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Abstract
In recent years, the advancement of Large Language Models (LLMs) has established
a new and improved approach for converting natural language (NL) questions into
Structured Query Language (SQL) statements (text-to-SQL). In this study, I researched
the task of text-to-SQL for the IUPHAR/BPS Guide to Pharmacology database (GtoPdb)
[1]. The motivation for my research was to improve the GtoPdb as a teaching resource,
allowing staff and students to query the database through NL requests, making the
GtoPdb more accessible for all users (students and researchers).

To conduct my research, I was given a small dataset of NL-SQL pairs suitable for use
on the GtoPdb. I investigated several in-context learning methods found in relevant
text-to-SQL literature. Through the combination of the best zero-shot methods explored
on the training set I constructed an effective zero-shot text-to-SQL pipeline. Using
this pipeline, I integrated several few-shot learning strategies to help pick NL-SQL
examples, from the training set, when evaluating the held-out set.

In addition, I designed an evaluation metric, Partial Execution Accuracy (PEX), to
better assess the accuracy of generated SQL queries. I discovered that choosing random
few-shot examples, from the training set, had a significant impact on the accuracy of
generated SQL queries (increasing from 3.33% to 16.67%). Moreover, I was able to
show that choosing relevant few-shot examples, based on their similarity to a given NL
question, resulted in a further increase in accuracy (reaching 30%).
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Chapter 1

Introduction

Large Language Models (LLMs), such as OpenAI’s ChatGPT, have recently emerged
as a groundbreaking technology within the field of computer science. They have demon-
strated unprecedented capabilities in responding to natural language (NL) requests,
through prompts, by generating logically coherent outputs. In light of this, LLMs
have been identified as a solution for the specialised task of translating NL questions
into Structured Query Language (SQL) [2, 3, 4] statements (text-to-SQL) [5]. No-
tably, LLM-based methods achieve pinnacle performance on benchmark datasets [6, 7],
surpassing all prior non-LLM approaches .

Within this research, I investigated the performance of text-to-SQL translation on the
IUPHAR/BPS Guide to Pharmacology database (GtoPdb) [1], a resource which stores
succinct summaries, key references, and experimentally recommended ligands for
pharmacological targets. The goal of my research was to enhance the GtoPdb’s usability
as a teaching tool to allow users (particularly educators and students) to query the
database using NL questions, bypassing the technical barrier of SQL expertise.

I used several LLMs from OpenAI, allowing for a solid exploration of several published
text-to-SQL in-context learning methodologies. To evaluate my methods, I used a small
dataset of NL-SQL pairs commonly queried on the GtoPdb, which was split into a
training and held-out set. I evaluated zero-shot methods on the training set, whereby the
LLM produced SQL queries when given no NL-SQL example pairs. I also refined my
exploration, focusing on a subset of these methods and LLMs based on the following
key factors:

• Cost – The financial feasibility of the method.

• Response Time – The speed at which SQL response is generated.

• Performance – The overall quality of the generated SQL queries.

• Usability – The supported features needed for certain methods.

Having discovered the best methods for generating SQL queries, I constructed a zero-
shot text-to-SQL pipeline. Finally, I tested my text-to-SQL pipeline on the held-out set
by providing the LLM with a minimal number of NL-SQL example pairs, chosen from

1



Chapter 1. Introduction 2

the training set, a technique known as few-shot learning [8].

1.1 Research Questions

The research questions regarding text-to-SQL for the GtoPdb that my research will
answer are as follows:

• Is it possible to design an evaluation metric that effectively measures the accuracy
of the text-to-SQL approaches?

• Which database schema representation is the best?

• Does the proposed self-validation have any effect on producing SQL queries?

• Which LLM is the most suitable?

• How important is few-shot learning compared to zero-shot learning?

• What is the most effective way of choosing examples for few-shot learning?

1.2 Project Outline

Background – This begins with a brief introduction to LLMs, followed by a focus on
specific OpenAI LLMs. Next, an explanation of the GtoPdb [1] and finally, a discussion
of benchmark datasets for the task of text-to-SQL.

Methodology – Here, I present a detailed description of the dataset used for the project
and formally define my evaluation metrics. I then outline and define the experiments
conducted within my implementation.

Text-to-SQL Pipeline – This chapter begins my implementation by investigating
several of the zero-shot (no examples) prompting methods on the given training set. By
evaluating these methods, I construct a text-to-SQL pipeline capable of generating SQL
queries under a zero-shot scenario.

Results – To assess the impact of few-shot learning, I use my text-to-SQL pipeline
under several different few-shot scenarios on the held-out set. By choosing examples
from the training set, based on different criteria, I discover the most effective few-shot
approach for the task of text-to-SQL on the GtoPdb.

Conclusions – I summarise my findings, provide a comparison with related work, and
detail the main limitations and subsequent future work related to my research.



Chapter 2

Background

The following chapter introduces basic concepts and recent research relevant to gen-
erating SQL queries from NL (text-to-SQL) using LLMs. Since the world of LLMs
is an extensive and rapidly developing one, this chapter is limited to brief overviews.
For more (in-depth) information on language modelling please refer to a more rigorous
natural language processing (NLP) course such as Elena Voita’s NLP Course For You
[9].

2.1 Language Modelling

The task of predicting the next sequence of words given the previous can be defined as
language modelling. In other words, given a sequence of tokens (e.g words) w1, ...,wn
and a given index t a language model (LM) predicts a probability distribution P(wt |w<t)
that can be used to determine the next words in the sequence [9]. An early form of
statistical language modelling, namely n-gram language models, first introduced in the
late 1990s, calculated straightforward distributions by considering the frequency of
sequential tokens [10]. Formally,

P(wt |w1, ...,wt−1) =
C(w1, ...,wt−1,wt)

C(w1, ...,wt−1)
, (2.1)

where C(w1, ...,wi) is the frequency (count) that the sequence of tokens w1, ...,wi ap-
pears in the training text. The n-gram language model was built upon the Markov
Property which is an independence assumption stating that the probability of a word
only depends on a defined number of previous words. Therefore, assuming that a se-
quence of tokens w1, ...,wt corresponds to P(wt |w1, ...,wt−1) = P(wt |wt−n+1, ...,wt−1).
In example, a trigram model (n = 3) corresponds to P(yt |y1, ...,yt−1) = P(yt |yt−2,yt−1)
which says that the probability of the next token yt only depends on the previous two
tokens yt−2 and yt−1.

3



Chapter 2. Background 4

2.2 Large Language Models (LLMs)

Large Language Models are extremely advanced LMs built using billions of parameters,
hence termed ‘large’, allowing them to exhibit an unprecedented ability when respond-
ing to NL requests [11]. Today, the most popular architecture for LLMs was introduced
by researchers at Google and was named the transformer [12].

2.2.1 The Transformer

The transformer is a type of neural network that relies on self-attention [13] to capture
relationships between tokens in a sentence. In its original publication [12], the trans-
former consisted of an encoder and a decoder, each with 6 layers, totalling 12 layers.
This self-attention mechanism lets every token consider all other tokens in the sequence,
dynamically adjusting its high-dimensional representation based on context. Unlike ear-
lier models that used attention mechanisms alongside sequential processing in recurrent
networks, the transformer’s parallelisable structure boasts faster training and improved
translation quality. By continuously refining token representations, self-attention helps
to properly encode the appropriate context of semantically ambiguous tokens.

2.2.2 Training Large Language Models

Modern-day in-context learning LLMs such as those used within this research, Gen-
erative Pre-trained Transformer (GPT) models, can generate a response based on a
user-given prompt in an autoregressive manner; that is, the next token is predicted
based on all preceding tokens. Formally, given a context sequence X with tokens
x1,x2, . . . ,xt−1 (the prompt) and current index t the LLM aims to predict the next token
y. Using the chain rule, the conditional probability can be expressed as,

P(y | X) =
T

∏
t=1

P(yt | x1,x2, . . . ,xt−1), (2.2)

where T is the length of the sequence [11]. LLMs are trained by maximising these
probabilities and tend to go through the following phases [14]:

Pre-training: The first phase requires massive amounts of data that the model is
subjected to for training (i.e. pre-training dataset), giving the model the ability to now
predict the next word in a sequence of tokens. However, the model will not yet be
aligned with human intentions and will likely hallucinate (i.e. the generation of content
that is irrelevant, made-up, or inconsistent with the input data).

Instruction Fine-tuning: To become a helpful interaction tool, the model must be
fine-tuned to ensure engaging responses. A smaller dataset than the pre-training one
is used to do this, namely an instruction dataset. This new dataset is full of extremely
high-quality instruction and response pairs, guiding the model to become a helpful
human aid.

Reinforcement Learning from Human Feedback: This stage is one that several
modern-day LLMs go through (such as chatGPT). Users are tasked with evaluating
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LLM-generated responses by rating them, picking the best response from multiple
generated responses, and leaving comments that evaluate the response. Studies such as
[15] have found this step to significantly improve the performance of larger models.

2.3 OpenAI’s Large Language Models

To generate SQL queries from NL questions, this project will survey a wide selection
of LLMs from OpenAI. In 2018, OpenAI released gpt-1, their first GPT model [16],
and has since improved upon it with the release of several other LLMs.

Within the last year, OpenAI released a selection of reasoning models, namely, the
o-series. These reasoning models were trained with a technique called Chain of Thought
(CoT) prompting [17], letting the LLM perform step-by-step reasoning in a similar
fashion to a human, thus excelling at complex, multi-step tasks. By March 2025,
OpenAI had released three iterations of their reasoning models (o3-mini, o1 and o1-
mini). The o1 model is the most expensive and is built for tasks that require both a
broad general knowledge and a lot of reasoning effort. On the other hand, the mini
models are lower-latency models intended for cost-effective tasks that still require some
reasoning effort. The reasoning models have outperformed other LLMs on benchmark
STEM problems (coding exercises, biology exams, etc.) [18, 19] thus presenting as
ideal candidates for the task of text-to-SQL for the GtoPdb.

Prior to these reasoning models, OpenAI released several other LLMs with their most
recent release being gpt-4o in May 2024 [20]. Not only was gpt-4o better and faster
than predecessor gpt-4 [21] but it was also significantly cheaper1. Unlike the reasoning
models, other LLMs are not trained to automatically perform Chain of Thought (CoT)
reasoning; thus, they are intended for tasks that require quick responses without the
need for automatic built-in reasoning. This research will investigate both reasoning
and non-reasoning models to compare their performance when generating SQL on the
GtoPdb.

2.4 In-context Learning

Since the OpenAI LLMs are trained on billions of parameters, they are not fine-tuned to
perform domain-specific tasks (such as text-to-SQL). These LLMs are thus considered
to have very broad applications, capable of completing a vast number of assignments.
To ensure these LLMs can perform domain-specific tasks, a technique called in-context
learning [22] is used. In-context learning refers to the information included within the
prompt given to the LLM. Such information may include direct context or helpful exam-
ples (known as few-shot learning [8]), which builds upon the knowledge acquired during
the LLM’s pre-training phase, endowing it with the ability to generate a contextually
relevant response.

1OpenAI’s pricing

https://openai.com/api/pricing/
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2.4.1 OpenAI Prompt

To perform in-context learning with the OpenAI API, the prompt is instantiated using
both the system and user messages:

System Message: Describes the model’s high-level behaviour, guiding the model to
respond in a specific manner. For example, if the LLM is instantiated to be a joke-telling
chatbot, then the LLM would reply in a Jester-like manner.

User Message: The specific request that prompts the LLM’s direct response, which
follows the guidelines established in the system message. For example, if a user requests
a cooking recipe, the LLM generates a structured response containing ingredients,
equipment, preparation steps, and other relevant details.

The culmination of these messages provides the in-context state for the LLM which
dictates its response. Notably, when the system message is initialised it creates a
‘conversation’ state for the LLM. This means the LLM is able to remember all previous
questions and responses within said conversation without the need to redefine the system
message.

2.4.2 Prompt Engineering

Since these prompts contain task-specific information, it is important that their design
can successfully convey the task to the LLM, a process known as prompt engineering.
The design of the prompts given to the LLM has been shown to have a major influence
on both the quality and structure of the LLM’s generated response [23].

In the context of this research, the design of the prompt is essential to produce coherent
SQL queries [24, 25, 26, 27]. To give the model enough context, the prompt is stipulated
so that the system message includes the corresponding database schema information and
a clear objective for the LLM to accomplish (i.e. ‘Convert the following natural language
question into an SQL query...’). In addition, the user message is usually populated with
the NL question that the LLM needs to generate an SQL query for. The user message
can also include NL-SQL example pairs intended to aid the LLM’s response (few-shot
learning) or it could include previously generated SQL queries that produced an error
(self-correction), giving the LLM a chance to fix its previous generation. Therefore,
this research will investigate different ways to display the database schema and choose
NL-SQL example pairs for the LLM to use when generating SQL queries.

2.4.3 Few-shot Learning

Few-shot learning refers to the scenario in which the LLM is given a small (few)
number of domain-specific examples, within its in-context information, to help it when
generating its response. Essentially, the LLM is briefly ‘tuned’ with relevant examples
on how it should reply for that specific invocation.

Few-shot learning represents a significant power of LLMs, letting these models adapt to
domain-specific tasks without explicit retraining. Unlike traditional machine learning
approaches that require extensive labelled datasets, few-shot learning leverages the
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LLM’s pre-trained knowledge and pattern recognition abilities to quickly learn from a
minimal number of examples [8, 28].

2.5 IUPHAR/BPS Guide to Pharmacology Database

For this research, the task was to generate SQL queries, from NL questions, for the
IUPHAR/BPS Guide to Pharmacology Database (GtoPdb) [1], which is a free-to-use
online database founded by the International Union of Basic and Clinical Pharmacology
(IUPHAR) and the British Pharmacological Society (BPS). Although the portal for
the GtoPdb has been online since 2011, it was known, at the time, as IUPHAR-DB
[29, 30]. It wasn’t referred to as the GtoPdb until 2014 [31] when the BPS ‘Guide to
Receptors and Channels’ [32] resource was integrated with the existing version of the
IUPHAR-DB [33].

Moreover, the GtoPdb is a searchable database containing data on drug targets and
the prescription medicines and experimental drugs that act on them. Overall, more
than 1,000 scientists have contributed to the GtoPdb; currently, the database boasts 325
active contributors. New database releases happen regularly (quarterly) allowing for
the information contained within the database to be extremely up to date. The database
is maintained by experts and stores ligand-activity-target relationships found within
primary relevant literature. The curators of the GtoPdb add new protein targets only
when they meet the following criteria [1].

1. There exists strong evidence that it directly interacts with biological targets while
altering their activity in a meaningful way.

2. Shows these effects at concentrations or doses that could realistically be used in
medical treatments.

3. There exists additional data from studies performed in living organisms supporting
the idea that the drug could have clinical use.

These criteria, combined with expert review and cross-referencing against primary
literature, make the GtoPdb a trusted resource for academic research and clinical
application. In addition, the database’s design also supports integration with popular
external resources such as ChEMBL [34, 35] and PubChem [36], further expanding its
use for pharmacological research. For open-source accessibility, the GtoPdb is readily
available through its online web portal2.

2.6 Text-to-SQL

As mentioned previously, text-to-SQL is the process of converting a NL question into
a corresponding SQL query [37, 5] that can be executed on a given database. Within
industry, and beyond, databases are used everywhere; therefore, the ability to easily
access them is imperative. However, accessing relational databases requires direct
knowledge of writing and executing SQL queries. Thus, there is motivation to provide a

2www.guidetopharmacology.org

www.guidetopharmacology.org
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suitable method of converting NL requests into executable SQL queries. In recent years,
the vast improvement of LLMs has enabled a new and improved way of approaching this
task. Not only are LLMs able to generate SQL queries - but they have also outperformed
all previous methods (such as [38]) on benchmark datasets Spider 1.0 [6] and BIRD [7].

The Spider 1.0 dataset [6] was developed by students at Yale University and incorporates
SQL queries of varying difficulty (easy, medium, hard, and extra hard). It includes
10,181 questions and 5,693 unique complex SQL queries on 200 databases with multiple
tables covering 138 different domains [6]. The leaderboard on their website3 exhibits a
total of 83 submissions showcasing their accuracy on the test set. As of April 2025, the
best submission (MiniSeek) achieved an accuracy of 91% but has yet to be published.
The next five best submissions all used gpt-4 combined with other method(s) (published
examples include [27, 24]) achieving accuracies in the range [83.9%,86.2%]. Spider
stopped updating their leaderboard in early May 2024 when they released their test set
and later released Spider 2.0. Unlike the original dataset, Spider 2.0 [39] focuses only
on extreme SQL queries.

Alternatively, the BIRD dataset [7] contains 12,751 unique pairs of NL questions and
their corresponding SQL queries for 95 databases while covering more than 37 domains
[7]. BIRD is intended to mimic real-life databases used by industry (i.e. databases
with lots of noise such as unusual naming conventions and irregular formatting) and so
poses a tougher challenge than Spider 1.0 with the top spot only achieving an accuracy
of 77.14% on the test set4 (at the time of writing). The top 25 submissions were all
added in either 2024 or 2025, with the majority leveraging OpenAI LLMs (such as
[40]), highlighting how recent the development in text-to-SQL research has been.

Both these benchmark datasets include various databases, so high-performing ap-
proaches must generalise well to different database schemas and queries. Consequently,
OpenAI LLM-driven methods are notable candidates and will be explored throughout
this research.

3Spider 1.0 leaderboard
4Bird leaderboard

https://yale-lily.github.io/spider
https://bird-bench.github.io


Chapter 3

Methodology

Within this chapter, I describe the dataset of GtoPdb NL-SQL pairs, the evaluation
metrics I used, and the LLMs investigated throughout my research. Additionally, I
define the methodology used to build a text-to-SQL pipeline tailored for the GtoPdb.
The methods investigated in this research were split into two categories: zero-shot and
few-shot.

In the zero-shot setting, the LLM generated SQL queries without any NL-SQL examples,
relying only on database information to produce SQL. Since these methods did not
require any examples, they were evaluated on the training set to establish a baseline
text-to-SQL pipeline. Here, I describe each zero-shot method under investigation.

Although the zero-shot scenario was able to yield coherent SQL, related research has
demonstrated that few-shot learning is crucial for improving the quality of generated
SQL [27, 26, 24]. As described in Chapter 2, few-shot learning involves providing the
LLM with a limited number of domain-specific examples (for this research – NL-SQL
pairs) to guide its output [28]. Here, I outline the strategies used to select NL-SQL
examples from the training set when answering the NL questions in the held-out set.

3.1 Dataset

To conduct my research, I was given a dataset of NL questions and their corresponding
SQL queries (NL-SQL pairs) for the GtoPdb. The dataset, curated by the NC-IUPHAR
Database Executive Committee, consisted of 81 entries. Of these, 51 entries made
up the training set and the remaining 30 formed the held-out set, corresponding to a
training-to-held-out split of approximately 63% to 37%. In addition to the NL-SQL
pairs, each entry provided supplementary information about related aspects of the data.
Each entry contained:

Natural Language Query: A question, phrased in natural language (NL), that can be
asked of the GtoPdb.

Difficulty - Tagged either easy, easy-moderate, moderate-hard, or hard in relation to the
difficulty of the SQL query that the LLM would need to output. The tag was determined

9
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by the NC-IUPHAR Database Executive Committee’s own opinion of the SQL query
rather than a structured SQL analysis (as seen in benchmark datasets [6, 7]).

Greek - Denotes whether the NL question contains a Greek letter (e.g. β).

Vague/No definite right answer - A flag that marks the NL question to be ambiguous,
meaning the NC-IUPHAR Database Executive Committee deemed there to be multiple
valid interpretations or SQL answers rather than a single definitive solution.

Minimum output columns - States the minimum number of columns that must be
retrieved by an SQL query to answer the NL question.

Notes for student - Some pointers from the NC-IUPHAR Database Executive Commit-
tee to help understand aspects of the database schema and the provided gold standard
SQL query.

SQL - The primary gold standard SQL query that answers the NL question.

2nd SQL - An alternative gold standard SQL query that would also reasonably answer
the NL query.

Overall, the dataset included 8 easy, 30 easy-moderate, 35 moderate-hard, and 8 hard
questions. Among these, 10 entries were flagged as vague, 4 contained Greek characters,
and 22 included an alternative gold standard SQL query.

3.2 Evaluation Metrics

To assess the quality of the generated SQL queries in my experiments, I employed two
sets of evaluation metrics. The first set focused on the robustness of the generated SQL
queries, evaluating the most basic correctness without comparing the generated SQL
queries to a gold standard SQL. The second set addressed the accuracy of the generated
queries by directly comparing them against one or more gold standard SQL queries
from the dataset. Throughout the research, I relied on these metrics to measure and
compare performance.

3.2.1 Robustness Metrics

3.2.1.1 Successful Execution Rate (SER)

The Successful Execution Rate (SER) measures whether a predicted SQL query S can
be successfully executed on the GtoPdb (check whether it is syntactically correct).
Formally, SER is defined as,

score(S) =

{
1, if S can be executed without error,
0, otherwise.

(3.1)

The overall SER is then computed as,

SER =
∑

N
n=1 score(Sn)

N
, (3.2)
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where N is the total number of generated queries. This metric helped track how many
generated queries were syntactically correct.

3.2.1.2 Non-empty Execution Rate (NER)

Similar to SER, the Non-empty Execution Rate (NER) extends the concept of successful
execution by also checking whether the query output (X) is non-empty. Formally,

score(X) =

{
1, if X ̸= /0,

0, otherwise.
(3.3)

Here, X ̸= /0 signifies that the query S both executes successfully and produces an output.
Conversely, X = /0 would indicate a syntactically valid SQL query but returned no rows
of data. The overall NER is calculated as,

NER =
∑

N
n=1 score(Xn)

N
, (3.4)

where N is the number of generated queries. Consequently, this metric captured not
only syntactically correct queries but also those that yield non-empty results.

3.2.2 Accuracy Metrics

To evaluate the accuracy of the generated SQL queries, each generated query was
compared against the gold standard SQL queries from the dataset. In cases where two
different gold standard SQL queries were available, I tested the generated query against
both. If it satisfied at least one of the gold standard queries for a given metric, it was
counted as correct for that metric.

3.2.2.1 Execution Accuracy (EX)

The first accuracy metric, Execution Accuracy (EX) used in benchmark datasets [7, 6],
measures whether the output of a generated SQL query X matches the output of the
corresponding gold standard query X̃ . Formally,

score(X , X̃) =

{
1, if X = X̃ ,

0, otherwise,
(3.5)

The overall EX is thus,

EX =
∑

N
n=1 score(Xn, X̃n)

N
, (3.6)

where N is the total number of generations. The EX metric was particularly useful
as some SQL queries can often output identical data but exhibit a different syntactic
structure. For illustration, consider the two SQL queries in Appendix A.1. Though
different, they produce the same data output when executed on the GtoPdb.
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3.2.2.2 Exact Matching (EM)

In contrast, Exact Matching (EM), also used in benchmark datasets [7, 6], is an even
more stringent metric than EX as it compares the generated SQL query S and the gold
standard SQL query S̃ directly, rather than comparing their outputs. Formally,

score(S, S̃) =

{
1, if S = S̃,
0, otherwise,

(3.7)

and overall EM is thus,

EM =
∑

N
n=1 score(Sn, S̃n)

N
, (3.8)

where N is the number of generated queries. Within this research, the EM metric
was very strict because it disregarded functionally equivalent queries if they differed
in syntactic structure. In example, the two SQL queries in Appendix A.2 may look
different but, when parsed, are identical.

3.2.2.3 Partial Execution Accuracy (PEX)

To answer the research question regarding the design of an evaluation metric, I propose
Partial Execution Accuracy (PEX). I designed this metric as both EM and EX were
strict; but I still wanted to capture when a generated SQL query S was missing some
columns (or including additional columns). Formally, the PEX score was defined as,

score(X , X̃) =

{
1, if (X̃ ⊆ X or X ⊆ X̃),

0, otherwise,
(3.9)

where the relation Z ⊆W means:

1. The number of rows in Z is equal to the number of rows in W , and

2. Each row in Z is a subset of some row in W .

Thus, PEX accounted for cases in which the predicted SQL query output and the gold
standard output contained the same information but exhibited a different number of
columns. The PEX metric was then calculated as,

PEX =
∑

N
n=1 score(Xn, X̃n)

N
, (3.10)

where, again, N is the number of generated queries. Whereas EX and EM are strict
in their comparisons, PEX tolerated differences in the number of returned columns if
the data in one result set was contained within the other. This allowed for the capture
of partially correct SQL that met most of the gold standard SQL requirements. For
example, the two SQL queries in Appendix A.3 are different in terms of their output
and SQL structure, but the data in the output of the first is contained within the output
of the second. Therefore, these two SQL queries would be counted as partially accurate.

By combining these metrics (SER, NER, EX, EM, and PEX) I obtained a holistic view
of both the robustness and accuracy of the generated SQL queries. I used these metrics
to track and compare the performances of all explored methods.
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3.3 Selected Large Language Models

To investigate text-to-SQL methods that utilise Large Language Models (LLMs), I first
needed to choose a set of LLMs to research. With £500 worth of monthly credit from
the University for accessing the OpenAI API, I experimented with a range of LLMs. I
began by evaluating the following models:

o3-mini, o1, o1-mini, gpt-4o, gpt-4o-mini, gpt-4-turbo, gpt-4, gpt-3.5-turbo.

As the project progressed, I refined my selection, based on the key factors (cost, response
time, performance, and usability) mentioned in Chapter 1. By considering these key
factors, I was able to identify the most suitable LLM for my final zero-shot text-to-SQL
pipeline.

3.4 Zero-Shot Methods

3.4.1 System Messages

As introduced in Chapter 2, the system message is the component of the prompt given
to the LLM that directs its behaviour. For the task of text-to-SQL, it was essential to
configure the system message so that the LLM was capable of consistently generating
SQL queries for the GtoPdb. Therefore, when generating SQL, I initialised the system
message as shown in Figure 3.1.

You are a system that converts natural language queries into PostgreSQL queries.
Here is the schema of the Guide to Pharmacology database; · · ·

Figure 3.1: Beginning of the system message used for generating SQL queries for the
GtoPdb. The ellipsis (· · · ) represents the GtoPdb schema.

By specifying the LLM’s role and providing the necessary schema information, I
instantiated the LLM towards producing SQL queries that were both syntactically and
semantically aligned with the GtoPdb. Notably, to ensure a controlled experiment
the system message was reinitialised every time an SQL query was generated. To
determine the best way to deliver the schema information within the system message, I
explored multiple approaches. Based on relevant literature, these variations in schema
representation (all are visualised in Figure 3.2) are defined as follows:

Text (ST ): This representation, used in [26, 27], is the most rudimentary and shows the
entire database schema in plain text. Quite simply, all the tables and columns within
the database are listed without explicitly defining the roles (table or column) of any
database component. Consequently, the LLM must infer the schema structure on its
own when generating an SQL query.

Basic (SB): Inspired by previous work [24, 26, 25], this straightforward design extends
the Text representation (ST ) by structuring the schema to show the LLM the database
components by defining the tables and columns. However, this representation omits
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details such as data types and primary/foreign key relationships. As a result, the LLM
must deduce these details independently.

OpenAI Suggested (SO): Based on OpenAI’s prompt examples1 (and evaluated in
[26, 25]), this schema representation presents the entire database schema by giving the
LLM the ‘CREATE TABLE’ statements for every table in the database, thus providing
the LLM with all information about column types, primary keys, and foreign keys.

OpenAI Suggested (No Primary/Foreign Key Information) (SON): This version is
identical to the OpenAI suggested schema representation but omits primary and foreign
key details. Consequently, the LLM must infer these relationships on its own.

Text representation (ST ):
accessory protein: object id, full name
· · · xenobiotic expression refs: xenobiotic expression id, reference id

Basic representation (SB):
Table: accessory protein, columns: (object id, full name)
· · ·
Table: xenobiotic expression refs, columns: (xenobiotic expression id, refer-
ence id)

OpenAI suggested representation (SO):
CREATE TABLE accessory protein (

object id int4 NOT NULL,
full name varchar(1000) NULL,
CONSTRAINT accessory protein pk PRIMARY KEY (object id),
CONSTRAINT object accessory protein fk FOREIGN KEY (object id)
REFERENCES “object”(object id)

);
· · ·

OpenAI suggested representation (without PK/FK) (SON):
CREATE TABLE accessory protein (

object id int4 NOT NULL,
full name varchar(1000) NULL

);
· · ·

Figure 3.2: Visualisation of each schema representation (Text ST , Basic SB, OpenAI
SO and OpenAI without PK/FK information SON) used within the system messages for
generating SQL queries. The ellipsis (· · · ) represents missing schema information.

To create both ST and SB system messages, I crafted the SQL queries shown in Appendix
B.1 and B.2, respectively. For the remaining system messages (SO and SON), I obtained

1OpenAI’s text-to-SQL suggested system message

https://platform.openai.com/docs/examples/default-sql-translate
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the Data Definition Language (DDL) file containing the syntax for creating tables.
I then applied regular expressions to the DDL file to extract the ‘CREATE TABLE’
statements required for both prompts. For SO, I extracted the complete ‘CREATE
TABLE’ statements, including all column definitions, constraints, and comments. For
SON , I modified the extraction to exclude primary and foreign key information, ensuring
that only the essential schema details were included without relational constraints.

3.4.2 Schema-linking

In addition to the system messages defined previously, I will now introduce the concept
of schema-linking [38, 40, 41, 24], a popular text-to-SQL approach that aims to reduce
the amount of schema information used when generating an SQL query for a given NL
question. This ensured that the LLM was given only a concise subset of the GtoPdb
schema when generating an SQL query; refer to Figure 3.3 for an example of the basic
schema representation when schema-linking was applied. Appendix C.1 illustrates the
other system messages (ST ,SO,SON) before and after schema-linking.

Figure 3.3: Visualisation of the Basic schema representation (SB) before and after
schema-linking. The ellipsis (· · · ) in the box (on the left) represents missing schema
information.

To perform schema-linking, a separate invocation of the LLM (tailored towards identi-
fying only relevant schema information) is used. Prior to generating an SQL query for
a given NL question, the LLM is asked to identify the schema components it believes
are relevant to the NL question. Once these components are determined, they are
extracted and used to form a concise, focused schema representation for use within the
SQL generating system message. Figure 3.4 outlines the roadmap for the multi-table
schema-linking approach defined in due course.

For this research, I considered several schema-linking approaches from relevant litera-
ture which utilised LLM-based strategies to perform schema-linking. Notably, these
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Figure 3.4: High-level roadmap of multi-table schema-linking (SLMT ). The blue steps
denote the user input and output, the LLM required steps are highlighted in green, and
the steps in red are those involving the database schema information.

schema-linking methods achieved solid performance on the BIRD benchmark [7], moti-
vating the use of similar methods in this research. Within all schema-linking approaches,
I used a straightforward version of Chain-of-Thought (CoT) prompting [17] whereby
the LLM was asked to explain its reasoning step-by-step, an approach used to help
the LLMs (such as gpt-4o) that lack automatic reasoning capabilities. The LLM then
articulated its intermediate reasoning steps, much like a human would explain their
thought process, rather than simply providing one final answer. These schema-linking
methods can be defined as follows:

Single-column Schema-linking (SLC): Inspired by [40], this approach makes the LLM
evaluate each column in the database independently, without considering additional
contextual information from the rest of the schema (see Appendix C.2 for the system
message). The LLM then determines if the column could be relevant to the NL question.

Table-to-column Schema-linking (SLTC): As used in [40, 41, 24], this two-step
process first prompts the LLM to identify the tables relevant to the NL question (see
Appendix C.3 for the system message). In the second step, the LLM is asked to specify
which columns within those tables are pertinent (see Appendix C.4).

Multi-table Schema-linking (SLMT ): This method corresponds to the first step of
SLTC (used in [40, 41, 24]), where the LLM determines the relevant tables using the
system message shown in Appendix C.3. Unlike SLTC, it does not filter down to specific
columns, leaving all columns in each identified table available for consideration.

To implement each of the schema-linking methods, I deconstructed the GtoPdb schema
information into an accessible format so that it could be shortened using only relevant
schema information. To do this, I parsed the GtoPdb schema information into appro-
priate JSON formatting (shown in Appendix C.5). With the schema information being
accessible in this JSON format, I was able to design a system that effectively rebuilt
each system message using only relevant schema information identified through each
researched schema-linking method.

3.4.3 Self-correction

Next, I considered self-correction [24, 41, 42, 43, 44], a technique that has a similar
workflow to Retrieval-Augmented Generation (RAG) [45, 46]. Self-correction involved
improving the quality of generated SQL queries by giving the LLM an opportunity to
revise its output in response to errors. Figure 3.5 shows how self-correction enables
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Figure 3.5: Visualisation of the self-correction process when a user asks the LLM for an
SQL query. The LLM’s initial SQL query is ran on the GtoPdb and if there is an error the
LLM can use this information to output an improved response.

the LLM to refine its generated SQL queries using SQL-error feedback. Thus, when
given an NL question via the user message and the corresponding database schema
(either in full or reduced form via schema-linking) through the system message, the
LLM first produces an initial SQL query that is executed on the database. If an error
occurs, the user message is augmented with the NL question, the initial SQL query, and
the error message while the system message remains unchanged. With this enriched
user message, the LLM then corrects its query, and the revised SQL query becomes the
final output. For this research, I considered two forms of self-correction:

Syntax Correction: Used when the LLM outputted an SQL query that could not be
executed on the GtoPdb because it was syntactically incorrect. In this scenario, the
LLM is therefore given the corresponding error message (and possibly a hint) when
the SQL query is executed on the database. Using this information, the LLM revises
its SQL query in hopes of producing a syntactically sound one. Figure 3.6 shows the
augmented user message when using syntax correction.

Empty Output Correction: This approach was utilised when the LLM produced an
SQL query that could be executed on the GtoPdb but produced no output. Thus, the
LLM must revise its query to try to generate an SQL that does produce data output.
Figure 3.7 shows the augmented user message used for empty output correction.

You were asked to generate an SQL query for the natural language question:
{nl query}. You previously generated the following SQL query: {sql query}
which has the following error: {error message}. Please correct the query

Figure 3.6: The augmented user message when using syntax correction. The LLM is
given the SQL query it generated (blue), the NL question which it was given (green) and
the error message of the generated SQL query when executed on the GtoPdb (red).
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You were asked to generate an SQL query for the natural language question:
{nl query}. You previously generated the following SQL query: {sql query}
When executed on the Guide to Pharmacology database the query was syntacti-
cally correct but the output was empty, please provide the corrected SQL query.

Figure 3.7: The augmented user message when using empty output correction. The
LLM is given the SQL query it generated (blue), the NL question which it was given
(green), and it is told that there was no data output when the SQL was executed on the
database.

Note that these methods are nestable. In example, after applying self-correction to
repair a syntactically incorrect query so that it executes successfully, the query may still
return an empty result. In such cases, empty output correction can be applied to refine
the query in hopes of generating a non-empty output.

3.4.4 Self-validation

For the proposed self-validation, when the LLM generated an executable SQL query
that returned non-empty results, it was given a preview of the output, specifically the
first three rows. Based on this information, the LLM was then able to evaluate whether
the SQL query adequately answered the NL question, thus deciding whether to retain
the original SQL query or revise it. The workflow visualisation of self-validation is
identical to that of self-correction (seen in Figure 3.5), except that after the initial
generated SQL was executed on the GtoPdb, the LLM was provided with a preview of
the output rather than error information (see Appendix D for self-validation workflow).
Figure 3.8 displays the augmented user message I used for self-validation. Again, self-
validation was nestable, so it can be applied on top of other methods (e.g. self-correction
approaches).

You were asked to generate an SQL query for the natural language question:
{nl query}. You previously generated the following SQL query: {sql query}.
When executed on the database the first 3 rows of the output were: {output}.
Use this information to assess whether your query is correct. If you believe your
query is correct, please provide the same SQL query. If you believe your query
is incorrect, please provide the corrected SQL query.

Figure 3.8: The augmented user message for self-validation. The LLM is given the SQL
query it generated (blue), the NL question which it was given (green) and the output of
its generated SQL query (red).
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3.5 Few-shot Learning Methods

Up to this point, I have defined only zero-shot prompting methods, where the LLM
generates SQL queries without being provided with any domain-specific examples
(NL-SQL pairs from the GtoPdb). However, prior research has demonstrated that
incorporating a small number of NL-SQL example pairs (few-shot learning [8, 28])
significantly enhances the quality of generated SQL queries [27, 26, 24].

Like some zero-shot methods, few-shot learning is implemented by augmenting the
user message with a selection of NL-SQL example pairs. In practice, if the LLM is
given one example, this is referred to as 1-shot learning; if provided with two examples,
it is 2-shot learning. More generally, this approach can be denoted as k-shot learning,
where k represents an arbitrary integer number of examples. For this project, I adopted
the user message augmentation given in [27], which can be seen in Figure 3.9. This
representation appends NL-SQL example pairs after the NL question, providing the
LLM with in-context examples from which it can infer patterns and understand the
GtoPdb schema better, thus improving the calibre of the generated SQL queries.

{nl query}
Some examples include;
{nl query 1}
{sql query 1}
· · ·
{nl query k}
{sql query k}

Figure 3.9: User message augmentation for k-shot learning where k NL-SQL examples
are listed (for each example pair the SQL is in blue and the NL example is in red) after
the NL question (green). The ellipsis (· · · ) represents NL-SQL example pairs not shown.

3.5.1 Criteria For Picking Few-shot Examples

Selecting appropriate few-shot examples was very important, since giving the LLM
examples relevant to the posed NL question allowed the LLM to see similar NL-SQL
pairs. For this research, I considered the following criteria when choosing NL-SQL
examples:

Random Examples: Serving as a baseline for all few-shot learning methods, this
approach gives the LLM a set of NL-SQL example pairs chosen at random. This
method, evaluated in [27, 47, 26, 48], describes the most basic version of few-shot
learning in hopes of understanding its impact on SQL generation.

Random Examples With Different Difficulties: Similar to the random examples
approach, this method provides another baseline by choosing one random example from
each difficulty category (easy, easy-moderate, moderate-hard, hard). This ensures that
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the LLM is exposed to a diverse range of query complexities, providing exactly four
examples (4-shot).

Similar SQL Examples: Unlike previous methods, the LLM first generates an initial
SQL query as an answer to a given NL question. Using this initially generated SQL
query, NL-SQL examples are chosen based on each SQL query’s similarity to the
initially generated SQL query [26, 47]. Thus, the LLM focuses on examples of NL-SQL
example pairs with a similar SQL structure.

Similar NL Question Examples: In this setting, NL-SQL example pairs are chosen
based on the NL questions and their similarity to the NL question asked of the LLM.
Therefore, the LLM can learn from NL-SQL example pairs relevant to the NL question
[48, 47].

3.5.2 Ranking Similarity

Both the similar SQL and similar NL question examples require the LLM to be given
few-shot examples based on their relevance to an NL question. To do this, I invoked
scikit-learn’s [49, 50] TfidfVectorizer2, which converts text into TF-IDF (Term
Frequency-Inverse Document Frequency) features, a common NLP technique origi-
nating from [51, 52]. These features serve as numerical representations that capture
the importance of words in a string (e.g. NL question in the held-out set) relative to
a collection of several strings (e.g. NL questions in the training set). To compute the
similarity between these vectorised representations, I used the cosine similarity score
which can be calculated for two vectors x and y as,

similarity(x,y) =
x ·y

||x|| ||y||
. (3.11)

Here, x ·y denotes the dot product of the vectors, ||x|| and ||y|| denotes their respective
Euclidean norms. By computing the cosine similarity scores [53] between a held-out
example (either the NL query itself or an initially generated SQL) and each training
example, the training set was ranked by its similarity to the held-out example. The
top-k examples from this ranking were then selected for use in the few-shot context,
corresponding to k-shot learning.

2TfidfVectorizer documentation

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
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Text-to-SQL Pipeline

This chapter focuses on constructing an effective zero-shot text-to-SQL pipeline by
investigating each of the zero-shot methods outlined in Chapter 3. By evaluating each
approach on the training set, I developed a text-to-SQL pipeline suitable for evaluation
(combined with few-shot learning) on the held-out set. I will therefore answer the
following research questions:

• Which database schema representation is the best?

• Does the proposed self-validation have any effect on producing SQL queries?

• Which LLM is the most suitable?

I refined my text-to-SQL pipeline by evaluating and selecting each component based on
the key factors outlined in Chapter 1. I began by implementing each system message
defined earlier, followed by the implementation of each schema-linking method. Next, I
incorporated the method of self-correction, and investigated the proposed self-validation
method.

4.1 System Message Exploration

The LLM’s system message needs to be populated with information so that it is able to
produce coherent SQL for the GtoPdb. Therefore, this chapter begins by investigating
each of the system messages (defined in Chapter 3) on the training set NL questions.

4.1.1 Comparative Analysis

I configured all chosen OpenAI LLMs with each of the system messages then I gave
the LLM every training set NL question through the user message, making sure to
reinitialise the system message each time. Table 4.1 reports the EX (generated SQL
output matches the gold standard SQL output), PEX (generated SQL output matches the
gold standard SQL output but has extra/missing columns), and SER (generated SQL can
be executed) metrics for each LLM on the training set. It is important to note that, at the
time of investigation, the OpenAI API did not support system message functionality for

21
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the o1-mini model. As a workaround, the o1-mini model received the system message
as part of the user message, with the NL question appended at the end. Additionally,
entries marked as ‘n/a’ indicate that certain models did not have sufficient input token
capacity to utilise the full system message.

LLM ST SB SO SON

EX PEX SER EX PEX SER EX PEX SER EX PEX SER

o3-mini 5.88 15.69 90.20 5.88 15.69 88.24 5.88 11.76 98.04 9.80 17.65 100
o1 5.88 15.69 96.08 3.92 11.76 98.04 7.84 25.49 100 5.88 17.65 96.08
o1-mini* 3.92 9.80 76.47 3.92 11.76 82.35 1.96 9.80 92.16 1.96 13.73 92.16
gpt-4o 0.00 11.76 82.35 5.88 13.73 82.35 3.92 11.76 92.16 5.88 15.69 94.12
gpt-4o-mini 1.96 7.84 54.90 1.96 7.84 58.82 0.00 5.88 60.78 1.96 5.88 70.59
gpt-4-turbo 1.96 7.84 76.47 0.00 3.92 72.55 1.96 7.84 70.59 3.92 11.76 86.27
gpt-4 0.00 5.88 76.47 0.00 7.84 72.55 n/a n/a n/a n/a n/a n/a
gpt-3.5-turbo 1.96 5.88 47.06 1.96 5.88 52.94 n/a n/a n/a 0.00 1.96 60.78

Table 4.1: The PEX, EX, and SER scores on the training set for each investigated system
message. The asterisk on o1-mini* indicates the workaround for system message
support, while ‘n/a’ denotes insufficient input token capacity.

Table 4.1 shows that the highest scores for all evaluation metrics occurred when using
reasoning models (o1 and o3-mini) combined with either SO or SON . For instance, the o1
model when using SO obtained the highest PEX score (25.49%) but was outperformed
on EX by o3-mini when leveraging SON (9.80%). This result was unsurprising as the
reasoning models are regarded as the most powerful OpenAI LLMs and both SO and
SON contained much more information than all other system messages.

Figure 4.1 helps analyse the robustness of each experiment by displaying the SER
scores. Among the evaluated system messages, SO with the o1 model and SON with the
brand new o3-mini model demonstrated the highest SER scores. Both achieved a 100%
SER score, meaning they successfully generated an executable SQL query for every
NL question in the training set. When considering all LLMs, both SO and SON were the
most syntactically accurate system messages (apart from when used by gpt-4-turbo)
which is an expected result, since both SO and SON contained the syntactic information
of each table in the GtoPdb. Interestingly, SON took the mantle ahead of SO as SON
outperformed SO on every LLM (apart from o1). This result seemed counter-intuitive,
since SO contained all the constraints as well as the primary/foreign key information,
which was missing from SON . Thus, suggesting that the primary/foreign key information
did not always aid the LLMs when producing syntactically executable queries.

Although not reported in Table 4.1, there was never a single instance of any generated
query being able to yield an exact match to its gold standard counterpart in the training
set (EM was 0 for all). In some cases, the LLM was able to produce an almost identical
SQL query but lacked a small difference, making it fail the exact match test. In contrast,
the same system messages combined with either gpt-4 or gpt-3.5-turbo were able to
achieve an EM of at least 40% [27] on the Spider 1.0 benchmark dataset [6]. This
suggests that the dataset of GtoPdb NL-SQL pairs was more complex than those used
within benchmark datasets.
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Figure 4.1: The SER scores for all LLMs (apart from gpt-4 and gpt-3.5-turbo) when using
each system message on the training set. Error bars indicate 95% confidence intervals
computed using a Beta distribution (Jeffreys prior [54]), where for each proportion p
out of n trials, the posterior parameters a = np+0.5 and b = n(1− p)+0.5 derive the
interval.

4.1.2 Refining LLM Selection

For the remainder of the research, I decided to narrow the focus to a smaller subset of
LLMs – o3-mini, o1, o1-mini, gpt-4o, and gpt-4o-mini. This decision was based on
both performance and cost considerations. Firstly, according to OpenAI’s recommen-
dations, gpt-4o-mini should replace gpt-3.5-turbo, as it offers better performance at
a lower cost1. Additionally, the initial findings (see Table 4.1) indicated that gpt-4o
consistently outperformed both gpt-4 and gpt-4-turbo. Beyond performance, gpt-4o
was significantly more cost-effective than these models. As a result, continuing to inves-
tigate gpt-4 and gpt-4-turbo was not justifiable. By narrowing the focus to o3-mini, o1,
o1-mini, gpt-4o, and gpt-4o-mini, it ensured that my approach remained appropriate
for the duration of the investigation.

4.2 Cost Efficiency and Token Optimisation

Although the system messages produced promising results, they introduced a big
problem with affordability, which is because, when using the API, OpenAI charges
based on the number of tokens used within each prompt. Since the system messages
included every table (206 total) and column (1,571 total) in the database, the resulting
prompts were extremely lengthy (especially for SON and SO). This excessive token count
not only increased costs (the cost to produce the data in Table 4.1 was roughly £300

1OpenAI’s summary of their models

https://platform.openai.com/docs/models
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alone) but also rendered several models (e.g. the most expensive model o1) unaffordable
for the remainder of the project. To address this issue, I implemented schema-linking
which involves dynamically associating only the parts of the schema that are relevant
to the given NL question. By presenting the LLM with a concise and context-specific
system message, the token count of the system message was substantially reduced,
thereby lowering costs and making the system message sustainable throughout the
remainder of this research.

The schema-linking methods required the LLM to produce output in a structured
JSON format. While all the selected OpenAI LLMs supported the response format
argument via the API, forcing the LLM to output in JSON format, o1-mini did not [19].
As a result, o1-mini lacked the usability needed to consistently generate output in the
required format, making its results impractical to extract. Therefore, I restricted the
investigation to o3-mini, o1, gpt-4o, and gpt-4o-mini.

4.2.1 Single-Column Schema-linking

Firstly, I implemented the single-column schema-linking (SLC) experiment but quickly
discovered that it was not feasible due to a massive wait time. This extreme time
consumption can be attributed to the process of independently evaluating every single
column in the database. The independent evaluation meant that the API had to be called
1,571 times for every NL question in the training set. The API calls took too long in
this scenario to be considered a viable option; therefore, I regarded the single-column
schema-linking method as impractical for this research. If deploying the LLM via a
GPU or through some other high-compute process, it may be possible to investigate
single-column schema-linking, but here, it was not feasible.

4.2.2 Multi-table Schema-linking

In the multi-table schema-linking approach (SLMT ), the LLM was first prompted, prior
to generating an SQL query, to identify which tables in the database were relevant to a
given NL question. Once the relevant tables were identified, my pipeline automatically
rebuilt each system message (ST , SB, SO, and SON) by extracting only the schema
information corresponding to those tables. This new system message, containing only
the pertinent table details, was then provided to the LLM to generate an SQL query that
addresses the NL question. The results of this experiment are shown in Table 4.2.

LLM ST SB SO SON

EX PEX SER EX PEX SER EX PEX SER EX PEX SER

o3-mini 1.96 7.84 70.59 0.00 7.84 62.75 5.88 13.73 82.35 0.00 9.80 86.27
o1 5.88 17.65 88.24 7.84 13.73 90.20 1.96 13.73 98.04 3.92 17.65 100
gpt-4o 1.96 5.88 66.67 1.96 5.88 70.59 1.96 9.80 88.24 1.96 7.84 90.20
gpt-4o-mini 0.00 1.96 62.75 0.00 1.96 64.71 1.96 5.88 82.35 1.96 5.88 80.39

Table 4.2: The PEX, EX, and SER scores on the training set for each investigated system
message when using multi-table schema-linking (SLMT ).
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4.2.3 Table-to-column Schema-linking

Building upon the multi-table schema-linking approach (SLMT ), the table-to-column
schema-linking method (SLTC) introduced an additional refinement step. In SLTC, after
the LLM identified the relevant tables for a given NL query, it was further prompted to
determine which specific columns within those tables were also relevant. The schema-
linking pipeline step then reconstructed each system message (ST , SB, SO, and SON)
to include only the relevant tables and identified columns. The results for the SLTC
experiment are presented in Table 4.3.

LLM ST SB SO SON

EX PEX SER EX PEX SER EX PEX SER EX PEX SER

o3-mini 0.00 3.92 35.49 0.00 3.92 35.29 3.92 11.76 80.39 1.96 5.88 76.47
o1 3.92 11.76 68.63 5.88 11.76 68.63 5.88 13.73 94.12 3.92 9.80 84.31
gpt-4o 1.96 1.96 43.14 0.00 3.92 45.10 1.96 5.88 78.43 1.96 5.88 72.55
gpt-4o-mini 0.00 1.96 45.10 0.00 3.92 43.14 0.00 1.96 64.17 0.00 3.92 62.75

Table 4.3: The PEX, EX, and SER scores on the training set for each investigated system
message when using table-to-column schema-linking (SLTC).

4.2.4 Comparative Analysis

Before the comparison of the schema-linking results begins, it is important to acknowl-
edge the decrease in performance when considering the previous system message results
given in Table 4.1. Across almost all schema-linking experiments, the reported results
(seen in Table 4.2 and 4.3) fell short of the scores observed when the entire schema was
given to the LLM (seen in Table 4.1). This highlighted the LLM’s inability to select the
correct schema information when attempting to refine the system messages. However,
since the massive system messages were deemed unaffordable for the remainder of this
research, schema-linking remained the preferred approach.

Figure 4.2a reports the SER scores for both schema-linking methods; this indicated
that SLMT consistently outperformed SLTC across all instances. Therefore, the extra
refinement step of narrowing down to relevant columns led to a higher rate of syn-
tactically incorrect queries. Notably, the o3-mini model suffered a serious decrease
when generating syntactically correct SQL queries after the extra refinement step was
added. Moreover, Figure 4.2b displays the PEX scores for each schema-linking method,
revealing the same trend as Figure 4.2a, that SLMT performed on par with or surpassed
SLTC in nearly all experiments. The only time SLTC outperformed SLMT was when gpt-
4o-mini was combined with the SB system message; however, the error bars suggested
that this may not be statistically significant.

These findings agreed that SLMT significantly outperformed SLTC. Also, SLTC required
an additional step (identifying columns for each detected table), so it inherently took
longer than SLMT . Given these findings, SLMT was adopted into the pipeline for the
remainder of the research.
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(a) SER scores.

(b) PEX scores.

Figure 4.2: SER and PEX scores for both schema-linking approaches on the training
set. Error bars indicate 95% confidence intervals computed using a Beta distribution
(Jeffreys prior [54]), where for each proportion p out of n trials the posterior parameters
a = np+0.5 and b = n(1− p)+0.5 were used to derive the interval.

4.2.5 Decrease in Token Count

The original schema representations included information on every table and column in
the GtoPdb, resulting in extremely high token counts (e.g. over 20,000 tokens for SO
which can be seen in Appendix C.6). Figure 4.3 displays the reduction in token usage
(on the training set) across all system messages before and after SLMT was used, using
a logarithmic scale to effectively show the magnitude of differences in token count.
These token counts were computed using the tiktoken package from OpenAI [55],
ensuring consistent tokenisation across all system messages.

The token counts differences indicated that the SLMT schema-linking significantly
reduced token counts across all system messages, with reductions approaching an order
of magnitude (e.g. a decrease from approximately 10,000 to 1,000 or similar). The
relatively small confidence intervals also suggested that the reduction was consistent
across different system messages. In particular, the token counts of the much larger
system messages (SO and SON) were both reduced to well below the full token count of
the two smallest system messages (SB and ST ).
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Figure 4.3: Difference in token count before and after SLMT on the training set. The
token count is represented in log scale, and the error bars represent the 95% confidence
intervals for the average schema-linked token counts. The error bars were computed by
multiplying the standard error of the mean by the appropriate t-distribution critical value
[56].

4.2.6 Time to Respond

While schema-linking managed to address affordability challenges, it introduced a
multi-stage prompting process. Firstly, the LLM was prompted to identify relevant
schema information. It was then prompted again to generate the corresponding SQL
query. This two-step process increased the overall response time, as it required two
separate LLM invocations. Figure 4.4 illustrates the average response times for each
LLM across all four system messages when outputting an SQL query using multi-table
schema-linking (SLMT ).

Despite achieving some of the highest scores across all evaluation metrics, the o1

Figure 4.4: Average response time (in seconds) for each LLM to complete SLMT across
all system messages. Error bars represent 95% confidence intervals, computed as 1.96
times the standard error of the mean [57] for the response times.
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reasoning model needed, on average, 35.03 seconds to produce an SQL query when
using SLMT . This response time was considerably longer than all other LLMs, meaning
a user would need to wait over half a minute for an SQL response—a response time
I have deemed unacceptable. Taking these factors into account, the o1 model was
excluded from further investigation. Its extended response time rendered it impractical
for text-to-SQL, and even after addressing the affordability issue, the o1 model remained
significantly more expensive than all other investigated LLMs (six times more expensive
than the next most expensive model gpt-4o as of April 2025).

4.3 Improving Robustness

Considering all previous experiments, it is apparent that several of the LLMs generated
syntactically incorrect SQL queries (SER scores were not always 100%). Since these
SQL queries cannot be executed, their intended outputs cannot be evaluated to determine
if they are correct, not to mention if they possibly produced an empty output. Therefore,
to improve the robustness (the SER and NER scores) of the generated queries, I
implemented self-correction [24, 41, 42, 43, 44].

4.3.1 Syntax Correction

The LLM was given the ability to see the erroneous message reported back from
an invalid SQL query it generated. This feedback not only indicated that the SQL
query was incorrect but also offered a hint as to why it failed. Using this information,
the LLM was allowed an opportunity to revise and regenerate the SQL query. To
implement syntax correction, it was applied upon the SQL queries produced by the
selected schema-linking method (SLMT ). Each LLM was allowed to correct any query
it initially generated incorrectly (from results shown in Table 4.2). To maintain schema
consistency, the shortened system message, produced from SLMT , was reused by the
LLM when generating its revised SQL query. Table 4.4 shows the results of syntax
correction.

LLM
ST SB SO SON

EX PEX SER EX PEX SER EX PEX SER EX PEX SER

o3-mini 1.96 7.84 86.27 0.00 7.84 82.35 5.88 13.73 88.24 0.00 9.80 94.12
gpt-4o 1.96 5.88 84.31 3.92 7.84 90.20 3.92 11.76 98.04 1.96 7.84 98.04
gpt-4o-mini 0.00 1.96 84.31 0.00 1.96 80.39 1.96 5.88 92.16 1.96 5.88 88.24

Table 4.4: The EX, PEX and SER scores when using SLMT + syntax correction on the
training set.

To assess the impact of syntax correction, Figure 4.5 displays the SER scores from
the SLMT experiment before (seen in Table 4.2) and after applying syntax correction
(seen in Table 4.4). This showed that syntax correction had an instrumental impact on
SER: across all LLMs and system messages, the SER scores improved significantly,
indicating that the LLMs now generated a higher proportion of syntactically sound
SQL queries. In contrast, the improvements in PEX and EX scores were negligible. In
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Figure 4.5: The effect of syntax correction on SER score when using SLMT + syntax
correction on the training set. Error bars indicate 95% confidence intervals computed
using a Beta distribution (Jeffreys prior [54]), where for each proportion p out of n trials,
the posterior parameters a = np+0.5 and b = n(1− p)+0.5 were used to derive the
interval.

fact, when comparing the multi-table schema-linking results before and after syntax
correction (Table 4.2 and Table 4.4), only one notable improvement was observed,
specifically the gpt-4o model when using the SB system message, which showed a
1.96% increase in both PEX and EX (insignificant as it fell within the margin of error).
This suggested that while syntax correction effectively enhanced the robustness of
SQL queries, it did not substantially improve the accuracy of the generated SQL,
a result that could be attributed to the LLM’s inability to select the correct schema
information when it completed the initial schema-linking step. Nevertheless, because
syntax correction significantly improved the robustness of the generated SQL queries, it
was incorporated into the pipeline. Furthermore, Table 4.4 indicated that the highest
scores across all evaluation metrics occurred when using both the SO and SON system
messages. Therefore, for the remainder of the research, subsequent methods focused
exclusively on these two system messages.

4.3.2 Empty Output Correction

With significantly improved SER scores, it is crucial to acknowledge that several of the
generated SQL queries, although they executed, produced no output. Table 4.5 shows
the Non-empty Execution Rate (NER) scores for the previous experiment of SLMT with
syntax correction applied. While the SER (seen in Table 4.4) scores may have improved,

LLM SO SON
o3-mini 49.02 41.18
gpt-4o 41.18 45.10
gpt-4o-mini 41.18 33.33

Table 4.5: The NER scores for each LLM when using SLMT + syntax correction on the
training set.
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the percentage of SQL queries that actually produced data output remained low.

To improve this, the second self-correction phase, empty output correction, was im-
plemented, whereby if the output of a generated SQL query was empty, the LLM was
allowed to regenerate its response. The results of this experiment are reported in Table
4.6. While the accuracy metrics (EX and PEX) showed no improvement, the NER
scores generally either improved or remained consistent with previous results (seen in
Table 4.5). However, this benefit came with a trade-off as some SER scores decreased,
a reduction that must have occurred when the LLM re-generated an SQL query and, in
doing so, produced a syntactically incorrect one. Nevertheless, a query that produced a
non-empty output was considered more valuable than one that was merely syntactically
correct. Thus, the slight reduction in SER was deemed an acceptable trade-off for
achieving a higher NER, and so output correction was retained in the pipeline.

LLM SO SON

EX PEX SER NER EX PEX SER NER

o3-mini 5.88 13.73 84.31 52.94 0.00 9.80 83.35 41.18
gpt-4o 3.92 11.76 96.08 45.10 1.96 7.84 96.08 49.02
gpt-4o-mini 1.96 5.88 88.24 45.10 1.96 5.88 88.24 37.25

Table 4.6: The EX, PEX and SER results for each LLM when using SLMT + syntax
correction + empty output correction on the training set.

4.4 Self-validation

Having achieved a higher rate of SQL queries with a non-empty output, the proposed
self-validation was investigated. Self-validation provided the LLM with the (non-empty)
output of its previously generated SQL query along with the original NL question. Using
this output, the LLM revised its generated SQL to better answer the NL question. The
results of this experiment are given in Table 4.7.

LLM SO SON

EX PEX SER NER EX PEX SER NER

o3-mini 5.88 13.73 82.35 49.02 0.00 9.80 80.39 37.25
gpt-4o 3.92 11.76 96.08 45.10 1.96 7.84 94.12 45.10
gpt-4o-mini 1.96 5.88 86.27 43.14 1.96 5.88 88.24 33.33

Table 4.7: The EX, PEX, SER, and NER results when using SLMT + syntax correction +
empty output correction + self-validation on the training set.

Table 4.7 revealed that incorporating self-validation into the pipeline did not yield any
performance improvements; in fact, both the SER and NER scores decreased across
several instances. These results indicated that self-validation failed to improve the
performance of the text-to-SQL pipeline, and so, it was considered ineffective.
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4.5 Final Pipeline

In this research, various OpenAI LLMs and zero-shot prompting methods were system-
atically evaluated, refining the focus based on factors such as cost, time, accuracy, and
usability. Although significant progress was made in identifying effective strategies, a
single LLM and system message had not yet been selected for the final pipeline. To
resolve this, the final training set results (seen in Table 4.6) for the pipeline indicated
that the new o3-mini model, when paired with the OpenAI suggested system message
(SO), achieved the highest performance across the EX, PEX, and NER metrics. Conse-
quently, the final pipeline employed both the SO system message in combination with
the o3-mini model. It is also worth mentioning that the o3-mini not only outperformed
the next best LLM (gpt-4o) but was newer and cheaper. The final pipeline, in its entirety,
is displayed in Figure 4.6.

Figure 4.6: Visualisation of the final zero-shot pipeline discovered from exploring methods
on the training set. Distinct colours differentiate key components: blue cells represent
user steps, green cells indicate LLM-generated outputs, red cells correspond to GtoPdb-
related processes, and diamond-shaped cells denote binary decision points.
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Results

To evaluate the constructed text-to-SQL pipeline, it was tested on the held-out set while
invoking few-shot learning. As a reminder, few-shot learning is when the LLM is given
only a small number of NL-SQL example pairs from the training set. The text-to-SQL
pipeline was first evaluated under a zero-shot (no examples) scenario and then with the
few-shot learning strategies outlined in Chapter 3. Therefore, these experiments address
the following research questions:

• How important is few-shot learning compared to zero-shot learning?

• What is the most effective way of choosing examples for few-shot learning?

For each experiment, I chose to investigate one (1-shot), three (3-shot) and five (5-shot)
learning examples from the training set. The only other selection being a special case of
4-shot learning, where a diverse set of 4 examples of 4 different difficulties was chosen.
A visualisation of the process of combining few-shot learning within the pipeline is

Figure 5.1: The final Text-to-SQL pipeline with few-shot learning. The LLM uses training
set examples (highlighted in yellow) at each generation step to help identify relevant
schema information and also produce/correct SQL queries.

32
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shown in Figure 5.1. Unlike the zero-shot final pipeline (shown in Figure 4.6) this
displays the LLM (o3-mini) receiving NL-SQL examples at each generation stage.

5.1 Establishing Baseline Performances

5.1.1 Zero-shot

To establish a performance baseline for the text-to-SQL pipeline, I began by evaluating
the pipeline on the held-out set under a zero-shot scenario. In this scenario, the pipeline
produced SQL queries in the same way as on the training set, that is, without being
given any NL-SQL example pairs to aid its generation. This baseline evaluated the
pipeline’s pure ability to generate SQL on the held-out set and served as a reference
point when comparing the impact of few-shot learning.

Looking at Table 5.1, the results for the zero-shot experiment on the held-out set show
that the zero EM score was consistent with all previous experiments, where no generated
query was syntactically identical to the provided gold standard. More notably, the EX,
PEX, and NER scores were considerably lower than most experiments on the training
set. These differences could suggest that the held-out set contained more challenging
NL-SQL pairs than the training set. In contrast, the SER score was higher (93.33%)
than the same pipeline on the training set (84.31%) which suggested that, although
the SQL queries may not be very accurate and often lack an output, the pipeline was
able to produce a higher rate of syntactically correct SQL queries on the held-out
set. Nonetheless, these results established a solid zero-shot baseline for subsequent
comparisons with few-shot learning approaches.

LLM k-shot EM EX PEX SER NER

o3-mini 0-shot 0.00 0.00 3.33 93.33 40.00

Table 5.1: Results of all evaluation metrics when the final text-to-SQL pipeline was used
on the held-out set under a zero-shot scenario.

5.1.2 Few-shot

Following the zero-shot evaluation, a few-shot baseline was established by providing
the LLM with completely random in-context examples (from the training set) when
answering each NL question in the held-out set. Within this scenario, the LLM used the
fixed set of random NL-SQL pairs to aid its generation of SQL queries for the GtoPdb.
As shown in Figure 5.1, the LLM received these examples at every single step of the
pipeline. To ensure consistency, a hash code was generated for each NL question in the
held-out set. This hash code was then used to randomly order the training examples,
from which the top-k examples were selected. By doing so, the same set of NL-SQL
examples was consistently used throughout the pipeline, avoiding any extra unintended
few-shot examples that would have caused variation throughout each generation step.
The results for all random few-shot example experiments are presented in Table 5.2.
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LLM k-shot EM EX PEX SER NER

o3-mini 0-shot 0.00 0.00 3.33 93.33 40.00
o3-mini 1-shot 0.00 0.00 6.67 86.67 46.67
o3-mini 3-shot 0.00 3.33 16.67 96.67 53.33
o3-mini 5-shot 0.00 3.33 16.67 100.00 56.67
o3-mini 4-shot* 0.00 0.00 16.67 93.33 60.00

Table 5.2: Results of all evaluation metrics when the pipeline was tested on the held-out
set when choosing k random examples. The 4-shot scenario is denoted with an asterisk
(*) as it is a special case whereby the LLM received one random example from each
difficulty.

The results revealed a consistent trend of improvement as the number of few-shot
examples increased. Initially, the 1-shot example did not improve the scores much,
with even a slight decrease in SER when considering the 0-shot pipeline. However,
when moving from 1 to 3 examples, there was a significant increase across all metrics,
some of which were slightly improved on in the 5-shot scenario. When considering the
special 4-shot scenario, the LLM benefitted in terms of NER, possibly suggesting that
a diverse selection of random examples was better than choosing completely random
examples when it came to producing non-empty SQL.

5.2 Choosing Few-shot Examples

Building on the few-shot baseline, the two methods for selecting few-shot examples
from the training set were explored. In the first experiment, the selection of NL-SQL
examples was dictated by the similarity between an initially generated SQL query (based
on the held-out set NL question) and the SQL queries contained within the training
set. For the second experiment, NL-SQL examples were chosen from the training
set based on the similarity of the held-out set NL question when compared to the NL
questions from the training set. This investigation provided a suitable comparison for
the effectiveness of different selection criteria against the random few-shot examples
baseline, giving further understanding of how few-shot example choice influenced the
performance of the text-to-SQL pipeline.

5.2.1 Similar SQL Examples

To implement this experiment, an initial SQL query was generated for each NL question
in the held-out set using a preliminary pipeline stage that relied solely on SLMT schema-
linking. These initial SQL queries then served as references when the training set of
NL-SQL examples was ranked for each NL question in the held-out set. As described
in Chapter 3, the training set included a gold standard SQL query that answered its
corresponding NL question, but in some cases, an alternative gold standard SQL query
was also provided. When ranking the training set, the reference SQL query was
compared to both the primary and the alternative SQL queries. If the alternative SQL
query was more similar to the reference SQL query than the primary SQL query, then it
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was used in the ranking, and the primary SQL was disregarded (or vice versa). This
ensured that the LLM was not provided with the same NL example twice but with
two different SQL queries. For each NL question in the held-out set, the pipeline
was executed from the beginning with the top-k ranked NL-SQL examples (based
on the initial SQL generated for that held-out NL question) provided to the LLM at
each generation stage (visualised in Figure 5.1). Table 5.3 shows the results of this
experiment.

LLM k-shot EM EX PEX SER NER

o3-mini 0-shot 0.00 0.00 3.33 93.33 40.00
o3-mini 1-shot 0.00 6.67 20.00 96.67 46.67
o3-mini 3-shot 0.00 3.33 13.33 96.67 63.33
o3-mini 5-shot 0.00 3.33 13.33 100 80.00

Table 5.3: Results when deploying pipeline on the held-out set under the similar SQL
k-shot scenario.

The results showed that introducing just one similar SQL example was able to boost
the PEX score significantly, increasing it from 3.33% (0-shot) to 20%. The EX score
also increased from 0% to 6.67% which highlighted that one, well-chosen example was
able to aid the LLM in generating more accurate SQL queries. Also, when compared to
the random few-shot baseline (see Table 5.2), the 1-shot similar SQL example scenario
outperformed all k-shot examples on PEX and EX scores.

As the number of few-shot examples increased from 1-shot to 5-shot, both the SER and
NER scores improved. SER climbed from 96.67% (at 1-shot and 3-shot) to 100% at
5-shot, while NER increased from 46.67% to 80%. This indicated that more few-shot
examples had a positive impact on producing robust SQL queries. However, while more
examples benefitted SER and NER, there was a trade-off for accuracy. The EX and
PEX metrics peaked at 1-shot and then declined when moving to 3-shot and 5-shot,
with the PEX score falling below even the few-shot baseline performance (seen in
Table 5.2) reported for its counterpart k-shot examples. This suggested that the initial
SQL generation may have led to a poor ranking of the training set examples, likely due
to the initially generated SQL being inaccurate. Thus, as k increased, the likelihood of
selecting examples that were not relevant to the NL question also increased, possibly
confusing the LLM into generating inaccurate SQL.

5.2.2 Similar NL Question Examples

For this experiment, the training set was ranked based solely on the similarity between
all training set NL questions and the held-out set NL question. Just as in previous
experiments, the top-k NL-SQL example pairs were then given to the LLM at each stage
of the pipeline. The results for the similar NL experiment are displayed in Table 5.4.

Table 5.4 shows a non-zero instance of the most stringent metric EM, which was the
first time this had occurred throughout all of the research. As a reminder, the EM
metric reports whether the generated SQL query is syntactically identical to the gold
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LLM k-shot EM EX PEX SER NER

o3-mini 0-shot 0.00 0.00 3.33 93.33 40.00
o3-mini 1-shot 0.00 6.67 16.67 100 66.67
o3-mini 3-shot 3.33 6.67 20.00 100 63.33
o3-mini 5-shot 0.00 10.00 30.00 100 83.33

Table 5.4: All evaluation metric results when the pipeline was tested on the held-out set
under the similar NL question k-shot scenario.

standard SQL query. Therefore, this research officially recorded an instance of an LLM
mimicking the exact syntactic style of a gold standard SQL query. Interestingly, this
non-zero EM score was reported in the 3-shot scenario but not in the 5-shot scenario,
an outcome that may be attributed to the black-box nature of the LLM.

A general trend of improvement was evident across all evaluation metrics as the number
of k examples increased, the only exception being the aforementioned EM and a small
dip in NER (from 66.67% to 63.33%) when k increased from 1 to 3. The SER score
particularly benefitted from NL similar examples as it achieved a perfect 100% for
all experiments, even in the single example (1-shot) scenario. Overall, the 5-shot
configuration reported the highest EX (10%), PEX (30%) and NER (83.33%) scores
in this study. Therefore, indicating that incorporating a broad number of NL-SQL
examples based on NL question similarity gave substantial context, which in turn led to
improved SQL query generation.

5.3 Summary

Through the comparison of a zero-shot baseline against various few-shot configurations,
I discovered that few-shot learning was very important for generating SQL queries on
the GtoPdb. In terms of accuracy, Figure 5.2a summarises the scores of the proposed
PEX accuracy metric across all few-shot learning scenarios. Figure 5.2a shows that
introducing few-shot examples from the training set, even when chosen at random, led
to improvements in PEX. When few-shot examples were selected based on similarity,
the benefits improved even more. The similar SQL examples experiment showed that
a single well-chosen example could substantially boost PEX scores, although adding
more examples resulted in a reduction in accuracy. Meanwhile, the similar NL question
examples strategy consistently improved PEX as k increased, resulting in the 5-shot
configuration yielding the highest PEX scores observed.

Figure 5.2b shows the NER scores for all few-shot experiments, whereby improvements
in robustness were apparent when invoking few-shot learning. Interestingly, all few-
shot configurations outperformed the zero-shot baseline, and both criteria for choosing
few-shot examples outperformed the baseline few-shot NER scores. The improvements
in NER also exhibited the same trend of improvement for each experiment, as that of
PEX, which showed a consistent increase as k increased.

These results highlight the importance of both the quantity and the selection strategy
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of few-shot examples, indicating that few-shot learning is extremely important for
improving the quality of generated SQL. While increasing the number of examples
generally enhanced robustness, the choice of few-shot examples played a major role
in improving the accuracy. Consequently, this research found that choosing examples
based on their NL question similarity was the best criterion.

(a) PEX scores.

(b) NER scores.

Figure 5.2: PEX and NER results across every few-shot learning experiment on the held-
out set. Error bars indicate 95% confidence intervals computed using a Beta distribution
(Jeffreys prior [54]), where for each proportion p out of n trials the posterior parameters
a = np+0.5 and b = n(1− p)+0.5 were used to derive the interval.



Chapter 6

Conclusions

6.1 Discussion

My research successfully investigated the utilisation of Large Language Models (LLMs)
for translating natural language (NL) questions into corresponding SQL queries for
the IUPHAR/BPS Guide to Pharmacology database (GtoPdb). By focusing on two
methodologies, zero-shot and few-shot, I was able to combine both to construct a text-to-
SQL pipeline capable of producing SQL for the GtoPdb. Throughout the investigation,
I managed to answer several research questions regarding the task of text-to-SQL for
the GtoPdb.

6.1.1 Contributions

Firstly, I was able to construct my own, less stringent accuracy metric Partial Execution
Accuracy (PEX) which gave a better insight when analysing explored methods. The
construction of this metric came about as the common metrics, used on benchmark
datasets [7, 6], proved to be less well suited for the GtoPdb, further suggesting that the
dataset of GtoPdb NL-SQL pairs were possibly more complex than those included in
benchmark datasets.

For the zero-shot methods, I explored several techniques on the training set allowing for
the construction of a zero-shot text-to-SQL pipeline. I found that combining multi-table
schema-linking, syntax correction, and empty output correction led to the construction
of the most suitable zero-shot text-to-SQL pipeline. Also, I discovered that the proposed
self-validation, where the LLM was able to view the output of its generated SQL
query, did not yield any improvements in SQL generation. On top of this, I found that
OpenAI’s suggested schema representation combined with the o3-mini model was the
most suitable to integrate within the text-to-SQL pipeline.

Considering the few-shot learning methods, I investigated several criteria for picking
NL-SQL example pairs from the training set when answering each NL question in
the held-out set. To do this, I combined the few-shot examples within each step of
the text-to-SQL pipeline, ensuring the LLM had access to these examples throughout.
When analysing the results, I discovered that the few-shot learning baseline significantly
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outperformed the zero-shot pipeline, which suggested that few-shot learning had a
significant impact on SQL generation. Moreover, I found that choosing five targetted
NL-SQL example pairs from the training set based on their similarity to the held-out
set’s NL question contributed to the highest results across all evaluation metrics.

6.1.2 Related Work Comparison

A companion dissertation was conducted by Nikita Rameshkumar, who explored the
same research topic [58]. Nikita’s final approach shared some similarities with my
methods but also introduced some alternatives. In particular, Nikita chose gpt-4o as her
primary LLM and supplied it with a comprehensive database schema that included every
table and column name. Similar to my work, Nikita employed self-correction, enabling
the LLM to detect and fix SQL errors by regenerating SQL queries. In addition, Nikita
provided the LLM with eight handcrafted rules to enhance SQL generation. These rules
largely targeted thorough string matching; for example, when filtering for a single word
(e.g. delta), the LLM was instructed to use ILIKE ‘%delta%’ OR ILIKE ‘%Delta%’
so that potential capitalisation differences would be covered. When evaluating her
method on the held-out set, Nikita chose to use few-shot learning with all 51 NL-SQL
example pairs from the training set. Along with these examples, Nikita also included
the ‘minimum number of columns’ and ‘notes for student’ data. Table 6.1 presents
Nikita’s final results on the held-out set.

LLM k-shot EX PEX SER NER

gpt-4o 51-shot 13.33 43.33 100 90.00

Table 6.1: Nikita’s final results on the held-out set.

Despite some methodological overlap, there were differences in both approach and
performance. When comparing my pipeline’s best results on the held-out set (seen in
Table 5.4), it is apparent that Nikita’s method outperformed my text-to-SQL pipeline on
the accuracy metrics; Nikita reported an EX of 13.33% and a PEX of 43.33%, while
my best approach attained an EX of 10% and PEX of 30%. Moreover, Nikita’s final
method reached a NER of 90%, exceeding the top NER of 83.33% observed in this
research. These improvements are likely attributable to the inclusion of all table and
column information at once and a full 51-shot learning approach (providing the LLM
with the entire training set every time an SQL was generated).

However, it is important to acknowledge the trade-offs within Nikita’s strategy. By pre-
senting the LLM with all 51 NL-SQL example pairs and the full schema information, the
token usage was considerably elevated. In contrast, my design was more cost-effective
for research, relying on a concise subset of few-shot examples, a reduced database
schema, and the cheaper o3-mini model. Ultimately, Nikita’s results demonstrated the
performance benefits that can be gained by saturating the LLM with as many examples
as possible and the entire database schema. At the same time, my pipeline showed that
strong outcomes are still attainable through the use of less tokens and a cheaper LLM.
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6.2 Limitations and Future Work

In a practical scenario, security remains a serious concern. Since the pipeline executed
some of the queries, to improve its final output, (e.g. self-correction) it is possible that a
malicious user interacting with the pipeline (e.g. through a chatbot) could potentially
exploit SQL injection vulnerabilities to execute harmful queries. Although the pipeline
would execute SQL queries on a separate copy of the database, such attacks would still
disrupt other users’ experiences. Future work should investigate several sanitisation
techniques [59], to stop harmful requests from being submitted.

This research was limited to a selection of LLMs from OpenAI. However, recent
advancements have introduced new LLMs, such as DeepSeek [60], which in some
scenarios have claimed to outperform the OpenAI models in both performance and
affordability. Evaluating these emerging models for the task of text-to-SQL on the
GtoPdb would allow for a more comprehensive exploration.

Another limitation which warrants acknowledgment is the relatively small dataset (81
examples) used for this research. Although I am extremely grateful to the NC-IUPHAR
Database Executive Committee for curating the dataset on such short notice, its limited
size restricted the confidence and generalisability of my findings. Future research should
focus on expanding and diversifying the dataset to enable an improved evaluation of
the text-to-SQL approaches. For example, I mentioned the use of a very basic version
of Chain of Thought (CoT) prompting. This basic version simply asked the LLM
to display its step-by-step reasoning; in improved CoT prompting, the LLM is given
few-shot examples that display the thought process the LLM should mimic. Future
work could focus on creating a dataset of step-by-step reasoning behind what schema
information is relevant to each of the NL questions in the dataset. These examples could
then be displayed to the LLM when it is choosing relevant schema information to try
and improve its selection.

Next, the few-shot experiments focused on three scenarios (1-shot, 3-shot, and 5-shot),
giving a concrete assessment of the impact of in-context examples. The similar NL
question approach displayed a trend of improvement across all evaluation metrics as
the number of examples (k) increased. As observed in Nikita’s approach, the full
51-shot scenario was able to yield the best results across all evaluation metrics. Future
work should explore the effects of incorporating more similar NL question examples to
determine an optimal number needed to meet Nikita’s results.

Lastly, another limitation arises from the need to reinitialise the system message for
every NL question within this research. This was done to ensure the LLM retained no
prior context, thus enforcing experimental control for each NL question. In a real-world
scenario, an LLM could reuse a single system message (e.g. SO) across multiple NL
questions, negating the need to pay for a new system message for every NL question.
In addition, this would allow the LLM to build contextual continuity to help influence
its output. Future work should investigate the effect of retaining one system message in
a conversational chatbot scenario to determine its effect and affordability in comparison
to my text-to-SQL pipeline.
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Appendix A

Example SQL for Understanding
Evaluation Metrics

A.1 Execution Accuracy (EX)

Listing A.1: Example SQL 1 to help with understanding EX.

select ligand_id
from ligand where ligand_id in
(select distinct ligand_id from interaction where object_id in
(select distinct object_id from gpcr)
and type ='Agonist' and affinity_units ='pKi' and affinity_median

>10);

Listing A.2: Example SQL 2 to help with understanding EX.

select distinct ligand_id
from interaction where object_id in
(select distinct object_id from object where object_id in
(select distinct object_id from receptor2family rf
where family_id in
(select family_id from family where type in ('gpcr'))))
and type ='Agonist' and affinity_units ='pKi' and affinity_median

>10;

A.2 Exact Matching (EM)

Listing A.3: Example SQL 1 to help with understanding EM.

select name from ligand where in_gtip = true;

Listing A.4: Example SQL 3 to help with understanding EM.

select name from ligand where in_gtip is true;
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A.3 Partial Execution Accuracy (PEX)

Listing A.5: Example SQL 1 to help with understanding PEX.

select ligand_id from ligand where in_gtip = true;

Listing A.6: Example SQL 2 to help with understanding PEX.

select name, ligand_id from ligand where in_gtip = true;



Appendix B

SQL Used to Output System Messages

B.1 SQL For Text Representation

Listing B.1: SQL crafted to produce ST system message.

SELECT t.table_name || ': ' || string_agg(c.column_name, ', ') AS
table_info

FROM information_schema.tables t
JOIN information_schema.columns c
ON t.table_name = c.table_name AND t.table_schema = c.table_schema
WHERE t.table_schema = 'public'
AND t.table_type = 'BASE TABLE'
GROUP BY t.table_name
ORDER BY t.table_name;

B.2 SQL For Basic Representation

Listing B.2: SQL crafted to produce SB system message.

SELECT 'Table: ' || t.table_name || ', columns: (' ||
string_agg(c.column_name, ', ') || ')'
AS table_info
FROM information_schema.tables t
JOIN information_schema.columns c
ON t.table_name = c.table_name AND t.table_schema = c.table_schema
WHERE t.table_schema = 'public'
AND t.table_type = 'BASE TABLE'
GROUP BY t.table_name
ORDER BY t.table_name;
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Appendix C

Schema-Linking
Prompts/Visualisations

C.1 Schema Linking Visual For Each System Message

Figure C.1: Visualisation of the Text representation schema representation ST before
and after schema-linking.

50
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Figure C.2: Visualisation of the OpenAI suggested (no FK/PK information) schema
representation SON before and after schema-linking.
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Figure C.3: Visualisation of the OpenAI suggested schema representation SO before
and after schema-linking.
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C.2 Single-column Schema-Linking Prompt

You are a system that determines if a given column from an SQL database (The
Guide to Pharmacology) is possibly relevant to a given natural language query.
You will be provided with both a column and a natural language query in the
format;

Column: column name
Query: natural language query

Your output should be of the following json format;
{
“rationale”: <str: the step-by-step reasoning behind the decision>,
“decision”: <bool: True if the column is relevant, False otherwise>
}

Figure C.4: Single-column schema-linking (SLC) prompt.

C.3 Multi-table Schema-Linking Prompt

You are a system that determines what tables from an SQL database (The Guide
to Pharmacology) are possibly relevant to a natural language query. You will be
provided with a list of tables and a natural language query in the format;

Tables: table name 1, table name 2, ...
Query: natural language query

Your output should be of the following json format;
{
“rationale”: <str: the step by step reasoning behind the decision>,
“tables”: <list[str]: relevant tables >
}

Figure C.5: First prompt in table-to-column schema-linking (SLTC) and prompt used for
multi-table schema linking (SLMT ).
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C.4 Table-to-column Schema-Linking Prompt

You are a system that determines what columns from an SQL database (The
Guide to Pharmacology) are possibly relevant to a natural language query. You
will be provided with a table, the columns from said Table and a natural language
query in the format;

<str: table name>: column name 1, column name 2, ...
Query: natural language query

Your output should be of the following json format;
{

“rationale”: <str: the step by step reason behind the decision>, <str: ta-
ble name>: <list[str]: relevant columns>
}

Figure C.6: Second prompt in table-to-column schema-linking (SLTC).
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C.5 System Messages in JSON format

Figure C.7: JSON formatting used to schema-link ST and SB.



Appendix C. Schema-Linking Prompts/Visualisations 56

Figure C.8: JSON formatting used to schema-link SO and SON .
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C.6 Token Count Reduction

Figure C.9: Difference in token count before and after SLMT on the training set. The
error bars represent the 95% confidence intervals for the average schema-linked token
counts. The error bars were computed by multiplying the standard error of the mean by
the appropriate t-distribution critical value.



Appendix D

Self-Validation Workflow

Figure D.1: Visualisation of the self-validation process when a user asks the LLM for an
SQL query. The LLM’s initial SQL query is ran on the GtoPdb and its output is used by
the LLM to generate an improved response.
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