Top ▲
Unless otherwise stated all data on this page refer to the human proteins. Gene information is provided for human (Hs), mouse (Mm) and rat (Rn).
Two gene products, GlyT1 and GlyT2, are known that give rise to transporters that are predominantly located on glia and neurones, respectively. Five variants of GlyT1 (a,b,c,d & e) differing in their N- and C-termini are generated by alternative promoter usage and splicing, and three splice variants of GlyT2 (a,b & c) have also been identified (see [5,12,14,37] for reviews). GlyT1 transporter isoforms expressed in glia surrounding glutamatergic synapses regulate synaptic glycine concentrations influencing NMDA receptor-mediated neurotransmission [4,13], but also are important, in early neonatal life, for regulating glycine concentrations at inhibitory glycinergic synapses [15]. Homozygous mice engineered to totally lack GlyT1 exhibit severe respiratory and motor deficiencies due to hyperactive glycinergic signalling and die within the first postnatal day [15,38]. Disruption of GlyT1 restricted to forebrain neurones is associated with enhancement of EPSCs mediated by NMDA receptors and behaviours that are suggestive of a promnesic action [43]. GlyT2 transporters localised on the axons and boutons of glycinergic neurones appear crucial for efficient transmitter loading of synaptic vesicles but may not be essential for the termination of inhibitory neurotransmission [16,35]. Mice in which GlyT2 has been deleted develop a fatal hyperekplexia phenotype during the second postnatal week [16] and mutations in the human gene encoding GlyT2 (SLC6A5) have been identified in patients with hyperekplexia (reviewed by [17]). ATB0+ (SLC6A14) is a transporter for numerous dipolar and cationic amino acids and thus has a much broader substrate specificity than the glycine transporters alongside which it is grouped on the basis of structural similarity [10]. ATB0+ is expressed in various peripheral tissues [10]. By contrast PROT (SLC6A7), which is expressed only in brain in association with a subset of excitatory nerve terminals, shows specificity for the transport of L-proline.
GlyT1 / SLC6A9 C Show summary »« Hide summary More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||
GlyT2 / SLC6A5 C Show summary »« Hide summary
|
|||||||||||||||||||||||||||||||||||||||||||
ATB0,+ / SLC6A14 C Show summary »« Hide summary
|
|||||||||||||||||||||||||||||||||||||||||||
PROT / SLC6A7 C Show summary »« Hide summary
|
1. Anderson CM, Ganapathy V, Thwaites DT. (2008) Human solute carrier SLC6A14 is the beta-alanine carrier. J Physiol (Lond.), 586 (Pt 17): 4061-7. [PMID:18599538]
2. Anderson CM, Howard A, Walters JR, Ganapathy V, Thwaites DT. (2009) Taurine uptake across the human intestinal brush-border membrane is via two transporters: H+-coupled PAT1 (SLC36A1) and Na+- and Cl(-)-dependent TauT (SLC6A6). J Physiol (Lond.), 587 (Pt 4): 731-44. [PMID:19074966]
3. Aubrey KR, Mitrovic AD, Vandenberg RJ. (2000) Molecular basis for proton regulation of glycine transport by glycine transporter subtype 1b. Mol Pharmacol, 58 (1): 129-35. [PMID:10860934]
4. Bergeron R, Meyer TM, Coyle JT, Greene RW. (1998) Modulation of N-methyl-D-aspartate receptor function by glycine transport. Proc Natl Acad Sci USA, 95 (26): 15730-4. [PMID:9861038]
5. Betz H, Gomeza J, Armsen W, Scholze P, Eulenburg V. (2006) Glycine transporters: essential regulators of synaptic transmission. Biochem Soc Trans, 34 (Pt 1): 55-8. [PMID:16417482]
6. Boulay D, Pichat P, Dargazanli G, Estenne-Bouhtou G, Terranova JP, Rogacki N, Stemmelin J, Coste A, Lanneau C, Desvignes C et al.. (2008) Characterization of SSR103800, a selective inhibitor of the glycine transporter-1 in models predictive of therapeutic activity in schizophrenia. Pharmacol Biochem Behav, 91 (1): 47-58. [PMID:18621075]
7. Brown A, Carlyle I, Clark J, Hamilton W, Gibson S, McGarry G, McEachen S, Rae D, Thorn S, Walker G. (2001) Discovery and SAR of org 24598-a selective glycine uptake inhibitor. Bioorg Med Chem Lett, 11 (15): 2007-9. [PMID:11454468]
8. Carland JE, Mansfield RE, Ryan RM, Vandenberg RJ. (2013) Oleoyl-L-carnitine inhibits glycine transport by GlyT2. Br J Pharmacol, 168 (4): 891-902. [PMID:22978602]
9. Caulfield WL, Collie IT, Dickins RS, Epemolu O, McGuire R, Hill DR, McVey G, Morphy JR, Rankovic Z, Sundaram H. (2001) The first potent and selective inhibitors of the glycine transporter type 2. J Med Chem, 44 (17): 2679-82. [PMID:11495577]
10. Chen NH, Reith ME, Quick MW. (2004) Synaptic uptake and beyond: the sodium- and chloride-dependent neurotransmitter transporter family SLC6. Pflugers Arch, 447 (5): 519-31. [PMID:12719981]
11. Edington AR, McKinzie AA, Reynolds AJ, Kassiou M, Ryan RM, Vandenberg RJ. (2009) Extracellular loops 2 and 4 of GLYT2 are required for N-arachidonylglycine inhibition of glycine transport. J Biol Chem, 284 (52): 36424-30. [PMID:19875446]
12. Eulenburg V, Armsen W, Betz H, Gomeza J. (2005) Glycine transporters: essential regulators of neurotransmission. Trends Biochem Sci, 30 (6): 325-33. [PMID:15950877]
13. Gabernet L, Pauly-Evers M, Schwerdel C, Lentz M, Bluethmann H, Vogt K, Alberati D, Mohler H, Boison D. (2005) Enhancement of the NMDA receptor function by reduction of glycine transporter-1 expression. Neurosci Lett, 373 (1): 79-84. [PMID:15555781]
14. Gomeza J, Armsen W, Betz H, Eulenburg V. (2006) Lessons from the knocked-out glycine transporters. Handb Exp Pharmacol, (175): 457-83. [PMID:16722246]
15. Gomeza J, Hülsmann S, Ohno K, Eulenburg V, Szöke K, Richter D, Betz H. (2003) Inactivation of the glycine transporter 1 gene discloses vital role of glial glycine uptake in glycinergic inhibition. Neuron, 40 (4): 785-96. [PMID:14622582]
16. Gomeza J, Ohno K, Hülsmann S, Armsen W, Eulenburg V, Richter DW, Laube B, Betz H. (2003) Deletion of the mouse glycine transporter 2 results in a hyperekplexia phenotype and postnatal lethality. Neuron, 40 (4): 797-806. [PMID:14622583]
17. Harvey RJ, Topf M, Harvey K, Rees MI. (2008) The genetics of hyperekplexia: more than startle!. Trends Genet, 24 (9): 439-47. [PMID:18707791]
18. Hatanaka T, Nakanishi T, Huang W, Leibach FH, Prasad PD, Ganapathy V, Ganapathy ME. (2001) Na+ - and Cl- -coupled active transport of nitric oxide synthase inhibitors via amino acid transport system B(0,+). J Clin Invest, 107 (8): 1035-43. [PMID:11306607]
19. Herdon HJ, Roberts JC, Coulton S, Porter RA. (2010) Pharmacological characterisation of the GlyT-1 glycine transporter using two novel radioligands. Neuropharmacology, 59 (6): 558-65. [PMID:20691713]
20. Jeong HJ, Vandenberg RJ, Vaughan CW. (2010) N-arachidonyl-glycine modulates synaptic transmission in superficial dorsal horn. Br J Pharmacol, 161 (4): 925-35. [PMID:20860669]
21. Ju P, Aubrey KR, Vandenberg RJ. (2004) Zn2+ inhibits glycine transport by glycine transporter subtype 1b. J Biol Chem, 279 (22): 22983-91. [PMID:15031290]
22. Karunakaran S, Umapathy NS, Thangaraju M, Hatanaka T, Itagaki S, Munn DH, Prasad PD, Ganapathy V. (2008) Interaction of tryptophan derivatives with SLC6A14 (ATB0,+) reveals the potential of the transporter as a drug target for cancer chemotherapy. Biochem J, 414 (3): 343-55. [PMID:18522536]
23. Lowe 3rd JA, Drozda SE, Fisher K, Strick C, Lebel L, Schmidt C, Hiller D, Zandi KS. (2003) [3H]-(R)-NPTS, a radioligand for the type 1 glycine transporter. Bioorg Med Chem Lett, 13 (7): 1291-2. [PMID:12657266]
24. Lowe 3rd JA, Hou X, Schmidt C, David Tingley 3rd F, McHardy S, Kalman M, Deninno S, Sanner M, Ward K, Lebel L et al.. (2009) The discovery of a structurally novel class of inhibitors of the type 1 glycine transporter. Bioorg Med Chem Lett, 19 (11): 2974-6. [PMID:19410451]
25. Mallorga PJ, Williams JB, Jacobson M, Marques R, Chaudhary A, Conn PJ, Pettibone DJ, Sur C. (2003) Pharmacology and expression analysis of glycine transporter GlyT1 with [3H]-(N-[3-(4'-fluorophenyl)-3-(4'phenylphenoxy)propyl])sarcosine. Neuropharmacology, 45 (5): 585-93. [PMID:12941372]
26. Mezler M, Hornberger W, Mueller R, Schmidt M, Amberg MS, Amberg W, Amberg MS, Braje W, Ochse M, Schoemaker H et al.. (2008) Inhibitors of GlyT1 affect glycine transport via discrete binding sites. Mol Pharmacol, 74 (6): 1705-15. [PMID:18815213]
27. Mingorance-Le Meur A, Ghisdal P, Mullier B, De Ron P, Downey P, Van Der Perren C, Declercq V, Cornelis S, Famelart M, Van Asperen J et al.. (2013) Reversible inhibition of the glycine transporter GlyT2 circumvents acute toxicity while preserving efficacy in the treatment of pain. Br J Pharmacol, 170 (5): 1053-63. [PMID:23962079]
28. Núñez E, López-Corcuera B, Vázquez J, Giménez C, Aragón C. (2000) Differential effects of the tricyclic antidepressant amoxapine on glycine uptake mediated by the recombinant GLYT1 and GLYT2 glycine transporters. Br J Pharmacol, 129 (1): 200-6. [PMID:10694221]
29. Oh J, Lee S, Kim A, Yoon J, Jang K, Lee DH, Cho S, Lee SR, Yu KS, Chung JY. (2018) Safety, Tolerability, and Pharmacokinetic Characteristics of a Novel Nonopioid Analgesic, VVZ-149 Injections in Healthy Volunteers: A First-in-Class, First-in-Human Study. J Clin Pharmacol, 58 (1): 64-73. [PMID:28815639]
30. Omori Y, Nakajima M, Nishimura K, Takahashi E, Arai T, Akahira M, Suzuki T, Kainoh M. (2015) Analgesic effect of GT-0198, a structurally novel glycine transporter 2 inhibitor, in a mouse model of neuropathic pain. J Pharmacol Sci, 127 (3): 377-81. [PMID:25837937]
31. Pearlman RJ, Aubrey KR, Vandenberg RJ. (2003) Arachidonic acid and anandamide have opposite modulatory actions at the glycine transporter, GLYT1a. J Neurochem, 84 (3): 592-601. [PMID:12558979]
32. Perry KW, Falcone JF, Fell MJ, Ryder JW, Yu H, Love PL, Katner J, Gordon KD, Wade MR, Man T et al.. (2008) Neurochemical and behavioral profiling of the selective GlyT1 inhibitors ALX5407 and LY2365109 indicate a preferential action in caudal vs. cortical brain areas. Neuropharmacology, 55 (5): 743-54. [PMID:18602930]
33. Pinard E, Alanine A, Alberati D, Bender M, Borroni E, Bourdeaux P, Brom V, Burner S, Fischer H, Hainzl D et al.. (2010) Selective GlyT1 inhibitors: discovery of [4-(3-fluoro-5-trifluoromethylpyridin-2-yl)piperazin-1-yl][5-methanesulfonyl-2-((S)-2,2,2-trifluoro-1-methylethoxy)phenyl]methanone (RG1678), a promising novel medicine to treat schizophrenia. J Med Chem, 53 (12): 4603-14. [PMID:20491477]
34. Pérez-Siles G, Morreale A, Leo-Macías A, Pita G, Ortíz AR, Aragón C, López-Corcuera B. (2011) Molecular basis of the differential interaction with lithium of glycine transporters GLYT1 and GLYT2. J Neurochem, 118 (2): 195-204. [PMID:21574997]
35. Rousseau F, Aubrey KR, Supplisson S. (2008) The glycine transporter GlyT2 controls the dynamics of synaptic vesicle refilling in inhibitory spinal cord neurons. J Neurosci, 28 (39): 9755-68. [PMID:18815261]
36. Sloan JL, Mager S. (1999) Cloning and functional expression of a human Na(+) and Cl(-)-dependent neutral and cationic amino acid transporter B(0+). J Biol Chem, 274 (34): 23740-5. [PMID:10446133]
37. Supplisson S, Roux MJ. (2002) Why glycine transporters have different stoichiometries. FEBS Lett, 529 (1): 93-101. [PMID:12354619]
38. Tsai G, Ralph-Williams RJ, Martina M, Bergeron R, Berger-Sweeney J, Dunham KS, Jiang Z, Caine SB, Coyle JT. (2004) Gene knockout of glycine transporter 1: characterization of the behavioral phenotype. Proc Natl Acad Sci USA, 101 (22): 8485-90. [PMID:15159536]
39. Umapathy NS, Ganapathy V, Ganapathy ME. (2004) Transport of amino acid esters and the amino-acid-based prodrug valganciclovir by the amino acid transporter ATB(0,+). Pharm Res, 21 (7): 1303-10. [PMID:15290873]
40. Vandenberg RJ, Ju P, Aubrey KR, Ryan RM, Mitrovic AD. (2004) Allosteric modulation of neurotransmitter transporters at excitatory synapses. Eur J Pharm Sci, 23 (1): 1-11. [PMID:15324920]
41. Vandenberg RJ, Shaddick K, Ju P. (2007) Molecular basis for substrate discrimination by glycine transporters. J Biol Chem, 282 (19): 14447-53. [PMID:17383967]
42. Wiles AL, Pearlman RJ, Rosvall M, Aubrey KR, Vandenberg RJ. (2006) N-Arachidonyl-glycine inhibits the glycine transporter, GLYT2a. J Neurochem, 99 (3): 781-6. [PMID:16899062]
43. Yee BK, Balic E, Singer P, Schwerdel C, Grampp T, Gabernet L, Knuesel I, Benke D, Feldon J, Mohler H et al.. (2006) Disruption of glycine transporter 1 restricted to forebrain neurons is associated with a procognitive and antipsychotic phenotypic profile. J Neurosci, 26 (12): 3169-81. [PMID:16554468]
44. Yu XC, Zhang W, Oldham A, Buxton E, Patel S, Nghi N, Tran D, Lanthorn TH, Bomont C, Shi ZC et al.. (2009) Discovery and characterization of potent small molecule inhibitors of the high affinity proline transporter. Neurosci Lett, 451 (3): 212-6. [PMID:19159658]
45. Zeng Z, O'Brien JA, Lemaire W, O'Malley SS, Miller PJ, Zhao Z, Wallace MA, Raab C, Lindsley CW, Sur C et al.. (2008) A novel radioligand for glycine transporter 1: characterization and use in autoradiographic and in vivo brain occupancy studies. Nucl Med Biol, 35 (3): 315-25. [PMID:18355687]
46. Zhang HX, Hyrc K, Thio LL. (2009) The glycine transport inhibitor sarcosine is an NMDA receptor co-agonist that differs from glycine. J Physiol (Lond.), 587 (Pt 13): 3207-20. [PMID:19433577]
47. Zipp GG, Barbosa J, Green MA, Terranova KM, Fink C, Yu XC, Nouraldeen A, Wilson A, Savelieva K, Lanthorn TH et al.. (2014) Novel inhibitors of the high-affinity L-proline transporter as potential therapeutic agents for the treatment of cognitive disorders. Bioorg Med Chem Lett, 24 (16): 3886-90. [PMID:25037917]
Stefan Bröer |
Database page citation (select format):
Concise Guide to PHARMACOLOGY citation:
Alexander SPH, Fabbro D, Kelly E, Mathie AA, Peters JA, Veale EL, Armstrong JF, Faccenda E, Harding SD, Davies JA et al. (2023) The Concise Guide to PHARMACOLOGY 2023/24: Transporters. Br J Pharmacol. 180 Suppl 2:S374-469.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
Sarcosine is a selective transportable inhibitor of GlyT1 and also a weak agonist at the glycine binding site of the NMDA receptor [46], but has no effect on GlyT2. This difference has been attributed to a single glycine residue in TM6 (serine residue in GlyT2) [41]. Inhibition of GLYT1 by the sarcosine derivatives NFPS, NPTS and Org 24598 is non-competitive [25-26]. IC50 values for Org 24598 reported in the literature vary, most likely due to differences in assay conditions [7,25]. The tricyclic antidepressant amoxapine weakly inhibits GlyT2 (IC50 92 µM) with approximately 10-fold selectivity over GlyT1 [28]. The endogenous lipids arachidonic acid and anandamide exert opposing effects upon GlyT1a, inhibiting (IC50 ~ 2 µM) and potentiating (EC50 ~ 13 µM) transport currents, respectively [31]. N-arachidonyl-glycine, N-arachidonyl-γ-aminobutyric acid and N-arachidonyl-D-alanine have been described as endogenous non-competitive inhibitors of GlyT2a, but not GlyT1b [11,20,42]. Protons [3] and Zn2+ [21] act as non-competitive inhibitors of GlyT1b, with IC50 values of ~100 nM and ~10 µM respectively, but neither ion affects GlyT2 (reviewed by [40]). Glycine transport by GLYT1 is inhibited by Li+, whereas GLYT2 transport is stimulated (both in the presence of Na+) [34].