Top ▲
Unless otherwise stated all data on this page refer to the human proteins. Gene information is provided for human (Hs), mouse (Mm) and rat (Rn).
Show »« Hide More detailed introduction
Receptors of the Class Frizzled (FZD, nomenclature as agreed by the NC-IUPHAR subcommittee on the Class Frizzled GPCRs [43]), are GPCRs originally identified in Drosophila [7], which are highly conserved across species. While SMO shows structural resemblance to the 10 FZDs, it is functionally separated as it is involved in the Hedgehog signaling pathway [43]. SMO exerts its effects by activating heterotrimeric G proteins or stabilization of GLI by sequestering catalytic PKA subunits [3,19,45]. While SMO itself is bound by sterols and oxysterols [10,26], FZDs are activated by WNTs, which are cysteine-rich lipoglycoproteins with fundamental functions in ontogeny and tissue homeostasis. FZD signalling was initially divided into two pathways, being either dependent on the accumulation of the transcription regulator β-catenin (CTNNB1, P35222) or being β-catenin-independent (often referred to as canonical vs. non-canonical WNT/FZD signalling, respectively). WNT stimulation of FZDs can, in cooperation with the low density lipoprotein receptors LRP5 (O75197) and LRP6 (O75581), lead to the inhibition of a constitutively active destruction complex, which results in the accumulation of β-catenin and subsequently its translocation to the nucleus. β-catenin, in turn, modifies gene transcription by interacting with TCF/LEF transcription factors. WNT/β-catenin-dependent signalling can also be activated by FZD subtype-specific WNT surrogates [34]. β-catenin-independent FZD signalling is far more complex with regard to the diversity of the activated pathways. WNT/FZD signalling can lead to the activation of heterotrimeric G proteins [13,36,44], the elevation of intracellular calcium [47], activation of cGMP-specific PDE6 [1] and elevation of cAMP as well as RAC-1, JNK, Rho and Rho kinase signalling [18]. Novel resonance energy transfer-based tools have allowed the study of the GPCR-like nature of FZDs in greater detail. Upon ligand stimulation, FZDs undergo conformational changes and signal via heterotrimeric G proteins [27,30,42,60-61]. Furthermore, the phosphoprotein Dishevelled constitutes a key player in WNT/FZD signalling towards planar-cell-polarity-like pathways. Importantly, FZDs exist in at least two distinct conformational states that regulate pathway selection [61]. As with other GPCRs, members of the Frizzled family are functionally dependent on the arrestin scaffolding protein for internalization [9], as well as for β-catenin-dependent [4] and -independent [5,25] signalling. The pattern of cell signalling is complicated by the presence of additional ligands, which can enhance or inhibit FZD signalling (secreted Frizzled-related proteins (sFRP), Wnt-inhibitory factor (WIF1, Q9Y5W5) (WIF), sclerostin (SOST, Q9BQB4) or Dickkopf (DKK)), as well as modulatory (co)-receptors with Ryk, ROR1, ROR2 and Kremen, which may also function as independent signalling proteins.
FZD1 C Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||||||||||
FZD2 C Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||||||||||
FZD3 C Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||||||||||
FZD4 C Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||||||||||
FZD5 C Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||||||||||
FZD6 C Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||||||||||
FZD7 C Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||||||||||
FZD8 C Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||||||||||
FZD9 C Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||||||||||
FZD10 C Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||||||||||
SMO C Show summary »« Hide summary More detailed page
|
* Key recommended reading is highlighted with an asterisk
* Angers S, Moon RT. (2009) Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol, 10 (7): 468-77. [PMID:19536106]
Dijksterhuis JP, Petersen J, Schulte G. (2013) WNT/Frizzled signaling: receptor-ligand selectivity with focus on FZD-G protein signaling and its physiological relevance. Br J Pharmacol,. [PMID:24032637]
King TD, Suto MJ, Li Y. (2012) The Wnt/β-catenin signaling pathway: a potential therapeutic target in the treatment of triple negative breast cancer. J Cell Biochem, 113 (1): 13-8. [PMID:21898546]
King TD, Zhang W, Suto MJ, Li Y. (2012) Frizzled7 as an emerging target for cancer therapy. Cell Signal, 24 (4): 846-51. [PMID:22182510]
Koval A, Purvanov V, Egger-Adam D, Katanaev VL. (2011) Yellow submarine of the Wnt/Frizzled signaling: submerging from the G protein harbor to the targets. Biochem Pharmacol, 82 (10): 1311-9. [PMID:21689640]
* Kozielewicz P, Turku A, Schulte G. (2020) Molecular Pharmacology of Class F Receptor Activation. Mol Pharmacol, 97 (2): 62-71. [PMID:31591260]
Schuijers J, Clevers H. (2012) Adult mammalian stem cells: the role of Wnt, Lgr5 and R-spondins. EMBO J, 31 (12): 2685-96. [PMID:22617424]
Schulte G. (2010) International Union of Basic and Clinical Pharmacology. LXXX. The class Frizzled receptors. Pharmacol Rev, 62 (4): 632-67. [PMID:21079039]
Schulte G. (2015) Frizzleds and WNT/β-catenin signaling--The black box of ligand-receptor selectivity, complex stoichiometry and activation kinetics. Eur J Pharmacol, 763 (Pt B): 191-5. [PMID:26003275]
* Schulte G, Kozielewicz P. (2021) Pharmacology of the WNT Signaling System. In Pharmacology of the WNT Signaling System Edited by Schulte G, Kozielewicz P (Springer Cham) 422. DOI: 10.1007/978-3-030-85499-7 [ISBN:9783030854980]
Schulte G, Schambony A, Bryja V. (2010) beta-Arrestins - scaffolds and signalling elements essential for WNT/Frizzled signalling pathways?. Br J Pharmacol, 159 (5): 1051-8. [PMID:19888962]
* Schulte G, Wright SC. (2018) Frizzleds as GPCRs - More Conventional Than We Thought!. Trends Pharmacol Sci, 39 (9): 828-842. [PMID:30049420]
* van Amerongen R. (2012) Alternative Wnt pathways and receptors. Cold Spring Harb Perspect Biol, 4 (10). [PMID:22935904]
* Wang Y, Chang H, Rattner A, Nathans J. (2016) Frizzled Receptors in Development and Disease. Curr Top Dev Biol, 117: 113-39. [PMID:26969975]
1. Ahumada A, Slusarski DC, Liu X, Moon RT, Malbon CC, Wang HY. (2002) Signaling of rat Frizzled-2 through phosphodiesterase and cyclic GMP. Science, 298 (5600): 2006-10. [PMID:12471263]
2. Arthofer E, Hot B, Petersen J, Strakova K, Jäger S, Grundmann M, Kostenis E, Gutkind JS, Schulte G. (2016) WNT Stimulation Dissociates a Frizzled 4 Inactive-State Complex with Gα12/13. Mol Pharmacol, 90 (4): 447-59. [PMID:27458145]
3. Arveseth CD, Happ JT, Hedeen DS, Zhu JF, Capener JL, Klatt Shaw D, Deshpande I, Liang J, Xu J, Stubben SL et al.. (2021) Smoothened transduces Hedgehog signals via activity-dependent sequestration of PKA catalytic subunits. PLoS Biol, 19 (4): e3001191. [PMID:33886552]
4. Bryja V, Gradl D, Schambony A, Arenas E, Schulte G. (2007) Beta-arrestin is a necessary component of Wnt/beta-catenin signaling in vitro and in vivo. Proc Natl Acad Sci USA, 104 (16): 6690-5. [PMID:17426148]
5. Bryja V, Schambony A, Cajánek L, Dominguez I, Arenas E, Schulte G. (2008) Beta-arrestin and casein kinase 1/2 define distinct branches of non-canonical WNT signalling pathways. EMBO Rep, 9 (12): 1244-50. [PMID:18953287]
6. Byrne EFX, Sircar R, Miller PS, Hedger G, Luchetti G, Nachtergaele S, Tully MD, Mydock-McGrane L, Covey DF, Rambo RP et al.. (2016) Structural basis of Smoothened regulation by its extracellular domains. Nature, 535 (7613): 517-522. [PMID:27437577]
7. Chan SD, Karpf DB, Fowlkes ME, Hooks M, Bradley MS, Vuong V, Bambino T, Liu MY, Arnaud CD, Strewler GJ et al.. (1992) Two homologs of the Drosophila polarity gene frizzled (fz) are widely expressed in mammalian tissues. J Biol Chem, 267 (35): 25202-7. [PMID:1334084]
8. Chen JK, Taipale J, Young KE, Maiti T, Beachy PA. (2002) Small molecule modulation of Smoothened activity. Proc Natl Acad Sci USA, 99 (22): 14071-6. [PMID:12391318]
9. Chen W, Kirkbride KC, How T, Nelson CD, Mo J, Frederick JP, Wang XF, Lefkowitz RJ, Blobe GC. (2003) Beta-arrestin 2 mediates endocytosis of type III TGF-beta receptor and down-regulation of its signaling. Science, 301 (5638): 1394-7. [PMID:12958365]
10. Corcoran RB, Scott MP. (2006) Oxysterols stimulate Sonic hedgehog signal transduction and proliferation of medulloblastoma cells. Proc Natl Acad Sci USA, 103 (22): 8408-13. [PMID:16707575]
11. DeAlmeida VI, Miao L, Ernst JA, Koeppen H, Polakis P, Rubinfeld B. (2007) The soluble wnt receptor Frizzled8CRD-hFc inhibits the growth of teratocarcinomas in vivo. Cancer Res, 67 (11): 5371-9. [PMID:17545618]
12. Deshpande I, Liang J, Hedeen D, Roberts KJ, Zhang Y, Ha B, Latorraca NR, Faust B, Dror RO, Beachy PA et al.. (2019) Smoothened stimulation by membrane sterols drives Hedgehog pathway activity. Nature, 571 (7764): 284-288. [PMID:31263273]
13. Dijksterhuis JP, Petersen J, Schulte G. (2013) WNT/Frizzled signaling: receptor-ligand selectivity with focus on FZD-G protein signaling and its physiological relevance. Br J Pharmacol,. [PMID:24032637]
14. Fukukawa C, Hanaoka H, Nagayama S, Tsunoda T, Toguchida J, Endo K, Nakamura Y, Katagiri T. (2008) Radioimmunotherapy of human synovial sarcoma using a monoclonal antibody against FZD10. Cancer Sci, 99 (2): 432-40. [PMID:18271942]
15. Generoso SF, Giustiniano M, La Regina G, Bottone S, Passacantilli S, Di Maro S, Cassese H, Bruno A, Mallardo M, Dentice M et al.. (2015) Pharmacological folding chaperones act as allosteric ligands of Frizzled4. Nat Chem Biol, 11 (4): 280-6. [PMID:25751279]
16. Gorojankina T, Hoch L, Faure H, Roudaut H, Traiffort E, Schoenfelder A, Girard N, Mann A, Manetti F, Solinas A et al.. (2013) Discovery, molecular and pharmacological characterization of GSA-10, a novel small-molecule positive modulator of Smoothened. Mol Pharmacol, 83 (5): 1020-9. [PMID:23448715]
17. Gurney A, Axelrod F, Bond CJ, Cain J, Chartier C, Donigan L, Fischer M, Chaudhari A, Ji M, Kapoun AM et al.. (2012) Wnt pathway inhibition via the targeting of Frizzled receptors results in decreased growth and tumorigenicity of human tumors. Proc Natl Acad Sci USA, 109 (29): 11717-22. [PMID:22753465]
18. Hansen C, Howlin J, Tengholm A, Dyachok O, Vogel WF, Nairn AC, Greengard P, Andersson T. (2009) Wnt-5a-induced phosphorylation of DARPP-32 inhibits breast cancer cell migration in a CREB-dependent manner. J Biol Chem, 284 (40): 27533-43. [PMID:19651774]
19. Happ JT, Arveseth CD, Bruystens J, Bertinetti D, Nelson IB, Olivieri C, Zhang J, Hedeen DS, Zhu JF, Capener JL et al.. (2022) A PKA inhibitor motif within SMOOTHENED controls Hedgehog signal transduction. Nat Struct Mol Biol, 29 (10): 990-999. [PMID:36202993]
20. Hoch L, Faure H, Roudaut H, Schoenfelder A, Mann A, Girard N, Bihannic L, Ayrault O, Petricci E, Taddei M et al.. (2015) MRT-92 inhibits Hedgehog signaling by blocking overlapping binding sites in the transmembrane domain of the Smoothened receptor. FASEB J, 29 (5): 1817-29. [PMID:25636740]
21. Huang P, Zheng S, Wierbowski BM, Kim Y, Nedelcu D, Aravena L, Liu J, Kruse AC, Salic A. (2018) Structural Basis of Smoothened Activation in Hedgehog Signaling. Cell, 174 (2): 312-324.e16. [PMID:29804838]
22. Jenei V, Sherwood V, Howlin J, Linnskog R, Säfholm A, Axelsson L, Andersson T. (2009) A t-butyloxycarbonyl-modified Wnt5a-derived hexapeptide functions as a potent antagonist of Wnt5a-dependent melanoma cell invasion. Proc Natl Acad Sci USA, 106 (46): 19473-8. [PMID:19901340]
23. Kikuchi A, Yamamoto H, Sato A. (2009) Selective activation mechanisms of Wnt signaling pathways. Trends Cell Biol, 19 (3): 119-29. [PMID:19208479]
24. Kilander MB, Dahlström J, Schulte G. (2014) Assessment of Frizzled 6 membrane mobility by FRAP supports G protein coupling and reveals WNT-Frizzled selectivity. Cell Signal, 26 (9): 1943-9. [PMID:24873871]
25. Kim GH, Han JK. (2007) Essential role for beta-arrestin 2 in the regulation of Xenopus convergent extension movements. EMBO J, 26 (10): 2513-26. [PMID:17476309]
26. Kinnebrew M, Woolley RE, Ansell TB, Byrne EFX, Frigui S, Luchetti G, Sircar R, Nachtergaele S, Mydock-McGrane L, Krishnan K et al.. (2022) Patched 1 regulates Smoothened by controlling sterol binding to its extracellular cysteine-rich domain. Sci Adv, 8 (22): eabm5563. [PMID:35658032]
27. Kowalski-Jahn M, Schihada H, Turku A, Huber T, Sakmar TP, Schulte G. (2021) Frizzled BRET sensors based on bioorthogonal labeling of unnatural amino acids reveal WNT-induced dynamics of the cysteine-rich domain. Sci Adv, 7 (46): eabj7917. [PMID:34757789]
28. Kozielewicz P, Bowin CF, Turku A, Schulte G. (2020) A NanoBRET-Based Binding Assay for Smoothened Allows Real-time Analysis of Ligand Binding and Distinction of Two Binding Sites for BODIPY-cyclopamine. Mol Pharmacol, 97 (1): 23-34. [PMID:31707356]
29. Kozielewicz P, Shekhani R, Moser S, Bowin CF, Wesslowski J, Davidson G, Schulte G. (2021) Quantitative Profiling of WNT-3A Binding to All Human Frizzled Paralogues in HEK293 Cells by NanoBiT/BRET Assessments. ACS Pharmacol Transl Sci, 4 (3): 1235-1245. [PMID:34151213]
30. Kozielewicz P, Turku A, Bowin CF, Petersen J, Valnohova J, Cañizal MCA, Ono Y, Inoue A, Hoffmann C, Schulte G. (2020) Structural insight into small molecule action on Frizzleds. Nat Commun, 11 (1): 414. [PMID:31964872]
31. Laeremans H, Hackeng TM, van Zandvoort MA, Thijssen VL, Janssen BJ, Ottenheijm HC, Smits JF, Blankesteijn WM. (2011) Blocking of frizzled signaling with a homologous peptide fragment of wnt3a/wnt5a reduces infarct expansion and prevents the development of heart failure after myocardial infarction. Circulation, 124 (15): 1626-35. [PMID:21931076]
32. Luchetti G, Sircar R, Kong JH, Nachtergaele S, Sagner A, Byrne EF, Covey DF, Siebold C, Rohatgi R. (2016) Cholesterol activates the G-protein coupled receptor Smoothened to promote Hedgehog signaling. Elife, 5. [PMID:27705744]
33. Manning DR, Shen F, Riobo NA. (2015) Evaluating the Activity of Smoothened Toward G Proteins Using [³⁵S]Guanosine 5'-(3-O-thio)triphosphate ([³⁵S]GTPγS). Methods Mol Biol, 1322: 35-44. [PMID:26179037]
34. Miao Y, Ha A, de Lau W, Yuki K, Santos AJM, You C, Geurts MH, Puschhof J, Pleguezuelos-Manzano C, Peng WC et al.. (2020) Next-Generation Surrogate Wnts Support Organoid Growth and Deconvolute Frizzled Pleiotropy In Vivo. Cell Stem Cell, 27 (5): 840-851.e6. [PMID:32818433]
35. Nile AH, de Sousa E Melo F, Mukund S, Piskol R, Hansen S, Zhou L, Zhang Y, Fu Y, Gogol EB, Kömüves LG et al.. (2018) A selective peptide inhibitor of Frizzled 7 receptors disrupts intestinal stem cells. Nat Chem Biol, 14 (6): 582-590. [PMID:29632413]
36. Petersen J, Wright SC, Rodríguez D, Matricon P, Lahav N, Vromen A, Friedler A, Strömqvist J, Wennmalm S, Carlsson J et al.. (2017) Agonist-induced dimer dissociation as a macromolecular step in G protein-coupled receptor signaling. Nat Commun, 8 (1): 226. [PMID:28790300]
37. Qi X, Friedberg L, De Bose-Boyd R, Long T, Li X. (2020) Sterols in an intramolecular channel of Smoothened mediate Hedgehog signaling. Nat Chem Biol, 16 (12): 1368-1375. [PMID:32929279]
38. Qi X, Liu H, Thompson B, McDonald J, Zhang C, Li X. (2019) Cryo-EM structure of oxysterol-bound human Smoothened coupled to a heterotrimeric Gi. Nature, 571 (7764): 279-283. [PMID:31168089]
39. Raleigh DR, Sever N, Choksi PK, Sigg MA, Hines KM, Thompson BM, Elnatan D, Jaishankar P, Bisignano P, Garcia-Gonzalo FR et al.. (2018) Cilia-Associated Oxysterols Activate Smoothened. Mol Cell, 72 (2): 316-327.e5. [PMID:30340023]
40. Riccio G, Bottone S, La Regina G, Badolati N, Passacantilli S, Rossi GB, Accardo A, Dentice M, Silvestri R, Novellino E et al.. (2018) A Negative Allosteric Modulator of WNT Receptor Frizzled 4 Switches into an Allosteric Agonist. Biochemistry, 57 (5): 839-851. [PMID:29293331]
41. Riobo NA, Saucy B, Dilizio C, Manning DR. (2006) Activation of heterotrimeric G proteins by Smoothened. Proc Natl Acad Sci USA, 103 (33): 12607-12. [PMID:16885213]
42. Schihada H, Kowalski-Jahn M, Turku A, Schulte G. (2021) Deconvolution of WNT-induced Frizzled conformational dynamics with fluorescent biosensors. Biosens Bioelectron, 177: 112948. [PMID:33486136]
43. Schulte G. (2010) International Union of Basic and Clinical Pharmacology. LXXX. The class Frizzled receptors. Pharmacol Rev, 62 (4): 632-67. [PMID:21079039]
44. Schulte G, Wright SC. (2018) Frizzleds as GPCRs - More Conventional Than We Thought!. Trends Pharmacol Sci, 39 (9): 828-842. [PMID:30049420]
45. Shen F, Cheng L, Douglas AE, Riobo NA, Manning DR. (2013) Smoothened is a fully competent activator of the heterotrimeric G protein G(i). Mol Pharmacol, 83 (3): 691-7. [PMID:23292797]
46. Sinha S, Chen JK. (2006) Purmorphamine activates the Hedgehog pathway by targeting Smoothened. Nat Chem Biol, 2 (1): 29-30. [PMID:16408088]
47. Slusarski DC, Corces VG, Moon RT. (1997) Interaction of Wnt and a Frizzled homologue triggers G-protein-linked phosphatidylinositol signalling. Nature, 390 (6658): 410-3. [PMID:9389482]
48. Steinhart Z, Pavlovic Z, Chandrashekhar M, Hart T, Wang X, Zhang X, Robitaille M, Brown KR, Jaksani S, Overmeer R et al.. (2017) Genome-wide CRISPR screens reveal a Wnt-FZD5 signaling circuit as a druggable vulnerability of RNF43-mutant pancreatic tumors. Nat Med, 23 (1): 60-68. [PMID:27869803]
49. Säfholm A, Tuomela J, Rosenkvist J, Dejmek J, Härkönen P, Andersson T. (2008) The Wnt-5a-derived hexapeptide Foxy-5 inhibits breast cancer metastasis in vivo by targeting cell motility. Clin Cancer Res, 14 (20): 6556-63. [PMID:18927296]
50. Taipale J, Chen JK, Cooper MK, Wang B, Mann RK, Milenkovic L, Scott MP, Beachy PA. (2000) Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature, 406 (6799): 1005-9. [PMID:10984056]
51. Takada R, Mii Y, Krayukhina E, Maruyama Y, Mio K, Sasaki Y, Shinkawa T, Pack CG, Sako Y, Sato C et al.. (2018) Assembly of protein complexes restricts diffusion of Wnt3a proteins. Commun Biol, 1: 165. [PMID:30320232]
52. Tsutsumi N, Mukherjee S, Waghray D, Janda CY, Jude KM, Miao Y, Burg JS, Aduri NG, Kossiakoff AA, Gati C et al.. (2020) Structure of human Frizzled5 by fiducial-assisted cryo-EM supports a heterodimeric mechanism of canonical Wnt signaling. Elife, 9. DOI: 10.7554/eLife.58464 [PMID:32762848]
53. Turner MW, Cruz R, Mattos J, Baughman N, Elwell J, Fothergill J, Nielsen A, Brookhouse J, Bartlett A, Malek P et al.. (2016) Cyclopamine bioactivity by extraction method from Veratrum californicum. Bioorg Med Chem, 24 (16): 3752-7. [PMID:27338657]
54. von Maltzahn J, Bentzinger CF, Rudnicki MA. (2012) Wnt7a-Fzd7 signalling directly activates the Akt/mTOR anabolic growth pathway in skeletal muscle. Nat Cell Biol, 14 (2): 186-91. [PMID:22179044]
55. Wang C, Wu H, Evron T, Vardy E, Han GW, Huang XP, Hufeisen SJ, Mangano TJ, Urban DJ, Katritch V et al.. (2014) Structural basis for Smoothened receptor modulation and chemoresistance to anticancer drugs. Nat Commun, 5: 4355. [PMID:25008467]
56. Wang C, Wu H, Katritch V, Han GW, Huang XP, Liu W, Siu FY, Roth BL, Cherezov V, Stevens RC. (2013) Structure of the human smoothened receptor bound to an antitumour agent. Nature, 497 (7449): 338-43. [PMID:23636324]
57. Wang J, Mook Jr RA, Lu J, Gooden DM, Ribeiro A, Guo A, Barak LS, Lyerly HK, Chen W. (2012) Identification of a novel Smoothened antagonist that potently suppresses Hedgehog signaling. Bioorg Med Chem, 20 (22): 6751-7. [PMID:23063522]
58. Weierstall U, James D, Wang C, White TA, Wang D, Liu W, Spence JC, Bruce Doak R, Nelson G, Fromme P et al.. (2014) Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nat Commun, 5: 3309. [PMID:24525480]
59. Wesslowski J, Kozielewicz P, Wang X, Cui H, Schihada H, Kranz D, Karuna M P, Levkin P, Gross JC, Boutros M et al.. (2020) eGFP-tagged Wnt-3a enables functional analysis of Wnt trafficking and signaling and kinetic assessment of Wnt binding to full-length Frizzled. J Biol Chem, 295 (26): 8759-8774. [PMID:32381507]
60. Wright SC, Cañizal MCA, Benkel T, Simon K, Le Gouill C, Matricon P, Namkung Y, Lukasheva V, König GM, Laporte SA et al.. (2018) FZD5 is a Gαq-coupled receptor that exhibits the functional hallmarks of prototypical GPCRs. Sci Signal, 11 (559). [PMID:30514810]
61. Wright SC, Kozielewicz P, Kowalski-Jahn M, Petersen J, Bowin CF, Slodkowicz G, Marti-Solano M, Rodríguez D, Hot B, Okashah N et al.. (2019) A conserved molecular switch in Class F receptors regulates receptor activation and pathway selection. Nat Commun, 10 (1): 667. [PMID:30737406]
62. Xu L, Chen B, Schihada H, Wright SC, Turku A, Wu Y, Han GW, Kowalski-Jahn M, Kozielewicz P, Bowin CF et al.. (2021) Cryo-EM structure of constitutively active human Frizzled 7 in complex with heterotrimeric Gs. Cell Res, 31 (12): 1311-1314. [PMID:34239071]
63. Yang S, Wu Y, Xu TH, de Waal PW, He Y, Pu M, Chen Y, DeBruine ZJ, Zhang B, Zaidi SA et al.. (2018) Crystal structure of the Frizzled 4 receptor in a ligand-free state. Nature, 560 (7720): 666-670. [PMID:30135577]
64. Zhang K, Wu H, Hoppe N, Manglik A, Cheng Y. (2022) Fusion protein strategies for cryo-EM study of G protein-coupled receptors. Nat Commun, 13 (1): 4366. [PMID:35902590]
65. Zhang X, Zhao F, Wu Y, Yang J, Han GW, Zhao S, Ishchenko A, Ye L, Lin X, Ding K et al.. (2017) Crystal structure of a multi-domain human smoothened receptor in complex with a super stabilizing ligand. Nat Commun, 8: 15383. [PMID:28513578]
66. Zhao Y, Ren J, Hillier J, Lu W, Jones EY. (2020) Antiepileptic Drug Carbamazepine Binds to a Novel Pocket on the Wnt Receptor Frizzled-8. J Med Chem, 63 (6): 3252-3260. [PMID:32049522]
Subcommittee members:
Gunnar Schulte (Chairperson)
Paweł Kozielewicz |
Other contributors:
Elisa Arthofer
Jacomijn Dijksterhuis
Lukas Grätz
Belma Hot
Matthias Lauth
Julian Petersen
Katerina Strakova
Jana Valnohova
Shane Wright |
Database page citation (select format):
Concise Guide to PHARMACOLOGY citation:
Alexander SPH, Christopoulos A, Davenport AP, Kelly E, Mathie AA, Peters JA, Veale EL, Armstrong JF, Faccenda E, Harding SD, Davies JA et al. (2023) The Concise Guide to PHARMACOLOGY 2023/24: G protein-coupled receptors. Br J Pharmacol. 180 Suppl 2:S23-S144.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
There is limited knowledge about WNT/FZD specificity and which molecular entities determine the signalling outcome of a specific WNT/FZD pair. Understanding of the FZD and SMO coupling to G proteins is incomplete, but progress have been made [2,12-13,24,33,37-38,41,45,54,60]. There is also a scarcity of information on basic pharmacological characteristics of FZDs, such as binding constants, ligand specificity or concentration-response relationships [23]. However, progress in understanding WNT-FZD interactions has been initiated with generation of eGFP-tagged WNT-3A and its use in BRET-based binding assays [29,51,59]. Development of pharmacological tools [28] for SMO has been faciliated by successful determination of several SMO structures [6,12,21,26,37-38,55-56,58,64-65]. The recently solved FZD4 and FZD5 structures in apo state, as well as the structure of FZD7 bound to a heterotrimeric Gs protein, have provided first insights into FZD transmembrane organization [52,62-63].
Ligands associated with FZD signalling
WNTs: Wnt-1 (WNT1, P04628), Wnt-2 (WNT2, P09544) (also known as Int-1-related protein), Wnt-2b (WNT2B, Q93097) (also known as WNT-13), Wnt-3 (WNT3, P56703) , Wnt-3a (WNT3A, P56704), Wnt-4 (WNT4, P56705), Wnt-5a (WNT5A, P41221) (pEC50 7.7-8.9 [60]), Wnt-5b (WNT5B, Q9H1J7), Wnt-6 (WNT6, Q9Y6F9), Wnt-7a (WNT7A, O00755), Wnt-7b (WNT7B, P56706), Wnt-8a (WNT8A, Q9H1J5), Wnt-8b (WNT8B, Q93098), Wnt-9a (WNT9A, O14904) (also known as WNT-14), Wnt-9b (WNT9B, O14905) (also known as WNT-15 or WNT-14b), Wnt-10a (WNT10A, Q9GZT5), Wnt-10b (WNT10B, O00744) (also known as WNT-12), Wnt-11 (WNT11, O96014) and Wnt-16 (WNT16, Q9UBV4).
Extracellular proteins that interact with FZDs: norrin (NDP, Q00604), R-spondin-4 (RSPO4, Q2I0M5), sFRP-1 (SFRP1, Q8N474), sFRP-2 (SFRP2, Q96HF1), sFRP-3 (FRZB, Q92765), sFRP-4 (SFRP4, Q6FHJ7), sFRP-5 (SFRP5, Q6FHJ7).
Extracellular proteins that interact with WNTs or LRPs: Dickkopf 1 (DKK1, O94907), WIF1 (Q9Y5W5), sclerostin (SOST, Q9BQB4), kremen 1 (KREMEN1, Q96MU8) and kremen 2 (KREMEN2, Q8NCW0)
Small exogenous ligands: Foxy-5 [49], Box-5 [22], UM206 [31], and XWnt8 (P28026) also known as mini-Wnt8.
Ligands associated with SMO signalling: cholesterol, oxysterols [6,32,39].