mice suggesting a compensatory mechanism may be involved with the two short chain fatty acid receptors [1].
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Ffar2tm1Lex Ffar2tm1Lex/Ffar2tm1Lex
involves: 129S/SvEvBrd * C57BL/6J
MGI:2441731  MP:0001553 abnormal circulating free fatty acids level PMID: 18499755 
Ffar2tm2Lex Ffar2tm2Lex/Ffar2tm2Lex
involves: 129S7/SvEvBrd * C57BL/6
MGI:2441731  MP:0000495 abnormal colon morphology PMID: 19917676 
Ffar2tm2Lex Ffar2tm2Lex/Ffar2tm2Lex
involves: 129S7/SvEvBrd * C57BL/6
MGI:2441731  MP:0008713 abnormal cytokine level PMID: 19917676 
Ffar2tm2Lex Ffar2tm2Lex/Ffar2tm2Lex
involves: 129S7/SvEvBrd * C57BL/6
MGI:2441731  MP:0003866 abnormal defecation PMID: 19917676 
Ffar2tm1Dgen Ffar2tm1Dgen/Ffar2tm1Dgen
involves: C57BL/6
MGI:2441731  MP:0002462 abnormal granulocyte physiology PMID: 19865172 
Ffar2tm2Lex Ffar2tm2Lex/Ffar2tm2Lex
involves: 129S7/SvEvBrd * C57BL/6
MGI:2441731  MP:0001845 abnormal inflammatory response PMID: 19917676 
Ffar2tm2Lex Ffar2tm2Lex/Ffar2tm2Lex
involves: 129S7/SvEvBrd * C57BL/6
MGI:2441731  MP:0005065 abnormal neutrophil morphology PMID: 19917676 
Ffar2tm1Dgen Ffar2tm1Dgen/Ffar2tm1Dgen
involves: C57BL/6
MGI:2441731  MP:0002463 abnormal neutrophil physiology PMID: 19865172 
Ffar2tm2Lex Ffar2tm2Lex/Ffar2tm2Lex
involves: 129S7/SvEvBrd * C57BL/6
MGI:2441731  MP:0001262 decreased body weight PMID: 19917676 
Ffar2tm2Lex Ffar2tm2Lex/Ffar2tm2Lex
involves: 129S7/SvEvBrd * C57BL/6
MGI:2441731  MP:0008554 decreased circulating tumor necrosis factor level PMID: 19917676 
Ffar2tm2Lex Ffar2tm2Lex/Ffar2tm2Lex
involves: 129S7/SvEvBrd * C57BL/6
MGI:2441731  MP:0008539 decreased susceptibility to induced colitis PMID: 19917676 
Ffar2tm2Lex Ffar2tm2Lex/Ffar2tm2Lex
involves: 129S7/SvEvBrd * C57BL/6
MGI:2441731  MP:0008561 decreased tumor necrosis factor secretion PMID: 19917676 
Ffar2tm1Dgen Ffar2tm1Dgen/Ffar2tm1Dgen
involves: C57BL/6
MGI:2441731  MP:0008720 impaired neutrophil migration PMID: 19865172 
Ffar2tm2Lex Ffar2tm2Lex/Ffar2tm2Lex
involves: 129S7/SvEvBrd * C57BL/6
MGI:2441731  MP:0008720 impaired neutrophil migration PMID: 19917676 
Ffar2tm1Dgen Ffar2tm1Dgen/Ffar2tm1Dgen
involves: C57BL/6
MGI:2441731  MP:0002467 impaired neutrophil phagocytosis PMID: 19865172 
Ffar2tm2Lex Ffar2tm2Lex/Ffar2tm2Lex
involves: 129S7/SvEvBrd * C57BL/6
MGI:2441731  MP:0001260 increased body weight PMID: 19917676 
Ffar2tm2Lex Ffar2tm2Lex/Ffar2tm2Lex
involves: 129S7/SvEvBrd * C57BL/6
MGI:2441731  MP:0008553 increased circulating tumor necrosis factor level PMID: 19917676 
Ffar2tm1Dgen Ffar2tm1Dgen/Ffar2tm1Dgen
involves: C57BL/6
MGI:2441731  MP:0009766 increased sensitivity to xenobiotic induced morbidity/mortality PMID: 19865172 
Ffar2tm2Lex Ffar2tm2Lex/Ffar2tm2Lex
involves: 129S7/SvEvBrd * C57BL/6
MGI:2441731  MP:0009766 increased sensitivity to xenobiotic induced morbidity/mortality PMID: 19917676 
Ffar2tm1Dgen Ffar2tm1Dgen/Ffar2tm1Dgen
involves: C57BL/6
MGI:2441731  MP:0003724 increased susceptibility to induced arthritis PMID: 19865172 
Ffar2tm1Dgen Ffar2tm1Dgen/Ffar2tm1Dgen
involves: C57BL/6
MGI:2441731  MP:0008537 increased susceptibility to induced colitis PMID: 19865172 
Ffar2tm1Dgen Ffar2tm1Dgen/Ffar2tm1Dgen
involves: C57BL/6
MGI:2441731  MP:0005015 increased T cell number PMID: 19865172 
Ffar2tm2Lex Ffar2tm2Lex/Ffar2tm2Lex
involves: 129S7/SvEvBrd * C57BL/6
MGI:2441731  MP:0003304 large intestinal inflammation PMID: 19917676 
Ffar2tm1Dgen Ffar2tm1Dgen/Ffar2tm1Dgen
involves: C57BL/6
MGI:2441731  MP:0001861 lung inflammation PMID: 19865172 
Ffar2tm2Lex Ffar2tm2Lex/Ffar2tm2Lex
involves: 129S7/SvEvBrd * C57BL/6
MGI:2441731  MP:0003293 rectal hemorrhage PMID: 19917676 
Ffar2tm2Lex Ffar2tm2Lex/Ffar2tm2Lex
involves: 129S7/SvEvBrd * C57BL/6
MGI:2441731  MP:0005044 sepsis PMID: 19917676 

References

Show »

1. Bjursell M, Admyre T, Göransson M, Marley AE, Smith DM, Oscarsson J, Bohlooly-Y M. (2011) Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet. Am J Physiol Endocrinol Metab, 300 (1): E211-20. [PMID:20959533]

2. Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, Muir AI, Wigglesworth MJ, Kinghorn I, Fraser NJ et al.. (2003) The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem, 278 (13): 11312-9. [PMID:12496283]

3. Brown AJ, Jupe S, Briscoe CP. (2005) A family of fatty acid binding receptors. DNA Cell Biol, 24 (1): 54-61. [PMID:15684720]

4. Dass NB, John AK, Bassil AK, Crumbley CW, Shehee WR, Maurio FP, Moore GB, Taylor CM, Sanger GJ. (2007) The relationship between the effects of short-chain fatty acids on intestinal motility in vitro and GPR43 receptor activation. Neurogastroenterol Motil, 19 (1): 66-74. [PMID:17187590]

5. Hansen AH, Sergeev E, Bolognini D, Sprenger RR, Ekberg JH, Ejsing CS, McKenzie CJ, Rexen Ulven E, Milligan G, Ulven T. (2018) Discovery of a Potent Thiazolidine Free Fatty Acid Receptor 2 Agonist with Favorable Pharmacokinetic Properties. J Med Chem, 61 (21): 9534-9550. [PMID:30247908]

6. Hong YH, Nishimura Y, Hishikawa D, Tsuzuki H, Miyahara H, Gotoh C, Choi KC, Feng DD, Chen C, Lee HG et al.. (2005) Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology, 146 (12): 5092-9. [PMID:16123168]

7. Hudson BD, Christiansen E, Tikhonova IG, Grundmann M, Kostenis E, Adams DR, Ulven T, Milligan G. (2012) Chemically engineering ligand selectivity at the free fatty acid receptor 2 based on pharmacological variation between species orthologs. FASEB J, 26 (12): 4951-65. [PMID:22919070]

8. Hudson BD, Due-Hansen ME, Christiansen E, Hansen AM, Mackenzie AE, Murdoch H, Pandey SK, Ward RJ, Marquez R, Tikhonova IG et al.. (2013) Defining the molecular basis for the first potent and selective orthosteric agonists of the FFA2 free fatty acid receptor. J Biol Chem, 288 (24): 17296-312. [PMID:23589301]

9. Hudson BD, Tikhonova IG, Pandey SK, Ulven T, Milligan G. (2012) Extracellular ionic locks determine variation in constitutive activity and ligand potency between species orthologs of the free fatty acid receptors FFA2 and FFA3. J Biol Chem, 287 (49): 41195-209. [PMID:23066016]

10. Karaki S, Mitsui R, Hayashi H, Kato I, Sugiya H, Iwanaga T, Furness JB, Kuwahara A. (2006) Short-chain fatty acid receptor, GPR43, is expressed by enteroendocrine cells and mucosal mast cells in rat intestine. Cell Tissue Res, 324 (3): 353-60. [PMID:16453106]

11. Karaki S, Tazoe H, Hayashi H, Kashiwabara H, Tooyama K, Suzuki Y, Kuwahara A. (2008) Expression of the short-chain fatty acid receptor, GPR43, in the human colon. J Mol Histol, 39 (2): 135-42. [PMID:17899402]

12. Kebede MA, Alquier T, Latour MG, Poitout V. (2009) Lipid receptors and islet function: therapeutic implications?. Diabetes Obes Metab, 11 Suppl 4: 10-20. [PMID:19817784]

13. Le Poul E, Loison C, Struyf S, Springael JY, Lannoy V, Decobecq ME, Brezillon S, Dupriez V, Vassart G, Van Damme J et al.. (2003) Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem, 278 (28): 25481-9. [PMID:12711604]

14. Lee T, Schwandner R, Swaminath G, Weiszmann J, Cardozo M, Greenberg J, Jaeckel P, Ge H, Wang Y, Jiao X et al.. (2008) Identification and functional characterization of allosteric agonists for the G protein-coupled receptor FFA2. Mol Pharmacol, 74 (6): 1599-609. [PMID:18818303]

15. Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, Schilter HC, Rolph MS, Mackay F, Artis D et al.. (2009) Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature, 461 (7268): 1282-6. [PMID:19865172]

16. Nakajima T, Iikura M, Okayama Y, Matsumoto K, Uchiyama C, Shirakawa T, Yang X, Adra CN, Hirai K, Saito H. (2004) Identification of granulocyte subtype-selective receptors and ion channels by using a high-density oligonucleotide probe array. J Allergy Clin Immunol, 113 (3): 528-35. [PMID:15007357]

17. Namour F, Galien R, Van Kaem T, Van der Aa A, Vanhoutte F, Beetens J, Van't Klooster G. (2016) Safety, pharmacokinetics and pharmacodynamics of GLPG0974, a potent and selective FFA2 antagonist, in healthy male subjects. Br J Clin Pharmacol, 82 (1): 139-48. [PMID:26852904]

18. Nilsson NE, Kotarsky K, Owman C, Olde B. (2003) Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids. Biochem Biophys Res Commun, 303 (4): 1047-52. [PMID:12684041]

19. Pizzonero M, Dupont S, Babel M, Beaumont S, Bienvenu N, Blanqué R, Cherel L, Christophe T, Crescenzi B, De Lemos E et al.. (2014) Discovery and optimization of an azetidine chemical series as a free fatty acid receptor 2 (FFA2) antagonist: from hit to clinic. J Med Chem, 57 (23): 10044-57. [PMID:25380412]

20. Rasoamanana R, Darcel N, Fromentin G, Tomé D. (2012) Nutrient sensing and signalling by the gut. Proc Nutr Soc, 71 (4): 446-55. [PMID:22453062]

21. Sawzdargo M, George SR, Nguyen T, Xu S, Kolakowski LF, O'Dowd BF. (1997) A cluster of four novel human G protein-coupled receptor genes occurring in close proximity to CD22 gene on chromosome 19q13.1. Biochem Biophys Res Commun, 239 (2): 543-7. [PMID:9344866]

22. Schmidt J, Smith NJ, Christiansen E, Tikhonova IG, Grundmann M, Hudson BD, Ward RJ, Drewke C, Milligan G, Kostenis E et al.. (2011) Selective orthosteric free fatty acid receptor 2 (FFA2) agonists: identification of the structural and chemical requirements for selective activation of FFA2 versus FFA3. J Biol Chem, 286 (12): 10628-40. [PMID:21220428]

23. Senga T, Iwamoto S, Yoshida T, Yokota T, Adachi K, Azuma E, Hamaguchi M, Iwamoto T. (2003) LSSIG is a novel murine leukocyte-specific GPCR that is induced by the activation of STAT3. Blood, 101 (3): 1185-7. [PMID:12393494]

24. Sina C, Gavrilova O, Förster M, Till A, Derer S, Hildebrand F, Raabe B, Chalaris A, Scheller J, Rehmann A et al.. (2009) G protein-coupled receptor 43 is essential for neutrophil recruitment during intestinal inflammation. J Immunol, 183 (11): 7514-22. [PMID:19917676]

25. Smith NJ, Ward RJ, Stoddart LA, Hudson BD, Kostenis E, Ulven T, Morris JC, Tränkle C, Tikhonova IG, Adams DR et al.. (2011) Extracellular loop 2 of the free fatty acid receptor 2 mediates allosterism of a phenylacetamide ago-allosteric modulator. Mol Pharmacol, 80 (1): 163-73. [PMID:21498659]

26. Tang Y, Chen Y, Jiang H, Robbins GT, Nie D. (2011) G-protein-coupled receptor for short-chain fatty acids suppresses colon cancer. Int J Cancer, 128 (4): 847-56. [PMID:20979106]

27. Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, Cameron J, Grosse J, Reimann F, Gribble FM. (2012) Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes, 61 (2): 364-71. [PMID:22190648]

28. Ulven T. (2012) Short-chain free fatty acid receptors FFA2/GPR43 and FFA3/GPR41 as new potential therapeutic targets. Front Endocrinol (Lausanne), 3: 111. [PMID:23060857]

29. Valentini A, Schultz-Knudsen K, Hansen AH, Tsakoumagkou A, Jenkins L, Christensen HB, Manandhar A, Milligan G, Ulven T, Ulve ER. (2023) Discovery of Potent Tetrazole Free Fatty Acid Receptor 2 Antagonists. J. Med. Chem., Epub ahead of print. DOI: 10.1021/acs.jmedchem.2c01935

30. Vinolo MA, Ferguson GJ, Kulkarni S, Damoulakis G, Anderson K, Bohlooly-Y M, Stephens L, Hawkins PT, Curi R. (2011) SCFAs induce mouse neutrophil chemotaxis through the GPR43 receptor. PLoS ONE, 6 (6): e21205. [PMID:21698257]

31. Wang Y, Jiao X, Kayser F, Liu J, Wang Z, Wanska M, Greenberg J, Weiszmann J, Ge H, Tian H et al.. (2010) The first synthetic agonists of FFA2: Discovery and SAR of phenylacetamides as allosteric modulators. Bioorg Med Chem Lett, 20 (2): 493-8. [PMID:20005104]

32. Yang W, Xiao Y, Huang X, Chen F, Sun M, Bilotta AJ, Xu L, Lu Y, Yao S, Zhao Q et al.. (2019) Microbiota Metabolite Short-Chain Fatty Acids Facilitate Mucosal Adjuvant Activity of Cholera Toxin through GPR43. J Immunol, 203 (1): 282-292. [PMID:31076530]

33. Zaibi MS, Stocker CJ, O'Dowd J, Davies A, Bellahcene M, Cawthorne MA, Brown AJ, Smith DM, Arch JR. (2010) Roles of GPR41 and GPR43 in leptin secretory responses of murine adipocytes to short chain fatty acids. FEBS Lett, 584 (11): 2381-6. [PMID:20399779]

Contributors

Show »

How to cite this page