Top ▲
Unless otherwise stated all data on this page refer to the human proteins. Gene information is provided for human (Hs), mouse (Mm) and rat (Rn).
Glycoprotein formation in the Golgi and endoplasmic reticulum relies on the accumulation of nucleotide-conjugated sugars via the SLC35 family of transporters. These transporters have a predicted topology of 10 TM domains, with cytoplasmic termini, and function as exchangers, swopping nucleoside monophosphates for the corresponding nucleoside diphosphate conjugated sugar. Five subfamilies of transporters have been identified on the basis of sequence similarity, namely SLC35A1, SLC35A2, SLC35A3, SLC35A4 and SLC35A5; SLC35B1, SLC35B2, SLC35B3 and SLC35B4; SLC35C1 and SLC35C2; SLC35D1, SL35D1, SLC35D2 and SLC35D3, and the subfamily of orphan SLC35 transporters, SLC35E1-4 and SLC35F1-5.
CMP-sialic acid transporter / SLC35A1 C Show summary »« Hide summary
|
||||||||||||||||||||||
UDP-galactose transporter / SLC35A2 C Show summary »« Hide summary
|
||||||||||||||||||||||
UDP-N-acetylglucosamine transporter / SLC35A3 C Show summary »« Hide summary
|
||||||||||||||||||||||
MGC2541 / SLC35A4 Show summary »« Hide summary
|
||||||||||||||||||||||
FLJ11130 / SLC35A5 Show summary »« Hide summary
|
||||||||||||||||||||||
UGTREL1 / SLC35B1 Show summary »« Hide summary
|
||||||||||||||||||||||
PAPS transporter 1 / SLC35B2 C Show summary »« Hide summary
|
||||||||||||||||||||||
PAPS transporter 2 / SLC35B3 C Show summary »« Hide summary
|
||||||||||||||||||||||
YEA / SLC35B4 C Show summary »« Hide summary
|
||||||||||||||||||||||
GDP-Fucose transporter / SLC35C1 C Show summary »« Hide summary
|
||||||||||||||||||||||
OVCOV1 / SLC35C2 Show summary »« Hide summary
|
||||||||||||||||||||||
UDP-glucuronic acid/UDP-N-acetylgalactosamine dual transporter / SLC35D1 C Show summary »« Hide summary
|
||||||||||||||||||||||
HFRC1 / SLC35D2 C Show summary »« Hide summary
|
||||||||||||||||||||||
FRCL1 (Fringe connection-like protein 1 / SLC35D3) Show summary »« Hide summary
|
||||||||||||||||||||||
solute carrier family 35 member E1 / SLC35E1 Show summary »« Hide summary
|
||||||||||||||||||||||
solute carrier family 35 member E2A / SLC35E2A Show summary »« Hide summary
|
||||||||||||||||||||||
solute carrier family 35 member E2B / SLC35E2B Show summary »« Hide summary
|
||||||||||||||||||||||
solute carrier family 35 member E3 / SLC35E3 Show summary »« Hide summary
|
||||||||||||||||||||||
solute carrier family 35 member E4 / SLC35E4 Show summary »« Hide summary
|
||||||||||||||||||||||
solute carrier family 35 member F1 / SLC35F1 Show summary »« Hide summary
|
||||||||||||||||||||||
solute carrier family 35 member F2 / SLC35F2 Show summary »« Hide summary
|
||||||||||||||||||||||
solute carrier family 35 member F3 / SLC35F3 Show summary »« Hide summary
|
||||||||||||||||||||||
solute carrier family 35 member F4 / SLC35F4 Show summary »« Hide summary
|
||||||||||||||||||||||
solute carrier family 35 member F5 / SLC35F5 Show summary »« Hide summary
|
||||||||||||||||||||||
solute carrier family 35 member F6 / SLC35F6 Show summary »« Hide summary
|
||||||||||||||||||||||
solute carrier family 35 member G1 / SLC35G1 Show summary »« Hide summary
|
||||||||||||||||||||||
solute carrier family 35 member G2 / SLC35G2 Show summary »« Hide summary
|
||||||||||||||||||||||
solute carrier family 35 member G3 / SLC35G3 Show summary »« Hide summary
|
||||||||||||||||||||||
solute carrier family 35 member G4 / SLC35G4 Show summary »« Hide summary
|
||||||||||||||||||||||
solute carrier family 35 member G5 / SLC35G5 Show summary »« Hide summary
|
||||||||||||||||||||||
solute carrier family 35 member G6 / SLC35G6 Show summary »« Hide summary
|
* Key recommended reading is highlighted with an asterisk
* Ishida N, Kawakita M. (2004) Molecular physiology and pathology of the nucleotide sugar transporter family (SLC35). Pflugers Arch, 447 (5): 768-75. [PMID:12759756]
* Orellana A, Moraga C, Araya M, Moreno A. (2016) Overview of Nucleotide Sugar Transporter Gene Family Functions Across Multiple Species. J Mol Biol, 428 (16): 3150-3165. [PMID:27261257]
* Song Z. (2013) Roles of the nucleotide sugar transporters (SLC35 family) in health and disease. Mol Aspects Med, 34 (2-3): 590-600. [PMID:23506892]
1. Ashikov A, Routier F, Fuhlrott J, Helmus Y, Wild M, Gerardy-Schahn R, Bakker H. (2005) The human solute carrier gene SLC35B4 encodes a bifunctional nucleotide sugar transporter with specificity for UDP-xylose and UDP-N-acetylglucosamine. J Biol Chem, 280 (29): 27230-5. [PMID:15911612]
2. Ishida N, Ito M, Yoshioka S, Sun-Wada GH, Kawakita M. (1998) Functional expression of human golgi CMP-sialic acid transporter in the Golgi complex of a transporter-deficient Chinese hamster ovary cell mutant. J Biochem, 124 (1): 171-8. [PMID:9644260]
3. Ishida N, Kuba T, Aoki K, Miyatake S, Kawakita M, Sanai Y. (2005) Identification and characterization of human Golgi nucleotide sugar transporter SLC35D2, a novel member of the SLC35 nucleotide sugar transporter family. Genomics, 85 (1): 106-16. [PMID:15607426]
4. Ishida N, Miura N, Yoshioka S, Kawakita M. (1996) Molecular cloning and characterization of a novel isoform of the human UDP-galactose transporter, and of related complementary DNAs belonging to the nucleotide-sugar transporter gene family. J Biochem, 120 (6): 1074-8. [PMID:9010752]
5. Ishida N, Yoshioka S, Chiba Y, Takeuchi M, Kawakita M. (1999) Molecular cloning and functional expression of the human Golgi UDP-N-acetylglucosamine transporter. J Biochem, 126 (1): 68-77. [PMID:10393322]
6. Kamiyama S, Sasaki N, Goda E, Ui-Tei K, Saigo K, Narimatsu H, Jigami Y, Kannagi R, Irimura T, Nishihara S. (2006) Molecular cloning and characterization of a novel 3'-phosphoadenosine 5'-phosphosulfate transporter, PAPST2. J Biol Chem, 281 (16): 10945-53. [PMID:16492677]
7. Kamiyama S, Suda T, Ueda R, Suzuki M, Okubo R, Kikuchi N, Chiba Y, Goto S, Toyoda H, Saigo K et al.. (2003) Molecular cloning and identification of 3'-phosphoadenosine 5'-phosphosulfate transporter. J Biol Chem, 278 (28): 25958-63. [PMID:12716889]
8. Lühn K, Wild MK, Eckhardt M, Gerardy-Schahn R, Vestweber D. (2001) The gene defective in leukocyte adhesion deficiency II encodes a putative GDP-fucose transporter. Nat Genet, 28 (1): 69-72. [PMID:11326279]
9. Miura N, Ishida N, Hoshino M, Yamauchi M, Hara T, Ayusawa D, Kawakita M. (1996) Human UDP-galactose translocator: molecular cloning of a complementary DNA that complements the genetic defect of a mutant cell line deficient in UDP-galactose translocator. J Biochem, 120 (2): 236-41. [PMID:8889805]
10. Muraoka M, Kawakita M, Ishida N. (2001) Molecular characterization of human UDP-glucuronic acid/UDP-N-acetylgalactosamine transporter, a novel nucleotide sugar transporter with dual substrate specificity. FEBS Lett, 495 (1-2): 87-93. [PMID:11322953]
Database page citation:
SLC35 family of nucleotide sugar transporters. Accessed on 10/09/2024. IUPHAR/BPS Guide to PHARMACOLOGY, http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=222.
Concise Guide to PHARMACOLOGY citation:
Alexander SPH, Fabbro D, Kelly E, Mathie AA, Peters JA, Veale EL, Armstrong JF, Faccenda E, Harding SD, Davies JA et al. (2023) The Concise Guide to PHARMACOLOGY 2023/24: Transporters. Br J Pharmacol. 180 Suppl 2:S374-469.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License