Top ▲
Unless otherwise stated all data on this page refer to the human proteins. Gene information is provided for human (Hs), mouse (Mm) and rat (Rn).
Show »« Hide More detailed introduction
Cholecystokinin receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on CCK receptors [20]) are activated by the endogenous peptides cholecystokinin-8 (CCK-8 (CCK, P06307)), CCK-33 (CCK, P06307), CCK-58 (CCK, P06307) and gastrin (gastrin-17 (GAST, P01350)). There are only two distinct subtypes of CCK receptors, CCK1 and CCK2 receptors [15,29], with some alternatively spliced forms most often identified in neoplastic cells. The CCK receptor subtypes are distinguished by their peptide selectivity, with the CCK1 receptor requiring the carboxyl-terminal heptapeptide-amide that includes a sulfated tyrosine for high affinity and potency, while the CCK2 receptor requires only the carboxyl-terminal tetrapeptide shared by each CCK and gastrin peptides. These receptors have characteristic and distinct distributions, with both present in both the central nervous system and peripheral tissues.
CCK1 receptor C Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||||||||||||||||||||
CCK2 receptor C Show summary »« Hide summary More detailed page
|
* Key recommended reading is highlighted with an asterisk
Ballaz S. (2017) The unappreciated roles of the cholecystokinin receptor CCK(1) in brain functioning. Rev Neurosci, 28 (6): 573-585. [PMID:28343167]
Berna MJ, Tapia JA, Sancho V, Jensen RT. (2007) Progress in developing cholecystokinin (CCK)/gastrin receptor ligands that have therapeutic potential. Curr Opin Pharmacol, 7 (6): 583-92. [PMID:17997137]
* Cawston EE, Miller LJ. (2010) Therapeutic potential for novel drugs targeting the type 1 cholecystokinin receptor. Br J Pharmacol, 159 (5): 1009-21. [PMID:19922535]
de Tullio P, Delarge J, Pirotte B. (2000) Therapeutic and chemical developments of cholecystokinin receptor ligands. Expert Opin Investig Drugs, 9 (1): 129-46. [PMID:11060666]
Desai AJ, Miller LJ. (2018) Changes in the plasma membrane in metabolic disease: impact of the membrane environment on G protein-coupled receptor structure and function. Br J Pharmacol, 175 (21): 4009-4025. [PMID:28691227]
* Dockray GJ. (2009) Cholecystokinin and gut-brain signalling. Regul Pept, 155 (1-3): 6-10. [PMID:19345244]
* Dufresne M, Seva C, Fourmy D. (2006) Cholecystokinin and gastrin receptors. Physiol Rev, 86 (3): 805-47. [PMID:16816139]
* Herranz R. (2003) Cholecystokinin antagonists: pharmacological and therapeutic potential. Med Res Rev, 23 (5): 559-605. [PMID:12789687]
Inui A. (2003) Neuropeptide gene polymorphisms and human behavioural disorders. Nat Rev Drug Discov, 2 (12): 986-98. [PMID:14654797]
Kopin AS, McBride EW, Schaffer K, Beinborn M. (2000) CCK receptor polymorphisms: an illustration of emerging themes in pharmacogenomics. Trends Pharmacol Sci, 21 (9): 346-53. [PMID:10973088]
Lovick TA. (2009) CCK as a modulator of cardiovascular function. J Chem Neuroanat, 38 (3): 176-84. [PMID:19563885]
* Miller LJ, Gao F. (2008) Structural basis of cholecystokinin receptor binding and regulation. Pharmacol Ther, 119 (1): 83-95. [PMID:18558433]
Moran TH. (2000) Cholecystokinin and satiety: current perspectives. Nutrition, 16 (10): 858-65. [PMID:11054590]
Noble F, Roques BP. (1999) CCK-B receptor: chemistry, molecular biology, biochemistry and pharmacology. Prog Neurobiol, 58 (4): 349-79. [PMID:10368033]
* Noble F, Wank SA, Crawley JN, Bradwejn J, Seroogy KB, Hamon M, Roques BP. (1999) International Union of Pharmacology. XXI. Structure, distribution, and functions of cholecystokinin receptors. Pharmacol Rev, 51: 745-781. [PMID:10581329]
Novak D, Anderluh M, Kolenc Peitl P. (2020) CCK2R antagonists: from SAR to clinical trials. Drug Discov Today, 25 (8): 1322-1336. [PMID:32439608]
Peter SA, D'Amato M, Beglinger C. (2006) CCK1 antagonists: are they ready for clinical use?. Dig Dis, 24 (1-2): 70-82. [PMID:16699265]
Raybould HE. (2007) Mechanisms of CCK signaling from gut to brain. Curr Opin Pharmacol, 7 (6): 570-4. [PMID:17954038]
Rehfeld JF. (2017) Cholecystokinin-From Local Gut Hormone to Ubiquitous Messenger. Front Endocrinol (Lausanne), 8: 47. [PMID:28450850]
Rozengurt E, Walsh JH. (2001) Gastrin, CCK, signaling, and cancer. Annu Rev Physiol, 63: 49-76. [PMID:11181948]
Williams JA. (2019) Cholecystokinin (CCK) Regulation of Pancreatic Acinar Cells: Physiological Actions and Signal Transduction Mechanisms. Compr Physiol, 9 (2): 535-564. [PMID:30873601]
1. Akgün E, Körner M, Gao F, Harikumar KG, Waser B, Reubi JC, Portoghese PS, Miller LJ. (2009) Synthesis and in vitro characterization of radioiodinatable benzodiazepines selective for type 1 and type 2 cholecystokinin receptors. J Med Chem, 52 (7): 2138-47. [PMID:19271701]
2. Asin KE, Bednarz L, Nikkel AL, Gore Jr PA, Montana WE, Cullen MJ, Shiosaki K, Craig R, Nadzan AM. (1992) Behavioral effects of A71623, a highly selective CCK-A agonist tetrapeptide. Am J Physiol, 263 (1 Pt 2): R125-35. [PMID:1636779]
3. Bellier B, Dugave C, Etivant F, Genet R, Gigoux V, Garbay C. (2004) Synthesis and biological characterisation of [3H]BBL454, a new CCK2 selective radiolabelled agonist displaying original pharmacological properties. Bioorg Med Chem Lett, 14 (2): 369-72. [PMID:14698161]
4. Boyce M, David O, Darwin K, Mitchell T, Johnston A, Warrington S. (2012) Single oral doses of netazepide (YF476), a gastrin receptor antagonist, cause dose-dependent, sustained increases in gastric pH compared with placebo and ranitidine in healthy subjects. Aliment Pharmacol Ther, 36 (2): 181-9. [PMID:22607579]
5. Chang RS, Lotti VJ, Chen TB, Kunkel KA. (1986) Characterization of the binding of [3H]-(+/-)-L-364,718: a new potent, nonpeptide cholecystokinin antagonist radioligand selective for peripheral receptors. Mol Pharmacol, 30 (3): 212-7. [PMID:3018478]
6. Gouldson P, Legoux P, Carillon C, Delpech B, Le Fur G, Ferrara P, Shire D. (2000) The agonist SR 146131 and the antagonist SR 27897 occupy different sites on the human CCK(1) receptor. Eur J Pharmacol, 400 (2-3): 185-94. [PMID:10988332]
7. Henke BR, Aquino CJ, Birkemo LS, Croom DK, Dougherty Jr RW, Ervin GN, Grizzle MK, Hirst GC, James MK, Johnson MF et al.. (1997) Optimization of 3-(1H-indazol-3-ylmethyl)-1,5-benzodiazepines as potent, orally active CCK-A agonists. J Med Chem, 40 (17): 2706-25. [PMID:9276016]
8. Horwell DC, Hunter JC, Kneen CO, Pritchard MC. (1995) Synthesis of novel iodinated radioligands with high affinity and selectivity for CCK-B/gastrin receptors. Bioorg Med Chem Lett, 5 (21): 2501-2506.
9. Hughes J, Boden P, Costall B, Domeney A, Kelly E, Horwell DC, Hunter JC, Pinnock RD, Woodruff GN. (1990) Development of a class of selective cholecystokinin type B receptor antagonists having potent anxiolytic activity. Proc Natl Acad Sci USA, 87 (17): 6728-32. [PMID:1975695]
10. Hunter JC, Suman-Chauhan N, Meecham KG, Dissanayake VU, Hill DR, Pritchard MC, Kneen CO, Horwell DC, Hughes J, Woodruff GN. (1993) [3H]PD 140376: a novel and highly selective antagonist radioligand for the cholecystokininB/gastrin receptor in guinea pig cerebral cortex and gastric mucosa. Mol Pharmacol, 43 (4): 595-602. [PMID:8474432]
11. Ito M, Matsui T, Taniguchi T, Tsukamoto T, Murayama T, Arima N, Nakata H, Chiba T, Chihara K. (1993) Functional characterization of a human brain cholecystokinin-B receptor. A trophic effect of cholecystokinin and gastrin. J Biol Chem, 268 (24): 18300-5. [PMID:8349705]
12. Iwamoto Y, Yamamoto R, Kuzuya T. (1987) CR-1409: a potent inhibitor of cholecystokinin-stimulated amylase release and cholecystokinin binding in rat pancreatic acini. Pancreas, 2 (1): 85-90. [PMID:2437574]
13. Jagerschmidt A, Guillaume-Rousselet N, Vikland ML, Goudreau N, Maigret B, Roques BP. (1996) His381 of the rat CCKB receptor is essential for CCKB versus CCKA receptor antagonist selectivity. Eur J Pharmacol, 296 (1): 97-106. [PMID:8720482]
14. Kennedy K, Escrieut C, Dufresne M, Clerc P, Vaysse N, Fourmy D. (1995) Identification of a region of the N-terminal of the human CCKA receptor essential for the high affinity interaction with agonist CCK. Biochem Biophys Res Commun, 213 (3): 845-52. [PMID:7654246]
15. Kopin AS, Lee YM, McBride EW, Miller LJ, Lu M, Lin HY, Kolakowski Jr LF, Beinborn M. (1992) Expression cloning and characterization of the canine parietal cell gastrin receptor. Proc Natl Acad Sci USA, 89 (8): 3605-9. [PMID:1373504]
16. Lee YM, Beinborn M, McBride EW, Lu M, Kolakowski Jr LF, Kopin AS. (1993) The human brain cholecystokinin-B/gastrin receptor. Cloning and characterization. J Biol Chem, 268 (11): 8164-9. [PMID:7681836]
17. Lindström E, Björkqvist M, Håkanson R. (1999) Pharmacological analysis of CCK2 receptor antagonists using isolated rat stomach ECL cells. Br J Pharmacol, 127 (2): 530-6. [PMID:10385255]
18. Morton MF, Barrett TD, Freedman J, Li L, Rizzolio MC, Prendergast CE, Wu X, Moreno V, Pyati J, Figueroa K et al.. (2011) JNJ-26070109 [(R)4-bromo-N-[1-(2,4-difluoro-phenyl)-ethyl]-2-(quinoxaline-5-sulfonylamino)-benzamide]: a novel, potent, and selective cholecystokinin 2 receptor antagonist with good oral bioavailability. J Pharmacol Exp Ther, 338 (1): 328-36. [PMID:21493750]
19. Nilsson I, Monstein HJ, Lindström E, Håkanson R, Svensson S. (2002) Pharmacological analysis of CCK(2) receptor ligands using COS-7 and SK-N-MC cells, expressing the human CCK(2) receptor. Regul Pept, 103 (1): 29-37. [PMID:11738246]
20. Noble F, Wank SA, Crawley JN, Bradwejn J, Seroogy KB, Hamon M, Roques BP. (1999) International Union of Pharmacology. XXI. Structure, distribution, and functions of cholecystokinin receptors. Pharmacol Rev, 51: 745-781. [PMID:10581329]
21. Powers SP, Pinon DI, Miller LJ. (1988) Use of N,O-bis-Fmoc-D-Tyr-ONSu for introduction of an oxidative iodination site into cholecystokinin family peptides. Int J Pept Protein Res, 31 (5): 429-34. [PMID:3410633]
22. Rasmussen SG, Choi HJ, Fung JJ, Pardon E, Casarosa P, Chae PS, Devree BT, Rosenbaum DM, Thian FS, Kobilka TS et al.. (2011) Structure of a nanobody-stabilized active state of the β(2) adrenoceptor. Nature, 469 (7329): 175-80. [PMID:21228869]
23. Singh L, Field MJ, Hill DR, Horwell DC, McKnight AT, Roberts E, Tang KW, Woodruff GN. (1995) Peptoid CCK receptor antagonists: pharmacological evaluation of CCKA, CCKB and mixed CCKA/B receptor antagonists. Eur J Pharmacol, 286 (2): 185-91. [PMID:8605955]
24. Smith JP, Verderame MF, McLaughlin P, Martenis M, Ballard E, Zagon IS. (2002) Characterization of the CCK-C (cancer) receptor in human pancreatic cancer. Int J Mol Med, 10 (6): 689-94. [PMID:12429993]
25. Song I, Brown DR, Wiltshire RN, Gantz I, Trent JM, Yamada T. (1993) The human gastrin/cholecystokinin type B receptor gene: alternative splice donor site in exon 4 generates two variant mRNAs. Proc Natl Acad Sci USA, 90 (19): 9085-9. [PMID:8415658]
26. Takinami Y, Yuki H, Nishida A, Akuzawa S, Uchida A, Takemoto Y, Ohta M, Satoh M, Semple G, Miyata K. (1997) YF476 is a new potent and selective gastrin/cholecystokinin-B receptor antagonist in vitro and in vivo. Aliment Pharmacol Ther, 11 (1): 113-20. [PMID:9042983]
27. Taniguchi H, Yazaki N, Endo T, Nagasaki M. (1996) Pharmacological profile of T-0632, a novel potent and selective CCKA receptor antagonist, in vitro. Eur J Pharmacol, 304 (1-3): 147-54. [PMID:8813597]
28. Ursini A, Capelli AM, Carr RA, Cassarà P, Corsi M, Curcuruto O, Curotto G, Dal Cin M, Davalli S, Donati D et al.. (2000) Synthesis and SAR of new 5-phenyl-3-ureido-1,5-benzodiazepines as cholecystokinin-B receptor antagonists. J Med Chem, 43 (20): 3596-613. [PMID:11020274]
29. Wank SA, Harkins R, Jensen RT, Shapira H, de Weerth A, Slattery T. (1992) Purification, molecular cloning, and functional expression of the cholecystokinin receptor from rat pancreas. Proc Natl Acad Sci USA, 89 (7): 3125-9. [PMID:1313582]
Subcommittee members:
Laurence J. Miller (Chairperson)
Margery Beinfeld
Roger A. Liddle
Jens Rehfeld |
Database page citation (select format):
Concise Guide to PHARMACOLOGY citation:
Alexander SPH, Christopoulos A, Davenport AP, Kelly E, Mathie AA, Peters JA, Veale EL, Armstrong JF, Faccenda E, Harding SD, Davies JA et al. (2023) The Concise Guide to PHARMACOLOGY 2023/24: G protein-coupled receptors. Br J Pharmacol. 180 Suppl 2:S23-S144.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
While a cancer-specific CCK receptor has been postulated to exist, which also might be responsive to incompletely processed forms of CCK (Gly-extended forms), this has never been isolated. An alternatively spliced form of the CCK2 receptor in which intron 4 is retained, adding 69 amino acids to the intracellular loop 3 (ICL3) region, has been described to be present particularly in certain neoplasms where mRNA mis-splicing has been commonly observed [24], but it is not clear that this receptor splice form plays a special role in carcinogenesis. Another alternative splicing event for the CCK2 receptor was reported [25], with alternative donor sites in exon 4 resulting in long (452 amino acids) and short (447 amino acids) forms of the receptor differing by five residues in ICL3, however, no clear functional differences have been observed.