Top ▲
Unless otherwise stated all data on this page refer to the human proteins. Gene information is provided for human (Hs), mouse (Mm) and rat (Rn).
CYP4A11 C Show summary »« Hide summary
|
||||||||||||||||||||||||||
CYP4A22 C Show summary »« Hide summary
|
||||||||||||||||||||||||||
CYP4B1 C Show summary »« Hide summary
|
||||||||||||||||||||||||||
CYP4F2 C Show summary »« Hide summary
|
||||||||||||||||||||||||||
CYP4F3 C Show summary »« Hide summary
|
||||||||||||||||||||||||||
CYP4F8 C Show summary »« Hide summary
|
||||||||||||||||||||||||||
CYP4F11 C Show summary »« Hide summary
|
||||||||||||||||||||||||||
CYP4F12 C Show summary »« Hide summary
|
||||||||||||||||||||||||||
CYP4F22 C Show summary »« Hide summary
|
||||||||||||||||||||||||||
CYP4V2 C Show summary »« Hide summary
|
||||||||||||||||||||||||||
CYP4X1 C Show summary »« Hide summary
|
||||||||||||||||||||||||||
CYP4Z1 C Show summary »« Hide summary
|
1. Bylund J, Hidestrand M, Ingelman-Sundberg M, Oliw EH. (2000) Identification of CYP4F8 in human seminal vesicles as a prominent 19-hydroxylase of prostaglandin endoperoxides. J Biol Chem, 275 (29): 21844-9. [PMID:10791960]
2. Corcos L, Lucas D, Le Jossic-Corcos C, Dréano Y, Simon B, Plée-Gautier E, Amet Y, Salaün JP. (2012) Human cytochrome P450 4F3: structure, functions, and prospects. Drug Metabol Drug Interact, 27 (2): 63-71. [PMID:22706230]
3. Durairaj P, Fan L, Machalz D, Wolber G, Bureik M. (2019) Functional characterization and mechanistic modeling of the human cytochrome P450 enzyme CYP4A22. FEBS Lett, 593 (16): 2214-2225. [PMID:31199497]
4. Edson KZ, Rettie AE. (2013) CYP4 enzymes as potential drug targets: focus on enzyme multiplicity, inducers and inhibitors, and therapeutic modulation of 20-hydroxyeicosatetraenoic acid (20-HETE) synthase and fatty acid ω-hydroxylase activities. Curr Top Med Chem, 13 (12): 1429-40. [PMID:23688133]
5. Esperón-Moldes U, Ginarte-Val M, Rodríguez-Pazos L, Fachal L, Martín-Santiago A, Vicente A, Jiménez-Gallo D, Guillén-Navarro E, Sampol LM, González-Enseñat MA et al.. (2020) Novel CYP4F22 mutations associated with autosomal recessive congenital ichthyosis (ARCI). Study of the CYP4F22 c.1303C>T founder mutation. PLoS One, 15 (2): e0229025. [PMID:32069299]
6. Feng C, Wang H, Lee M, Zhao J, Lin Z, Yang Y. (2017) Two missense mutations in CYP4F22 in autosomal recessive congenital ichthyosis. Clin Exp Dermatol, 42 (1): 98-100. [PMID:27735052]
7. Fer M, Corcos L, Dréano Y, Plée-Gautier E, Salaün JP, Berthou F, Amet Y. (2008) Cytochromes P450 from family 4 are the main omega hydroxylating enzymes in humans: CYP4F3B is the prominent player in PUFA metabolism. J Lipid Res, 49 (11): 2379-89. [PMID:18577768]
8. Harmon SD, Fang X, Kaduce TL, Hu S, Raj Gopal V, Falck JR, Spector AA. (2006) Oxygenation of omega-3 fatty acids by human cytochrome P450 4F3B: effect on 20-hydroxyeicosatetraenoic acid production. Prostaglandins Leukot Essent Fatty Acids, 75 (3): 169-77. [PMID:16820285]
9. Kowalski JP, McDonald MG, Pelletier RD, Hanenberg H, Wiek C, Rettie AE. (2020) Design and Characterization of the First Selective and Potent Mechanism-Based Inhibitor of Cytochrome P450 4Z1. J Med Chem, 63 (9): 4824-4836. [PMID:32302132]
10. Le Quéré V, Plée-Gautier E, Potin P, Madec S, Salaün JP. (2004) Human CYP4F3s are the main catalysts in the oxidation of fatty acid epoxides. J Lipid Res, 45 (8): 1446-58. [PMID:15145985]
11. Mizukami Y, Sumimoto H, Isobe R, Minakami S. (1993) Omega-hydroxylation of lipoxin B4 by human neutrophil microsomes: identification of omega-hydroxy metabolite of lipoxin B4 and catalysis by leukotriene B4 omega-hydroxylase (cytochrome P-450LTB omega). Biochim Biophys Acta, 1168 (1): 87-93. [PMID:8389204]
12. Nakano M, Kelly EJ, Rettie AE. (2009) Expression and characterization of CYP4V2 as a fatty acid omega-hydroxylase. Drug Metab Dispos, 37 (11): 2119-22. [PMID:19661213]
13. Nilsson T, Ivanov IV, Oliw EH. (2010) LC-MS/MS analysis of epoxyalcohols and epoxides of arachidonic acid and their oxygenation by recombinant CYP4F8 and CYP4F22. Arch Biochem Biophys, 494 (1): 64-71. [PMID:19919823]
14. Nohara T, Ohno Y, Kihara A. (2021) Impaired production of the skin barrier lipid acylceramide by CYP4F22 ichthyosis mutations. J Dermatol Sci, 101 (1): 69-71. [PMID:33067036]
15. Ohno Y, Nakamichi S, Ohkuni A, Kamiyama N, Naoe A, Tsujimura H, Yokose U, Sugiura K, Ishikawa J, Akiyama M et al.. (2015) Essential role of the cytochrome P450 CYP4F22 in the production of acylceramide, the key lipid for skin permeability barrier formation. Proc Natl Acad Sci U S A, 112 (25): 7707-12. [PMID:26056268]
16. Poleggi A, van der Lee S, Capellari S, Puopolo M, Ladogana A, De Pascali E, Lia D, Formato A, Bartoletti-Stella A, Parchi P et al.. (2018) Age at onset of genetic (E200K) and sporadic Creutzfeldt-Jakob diseases is modulated by the CYP4X1 gene. J Neurol Neurosurg Psychiatry, 89 (12): 1243-1249. [PMID:30032116]
17. Shak S, Reich NO, Goldstein IM, Ortiz de Montellano PR. (1985) Leukotriene B4 omega-hydroxylase in human polymorphonuclear leukocytes. Suicidal inactivation by acetylenic fatty acids. J Biol Chem, 260 (24): 13023-8. [PMID:2997155]
18. Song WK, Clouston P, MacLaren RE. (2019) Presence of corneal crystals confirms an unusual presentation of Bietti's retinal dystrophy. Ophthalmic Genet, 40 (5): 461-465. [PMID:31638456]
19. Sontag TJ, Parker RS. (2002) Cytochrome P450 omega-hydroxylase pathway of tocopherol catabolism. Novel mechanism of regulation of vitamin E status. J Biol Chem, 277 (28): 25290-6. [PMID:11997390]
20. Stark K, Dostalek M, Guengerich FP. (2008) Expression and purification of orphan cytochrome P450 4X1 and oxidation of anandamide. FEBS J, 275 (14): 3706-17. [PMID:18549450]
21. Thesseling FA, Hutter MC, Wiek C, Kowalski JP, Rettie AE, Girhard M. (2020) Novel insights into oxidation of fatty acids and fatty alcohols by cytochrome P450 monooxygenase CYP4B1. Arch Biochem Biophys, 679: 108216. [PMID:31801692]
22. Watanabe H, Yamaori S, Kamijo S, Aikawa K, Ohmori S. (2020) In Vitro Inhibitory Effects of Sesamin on CYP4F2 Activity. Biol Pharm Bull, 43 (4): 688-692. [PMID:32238710]
23. Yamaori S, Araki N, Shionoiri M, Ikehata K, Kamijo S, Ohmori S, Watanabe K. (2018) A Specific Probe Substrate for Evaluation of CYP4A11 Activity in Human Tissue Microsomes and a Highly Selective CYP4A11 Inhibitor: Luciferin-4A and Epalrestat. J Pharmacol Exp Ther, 366 (3): 446-457. [PMID:29976573]
24. Zhang JE, Klein K, Jorgensen AL, Francis B, Alfirevic A, Bourgeois S, Deloukas P, Zanger UM, Pirmohamed M. (2017) Effect of Genetic Variability in the CYP4F2, CYP4F11, and CYP4F12 Genes on Liver mRNA Levels and Warfarin Response. Front Pharmacol, 8: 323. [PMID:28620303]
Database page citation (select format):
Concise Guide to PHARMACOLOGY citation:
Alexander SPH, Fabbro D, Kelly E, Mathie AA, Peters JA, Veale EL, Armstrong JF, Faccenda E, Harding SD, Davies JA et al. (2023) The Concise Guide to PHARMACOLOGY 2023/24: Enzymes. Br J Pharmacol. 180 Suppl 2:S289-373.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License