1. Bjursell M, Admyre T, Göransson M, Marley AE, Smith DM, Oscarsson J, Bohlooly-Y M. (2011) Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet.
Am J Physiol Endocrinol Metab, 300 (1): E211-20.
[PMID:20959533]
2. Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, Muir AI, Wigglesworth MJ, Kinghorn I, Fraser NJ et al.. (2003) The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids.
J Biol Chem, 278 (13): 11312-9.
[PMID:12496283]
3. Brown AJ, Jupe S, Briscoe CP. (2005) A family of fatty acid binding receptors.
DNA Cell Biol, 24 (1): 54-61.
[PMID:15684720]
4. Dass NB, John AK, Bassil AK, Crumbley CW, Shehee WR, Maurio FP, Moore GB, Taylor CM, Sanger GJ. (2007) The relationship between the effects of short-chain fatty acids on intestinal motility in vitro and GPR43 receptor activation.
Neurogastroenterol Motil, 19 (1): 66-74.
[PMID:17187590]
5. Hansen AH, Sergeev E, Bolognini D, Sprenger RR, Ekberg JH, Ejsing CS, McKenzie CJ, Rexen Ulven E, Milligan G, Ulven T. (2018) Discovery of a Potent Thiazolidine Free Fatty Acid Receptor 2 Agonist with Favorable Pharmacokinetic Properties.
J Med Chem, 61 (21): 9534-9550.
[PMID:30247908]
6. Hong YH, Nishimura Y, Hishikawa D, Tsuzuki H, Miyahara H, Gotoh C, Choi KC, Feng DD, Chen C, Lee HG et al.. (2005) Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43.
Endocrinology, 146 (12): 5092-9.
[PMID:16123168]
7. Hudson BD, Christiansen E, Tikhonova IG, Grundmann M, Kostenis E, Adams DR, Ulven T, Milligan G. (2012) Chemically engineering ligand selectivity at the free fatty acid receptor 2 based on pharmacological variation between species orthologs.
FASEB J, 26 (12): 4951-65.
[PMID:22919070]
8. Hudson BD, Due-Hansen ME, Christiansen E, Hansen AM, Mackenzie AE, Murdoch H, Pandey SK, Ward RJ, Marquez R, Tikhonova IG et al.. (2013) Defining the molecular basis for the first potent and selective orthosteric agonists of the FFA2 free fatty acid receptor.
J Biol Chem, 288 (24): 17296-312.
[PMID:23589301]
9. Hudson BD, Tikhonova IG, Pandey SK, Ulven T, Milligan G. (2012) Extracellular ionic locks determine variation in constitutive activity and ligand potency between species orthologs of the free fatty acid receptors FFA2 and FFA3.
J Biol Chem, 287 (49): 41195-209.
[PMID:23066016]
10. Karaki S, Mitsui R, Hayashi H, Kato I, Sugiya H, Iwanaga T, Furness JB, Kuwahara A. (2006) Short-chain fatty acid receptor, GPR43, is expressed by enteroendocrine cells and mucosal mast cells in rat intestine.
Cell Tissue Res, 324 (3): 353-60.
[PMID:16453106]
11. Karaki S, Tazoe H, Hayashi H, Kashiwabara H, Tooyama K, Suzuki Y, Kuwahara A. (2008) Expression of the short-chain fatty acid receptor, GPR43, in the human colon.
J Mol Histol, 39 (2): 135-42.
[PMID:17899402]
12. Kebede MA, Alquier T, Latour MG, Poitout V. (2009) Lipid receptors and islet function: therapeutic implications?.
Diabetes Obes Metab, 11 Suppl 4: 10-20.
[PMID:19817784]
13. Le Poul E, Loison C, Struyf S, Springael JY, Lannoy V, Decobecq ME, Brezillon S, Dupriez V, Vassart G, Van Damme J et al.. (2003) Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation.
J Biol Chem, 278 (28): 25481-9.
[PMID:12711604]
14. Lee T, Schwandner R, Swaminath G, Weiszmann J, Cardozo M, Greenberg J, Jaeckel P, Ge H, Wang Y, Jiao X et al.. (2008) Identification and functional characterization of allosteric agonists for the G protein-coupled receptor FFA2.
Mol Pharmacol, 74 (6): 1599-609.
[PMID:18818303]
15. Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, Schilter HC, Rolph MS, Mackay F, Artis D et al.. (2009) Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43.
Nature, 461 (7268): 1282-6.
[PMID:19865172]
16. Nakajima T, Iikura M, Okayama Y, Matsumoto K, Uchiyama C, Shirakawa T, Yang X, Adra CN, Hirai K, Saito H. (2004) Identification of granulocyte subtype-selective receptors and ion channels by using a high-density oligonucleotide probe array.
J Allergy Clin Immunol, 113 (3): 528-35.
[PMID:15007357]
17. Namour F, Galien R, Van Kaem T, Van der Aa A, Vanhoutte F, Beetens J, Van't Klooster G. (2016) Safety, pharmacokinetics and pharmacodynamics of GLPG0974, a potent and selective FFA2 antagonist, in healthy male subjects.
Br J Clin Pharmacol, 82 (1): 139-48.
[PMID:26852904]
18. Nilsson NE, Kotarsky K, Owman C, Olde B. (2003) Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids.
Biochem Biophys Res Commun, 303 (4): 1047-52.
[PMID:12684041]
19. Pizzonero M, Dupont S, Babel M, Beaumont S, Bienvenu N, Blanqué R, Cherel L, Christophe T, Crescenzi B, De Lemos E et al.. (2014) Discovery and optimization of an azetidine chemical series as a free fatty acid receptor 2 (FFA2) antagonist: from hit to clinic.
J Med Chem, 57 (23): 10044-57.
[PMID:25380412]
20. Rasoamanana R, Darcel N, Fromentin G, Tomé D. (2012) Nutrient sensing and signalling by the gut.
Proc Nutr Soc, 71 (4): 446-55.
[PMID:22453062]
21. Sawzdargo M, George SR, Nguyen T, Xu S, Kolakowski LF, O'Dowd BF. (1997) A cluster of four novel human G protein-coupled receptor genes occurring in close proximity to CD22 gene on chromosome 19q13.1.
Biochem Biophys Res Commun, 239 (2): 543-7.
[PMID:9344866]
22. Schmidt J, Smith NJ, Christiansen E, Tikhonova IG, Grundmann M, Hudson BD, Ward RJ, Drewke C, Milligan G, Kostenis E et al.. (2011) Selective orthosteric free fatty acid receptor 2 (FFA2) agonists: identification of the structural and chemical requirements for selective activation of FFA2 versus FFA3.
J Biol Chem, 286 (12): 10628-40.
[PMID:21220428]
23. Senga T, Iwamoto S, Yoshida T, Yokota T, Adachi K, Azuma E, Hamaguchi M, Iwamoto T. (2003) LSSIG is a novel murine leukocyte-specific GPCR that is induced by the activation of STAT3.
Blood, 101 (3): 1185-7.
[PMID:12393494]
24. Sina C, Gavrilova O, Förster M, Till A, Derer S, Hildebrand F, Raabe B, Chalaris A, Scheller J, Rehmann A et al.. (2009) G protein-coupled receptor 43 is essential for neutrophil recruitment during intestinal inflammation.
J Immunol, 183 (11): 7514-22.
[PMID:19917676]
25. Smith NJ, Ward RJ, Stoddart LA, Hudson BD, Kostenis E, Ulven T, Morris JC, Tränkle C, Tikhonova IG, Adams DR et al.. (2011) Extracellular loop 2 of the free fatty acid receptor 2 mediates allosterism of a phenylacetamide ago-allosteric modulator.
Mol Pharmacol, 80 (1): 163-73.
[PMID:21498659]
26. Tang Y, Chen Y, Jiang H, Robbins GT, Nie D. (2011) G-protein-coupled receptor for short-chain fatty acids suppresses colon cancer.
Int J Cancer, 128 (4): 847-56.
[PMID:20979106]
27. Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, Cameron J, Grosse J, Reimann F, Gribble FM. (2012) Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2.
Diabetes, 61 (2): 364-71.
[PMID:22190648]
28. Ulven T. (2012) Short-chain free fatty acid receptors FFA2/GPR43 and FFA3/GPR41 as new potential therapeutic targets.
Front Endocrinol (Lausanne), 3: 111.
[PMID:23060857]
29. Valentini A, Schultz-Knudsen K, Hansen AH, Tsakoumagkou A, Jenkins L, Christensen HB, Manandhar A, Milligan G, Ulven T, Ulve ER. (2023) Discovery of Potent Tetrazole Free Fatty Acid Receptor 2 Antagonists.
J. Med. Chem., Epub ahead of print.
DOI: 10.1021/acs.jmedchem.2c01935
30. Vinolo MA, Ferguson GJ, Kulkarni S, Damoulakis G, Anderson K, Bohlooly-Y M, Stephens L, Hawkins PT, Curi R. (2011) SCFAs induce mouse neutrophil chemotaxis through the GPR43 receptor.
PLoS ONE, 6 (6): e21205.
[PMID:21698257]
31. Wang Y, Jiao X, Kayser F, Liu J, Wang Z, Wanska M, Greenberg J, Weiszmann J, Ge H, Tian H et al.. (2010) The first synthetic agonists of FFA2: Discovery and SAR of phenylacetamides as allosteric modulators.
Bioorg Med Chem Lett, 20 (2): 493-8.
[PMID:20005104]
32. Yang W, Xiao Y, Huang X, Chen F, Sun M, Bilotta AJ, Xu L, Lu Y, Yao S, Zhao Q et al.. (2019) Microbiota Metabolite Short-Chain Fatty Acids Facilitate Mucosal Adjuvant Activity of Cholera Toxin through GPR43.
J Immunol, 203 (1): 282-292.
[PMID:31076530]
33. Zaibi MS, Stocker CJ, O'Dowd J, Davies A, Bellahcene M, Cawthorne MA, Brown AJ, Smith DM, Arch JR. (2010) Roles of GPR41 and GPR43 in leptin secretory responses of murine adipocytes to short chain fatty acids.
FEBS Lett, 584 (11): 2381-6.
[PMID:20399779]