Top ▲

CCR5

Click here for help

Immunopharmacology Ligand  Target has curated data in GtoImmuPdb

Target id: 62

Nomenclature: CCR5

Family: Chemokine receptors

Gene and Protein Information Click here for help
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 352 3p21.31 CCR5 C-C motif chemokine receptor 5 21,49,60,62-63
Mouse 7 354 9 75.05 cM Ccr5 C-C motif chemokine receptor 5 42
Rat 7 354 8q32 Ccr5 C-C motif chemokine receptor 5 36
Previous and Unofficial Names Click here for help
CHEMR13 [62] | CC CKR5 | CKR5 | CD195 | MIP-1 alpha receptor | chemokine (C-C motif) receptor 5 (gene/pseudogene) | C-C motif chemokine receptor 5 (gene/pseudogene)
Database Links Click here for help
Specialist databases
GPCRdb ccr5_human (Hs), ccr5_mouse (Mm), ccr5_rat (Rn)
Other databases
Alphafold
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
SynPHARM
UniProtKB
Wikipedia
Selected 3D Structures Click here for help
Image of receptor 3D structure from RCSB PDB
Description:  Crystal Structure of the CCR5 Chemokine Receptor
PDB Id:  4MBS
Ligand:  maraviroc
Resolution:  2.71Å
Species:  Human
References:  68
Image of receptor 3D structure from RCSB PDB
Description:  The Crystal structure of Human Chemokine Receptor CCR5 in complex with compound 34.
PDB Id:  6AKY
Ligand:  CCR5 antagonist 34
Resolution:  2.8Å
Species:  Human
References:  57
Natural/Endogenous Ligands Click here for help
CCL13 {Sp: Human}
CCL14 {Sp: Human}
CCL3 {Sp: Human}
CCL4 {Sp: Human}
CCL5 {Sp: Human}
CCL11 {Sp: Human}
CCL8 {Sp: Human}
CCL16 {Sp: Human}
CCL2 {Sp: Human}
CCL7 {Sp: Human}
CCL11 {Sp: Mouse}
CCL3 {Sp: Mouse}
CCL4 {Sp: Mouse}
CCL8 {Sp: Mouse}
CCL2 {Sp: Mouse}
CCL7 {Sp: Mouse}
CCL5 {Sp: Mouse, Rat}
CCL3 {Sp: Rat}
CCL4 {Sp: Rat}
CCL11 {Sp: Rat}
CCL2 {Sp: Rat}
CCL7 {Sp: Rat}

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[125I]CCL4 (human) Peptide Ligand is labelled Ligand is radioactive Hs Full agonist 9.6 pKd 49
pKd 9.6 (Kd 2.51x10-10 M) [49]
CCL4 {Sp: Human} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Immunopharmacology Ligand Hs Full agonist 9.4 – 9.6 pKi 49,61
pKi 9.4 – 9.6 [49,61]
CCL5 {Sp: Human} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Immunopharmacology Ligand Hs Full agonist 9.2 – 9.7 pKi 9,49,61
pKi 9.2 – 9.7 [9,49,61]
CCL8 {Sp: Human} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Immunopharmacology Ligand Hs Full agonist 9.3 pKi 61
pKi 9.3 [61]
CCL13 {Sp: Human} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Immunopharmacology Ligand Hs Full agonist 9.1 pKi 61
pKi 9.1 [61]
CCL3 {Sp: Human} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Immunopharmacology Ligand Hs Full agonist 8.0 – 8.9 pKi 49,61,78
pKi 8.0 – 8.9 [49,61,78]
BP-CCL3 Peptide Click here for species-specific activity table Hs Full agonist 7.7 pKi 78
pKi 7.7 [78]
Flu-CCL3 Peptide Click here for species-specific activity table Ligand is labelled Hs Full agonist 7.6 pKi 78
pKi 7.6 [78]
CCL2 {Sp: Human} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Immunopharmacology Ligand Hs Full agonist 7.5 pKi 49
pKi 7.5 [49]
CCL14 {Sp: Human} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Immunopharmacology Ligand Hs Full agonist 7.2 pKi 49
pKi 7.2 [49]
CCL11 {Sp: Human} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Immunopharmacology Ligand Hs Full agonist 7.7 pIC50 16
pIC50 7.7 [16]
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[3H]maraviroc Small molecule or natural product Ligand is labelled Ligand is radioactive Hs Antagonist 9.1 pKd 49
pKd 9.1 [49]
[3H]ancriviroc Small molecule or natural product Ligand is labelled Ligand is radioactive Hs Antagonist 8.9 pKd 66
pKd 8.9 [66]
vicriviroc Small molecule or natural product Hs Antagonist 9.1 pKi 66
pKi 9.1 [66]
aplaviroc Small molecule or natural product Hs Antagonist 8.5 pKi 43
pKi 8.5 (Ki 3.16x10-9 M) [43]
ancriviroc Small molecule or natural product Immunopharmacology Ligand Hs Antagonist 7.8 – 8.7 pKi 43,56,66
pKi 7.8 – 8.7 [43,56,66]
CCL7 {Sp: Human} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Immunopharmacology Ligand Hs Antagonist 7.5 pKi 49
pKi 7.5 [49]
TAK-779 Small molecule or natural product Click here for species-specific activity table Immunopharmacology Ligand Hs Antagonist 7.5 pKi 43
pKi 7.5 [43]
AZD5672 Small molecule or natural product Immunopharmacology Ligand Hs Antagonist 9.6 pIC50 23
pIC50 9.6 (IC50 2.6x10-10 M) [23]
Description: Displacement of [125I]MIP-1α from human recombinant CCR5 expressed in CHO cells
E913 Small molecule or natural product Hs Antagonist 8.7 pIC50 44
pIC50 8.7 (IC50 1.99x10-9 M) [44]
BMS-681 Small molecule or natural product Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Immunopharmacology Ligand Hs Antagonist 8.6 pIC50 17
pIC50 8.6 (IC50 2.4x10-9 M) [17]
cenicriviroc Small molecule or natural product Immunopharmacology Ligand Hs Antagonist 8.6 pIC50 10
pIC50 8.6 [10]
CCR5 antagonist 34 Small molecule or natural product Ligand has a PDB structure Hs Antagonist 8.5 pIC50 57
pIC50 8.5 (IC50 3x10-9 M) [57]
Description: In a whole cell intracellular calcium mobilisation assay using HEK293 cells expressing hCCR5.
TAK-220 Small molecule or natural product Hs Antagonist 8.5 pIC50 35
pIC50 8.5 [35]
vMIP-II Peptide Click here for species-specific activity table Hs Antagonist 8.3 pIC50 40
pIC50 8.3 [40]
maraviroc Small molecule or natural product Approved drug Primary target of this compound Immunopharmacology Ligand Hs Antagonist 8.1 pIC50 49
pIC50 8.1 (IC50 7.94x10-9 M) [49]
BMS-753426 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.1 pIC50 74
pIC50 7.1 (IC50 8.3x10-8 M) [74]
BMS-741672 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.1 pIC50 73
pIC50 6.1 (IC50 7.8x10-7 M) [73]
Description: Antagonism of MIP-1β binding to HT1080 cells stably expressing CCR5
MLN-3897 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 5.4 pIC50 69
pIC50 5.4 (IC50 4x10-6 M) [69]
GSK2239633A Small molecule or natural product Click here for species-specific activity table Immunopharmacology Ligand Hs Antagonist 5.2 pIC50 59
pIC50 5.2 (IC50 6.31x10-6 M) [59]
Description: IC50 determined in a GTPγS binding assay using membranes from CHO cells expressing recombinant CCR5 receptor.
Antagonist Comments
A number of CCR5 receptor antagonists are currently in clinical trials as blockers of HIV entry [37-38,72].
Allosteric Modulators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
compound 39 [PMID: 31742400] Small molecule or natural product Click here for species-specific activity table Immunopharmacology Ligand Hs Antagonist 7.1 pIC50 54
pIC50 7.1 (IC50 8.4x10-8 M) [54]
Description: Antagonist effect on CCL3-induced β-arrestin recruitment in U2OS cells stably expressing human CCR5.
Antibodies
Key to terms and symbols Click column headers to sort
Antibody Sp. Action Value Parameter Reference
leronlimab Peptide Immunopharmacology Ligand Hs Binding - - 52
[52]
Description: Antagonism of CCR5-mediated HIV entry in vitro.
Antibody Comments
Leronlimab antagonises CCR5-mediated HIV entry in vitro with an IC50 of approximately 2.4 μg/ml [52].
Immunopharmacology Comments
CCR5 is one of more than 20 distinct chemokine receptors expressed in human leukocytes. Chemokines primarily act to promote leukocyte chemotaxis to sites of inflammation. CCR5 is discussed in relation to immuno-oncology in [1]. CCR5 is the only chemokine receptor demonstrated to play an essential role in HIV/AIDS pathogenesis. CCR5 is a co-receptor used by some strains of HIV (the so-called CCR5-tropic strains) to enter host T cells. CytoDyn have an anti-CCR5 monoclonal antibody named leronlimab (PRO140) in clinical development [24,33]. In the HIV setting PRO140 is classified as a viral-entry inhibitor and is intended to protect healthy cells from viral infection, whilst sparing CCR5's normal function in immune responses.
Immuno Process Associations
Immuno Process:  Barrier integrity
Immuno Process:  Inflammation
Immuno Process:  Cytokine production & signalling
Immuno Process:  Chemotaxis & migration
Immuno Process:  Immune regulation
Primary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gi/Go family Calcium channel
References:  51
Secondary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gi/Go family Adenylyl cyclase inhibition
References:  7
Tissue Distribution Click here for help
CD4+ T lymphocytes.
Species:  Human
Technique:  Flow cytometry.
References:  39
Testes.
Species:  Human
Technique:  RT-PCR.
References:  30
Blood and cerebrospinal fluid B lymphocytes.
Species:  Human
Technique:  Flow cytometry.
References:  67
Microglia.
Species:  Human
Technique:  Flow cytometry.
References:  3,25
Basophils.
Species:  Human
Technique:  RT-PCR and flow cytometry.
References:  34
Blood dendritic cells.
Species:  Human
Technique:  RT-PCR.
References:  8
Th1-type lymphocytes.
Species:  Human
Technique:  RT-PCR.
References:  48
Testicular macrophages.
Species:  Human
Technique:  Northern blotting and RT-PCR.
References:  30
Tonsil B lymphocytes.
Species:  Human
Technique:  RT-PCR.
References:  22
Bone marrow dendritic cells.
Species:  Mouse
Technique:  Ribonuclease protection assay.
References:  50
Hippocampal neurons.
Species:  Rat
Technique:  RT-PCR.
References:  46
Lung, spleen, kidney, thymus, macrophages.
Species:  Rat
Technique:  RNase protection assay.
References:  36
Osteoblasts.
Species:  Rat
Technique:  RT-PCR.
References:  75
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays Click here for help
Detection of HIV-1 fusion in HeLa cells transfected with CD4 and the human CCR5 receptor.
Species:  Human
Tissue:  HeLa cells expressing CD4 and CCR5.
Response measured:  HIV-1 fusion and infection.
References:  20
Measurement of cAMP levels in CHO and NG108-15 cells transfected with the human CCR5 receptor.
Species:  Human
Tissue:  CHO and NG108-15 cells.
Response measured:  Inhibition of cAMP accumulation.
References:  76
Measurement of Ca2+ levels in CHO cells transfected with the human CCR5 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Ca2+ influx.
References:  9
Measurement of chemotaxis of skin natural killer (NK) cells endogenously expressing the CCR5 receptor.
Species:  Human
Tissue:  Skin NK lymphocytes.
Response measured:  Chemotaxis.
References:  55
Detection of cell death of SH-SY5Y neuroblastoma cells induced to express the CCR5 receptor by lentiviral transduction.
Species:  Human
Tissue:  SH-SY5Y neuroblastoma cells.
Response measured:  Apoptosis by caspase-3 activation.
References:  18
Measurement of Ca2+ currents in HEK 293 cells stably expressing N-type calcium channels and the rat CCR5 receptor, using Ba2+ as the charge carrier (IBa).
Species:  Rat
Tissue:  HEK 293 cells.
Response measured:  IBa inhibition.
References:  51
Physiological Functions Click here for help
HIV coreceptor.
Species:  Human
Tissue:  Microglia.
References:  3
Chemotaxis.
Species:  Human
Tissue:  NK lymphocytes.
References:  55
Angiogenesis.
Species:  Mouse
Tissue:  Cornea.
References:  5
T-cell and eosinophil trafficking.
Species:  Mouse
Tissue:  In vivo.
References:  65
Leukocyte trafficking.
Species:  Mouse
Tissue:  In vivo.
References:  14
Physiological Consequences of Altering Gene Expression Click here for help
CCR5 receptor knockout mice administered with Con A develop fulminant liver failure (FLF) by reduced apoptosis of CD1d-restricted NKT cells.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  2
CCR5 receptor knockout mice exhibit defective clearence of Listeria monocytogenes infection as well as having a protective effect against lipopolysaccharide-induced endotoxemia.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  77
CCR5 receptor knockout mice infected with Cryptococcus neoformans exhibit reduced survival compared to wild-type, defective leukocyte recruitment to the brain and defective clearence of extracellular cryptococcal polysaccharide capsules which accumulate in the brain.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  32
CCR5 receptor knockout mice exhibit decreased IFN-γ responses and defective granuloma formation.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  64
CCR5 receptor knockout mice infected with mouse hepatitis virus exhibit reduced macrophage infiltration to the CNS and subsequent decrease in demyelination.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  28
CCR5 receptor knockout mice have a reduced incidence of collagen-induced arthritis following collagen II-immunisation. They exhibit reduced IgG levels as well as increased levels of Il-10 on splenocytes and overproduction of MIP-1β.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  11
CCR5 receptor knockout mice infected with live Aspergillus fumigatus (model of chronic fungal asthma) exhibit an initial reduced airway hyperresponsiveness to cholinergic stimulation compared to wild-type mice also infected with the fungus. The knockout mice initially show reduced peribronchial T-cell and eosinophil accumulation as well as reduced goblet cell hyperplasia and peribronchial fibrosis. However, 12 days after infection both the wild-type and the knockout mice exhibit similar allergic airway disease.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  65
CCR5 receptor knockout mice exhibit reduced corneal neovascularization and expression of vascular endothelial growth factor (VEGF).
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  5
Few CCR5 receptor knockout mice infected with Plasmodium berghei ANKA (PbA) develop the the characteristic neurologic signs of cerebral malaria (CM) as seen in wild-type mice infected with the parasite. The knockout mice that did not exhibit CM had defective leukocyte accumulation in the brain and reduced Th1 cytokine production.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  14
CCR5 receptor knockout mice exhibit delayed dendritic cell tumour growth following injection of melanoma cells. In addition, the knockout mice injected with tumour followed by a vaccination of matured DCs from wild-type mice lack significant tumour growth hence exhibit protective antitumor immunity.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  50
CCR5 receptor knockout mice infected with Mycobacterium tuberculosis exhibit immune cell trafficking to the lungs and control of infection. Infact, the knockout mice exhibit increased leukocyte migration to the lungs, increased numbers of inflammatory cytokines, increased levels of dendritic cells in the lung-draining lymph nodes, an increase in the amount of primed T lymphocytes and an increase in bacterial numbers in the lymph nodes compared to wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  4
CCR5 receptor knockout mice infected with Trypanosoma cruzi exhibit reduced migration of T lymphocytes to the heart and increased susceptibility to infection.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  31,41
CCR5 receptor knockout mice exhibit fewer lung metastases than wild-type mice following injection of B16-F10 melanoma cells.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  70
CCR5 receptor knockout mice are protected from dextran sodium sulfate (DSS)-mediated colitis. They have increased levels of CD4+ and NK1.1+ lymphocytes in the colonic lamina propria as well as increased Il-4, Il-5 and Il-10 expression and decreased IFN-γ expression.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  6
CCR5 receptor knockout mice infected with Chlamydia trachomatis have an increased susceptibility to infection compared to infected wild-type mice. Infected wild-type mice had a significantly lower pregnancy rate than infected knockout mice, suggesting that the inflammatory response by the host may be involved in the development of tubal infertility.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  13
West Nile virus (WNV) infection is uniformly fatal in CCR5 knockout mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  27
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Ccr5tm1Kuz Ccr5tm1Kuz/Ccr5tm1Kuz
involves: 129P2/OlaHsd * C57BL/6
MGI:107182  MP:0002432 abnormal CD4-positive T cell morphology PMID: 10843684 
Ccr5tm1Kuz Ccr5tm1Kuz/Ccr5tm1Kuz
involves: 129P2/OlaHsd * C57BL/6
MGI:107182  MP:0005010 abnormal CD8-positive T cell morphology PMID: 10843684 
Ccr5tm1Blck Ccr5tm1Blck/Ccr5tm1Blck
B6.129P2-Ccr5
MGI:107182  MP:0009858 abnormal cellular extravasation PMID: 16275892 
Ccr5tm1Kuz Ccr5tm1Kuz/Ccr5tm1Kuz
B6.129P2-Ccr5
MGI:107182  MP:0002805 abnormal conditioned taste aversion behavior PMID: 16105698 
Ccr5tm1Kuz Ccr5tm1Kuz/Ccr5tm1Kuz
involves: 129P2/OlaHsd * C57BL/6
MGI:107182  MP:0008713 abnormal cytokine level PMID: 10843684 
Ccr5tm1Brv Ccr5tm1Brv/Ccr5tm1Brv
either: (involves: 129S1/Sv * ICR) or (involves: 129S1/Sv * 129X1/SvJ * ICR)
MGI:107182  MP:0003009 abnormal cytokine secretion PMID: 9558111 
Ccr5tm1Blck Ccr5tm1Blck/Ccr5tm1Blck
B6.129P2-Ccr5
MGI:107182  MP:0003628 abnormal leukocyte adhesion PMID: 16275892 
Ccr5tm1Sush Ccr5tm1Sush/Ccr5tm1Sush
B6.129P2-Ccr5
MGI:107182  MP:0002442 abnormal leukocyte physiology PMID: 12524535 
Ccr5tm1Kuz Ccr5tm1Kuz/Ccr5tm1Kuz
involves: 129P2/OlaHsd * C57BL/6
MGI:107182  MP:0001392 abnormal locomotor activity PMID: 10843684 
Ccr5tm1Blck Ccr5tm1Blck/Ccr5tm1Blck
B6.129P2-Ccr5
MGI:107182  MP:0000343 altered response to myocardial infarction PMID: 16275892 
Ccr5tm1Brv Ccr5tm1Brv/Ccr5tm1Brv
either: (involves: 129S1/Sv * ICR) or (involves: 129S1/Sv * 129X1/SvJ * ICR)
MGI:107182  MP:0008658 decreased interleukin-1 beta secretion PMID: 9558111 
Ccr5tm1Brv Ccr5tm1Brv/Ccr5tm1Brv
either: (involves: 129S1/Sv * ICR) or (involves: 129S1/Sv * 129X1/SvJ * ICR)
MGI:107182  MP:0008706 decreased interleukin-6 secretion PMID: 9558111 
Ccr5tm1Brv Ccr5tm1Brv/Ccr5tm1Brv
either: (involves: 129S1/Sv * ICR) or (involves: 129S1/Sv * 129X1/SvJ * ICR)
MGI:107182  MP:0008734 decreased susceptibility to endotoxin shock PMID: 9558111 
Ccr5tm1Kuz Ccr5tm1Kuz/Ccr5tm1Kuz
involves: 129P2/OlaHsd * C57BL/6
MGI:107182  MP:0008539 decreased susceptibility to induced colitis PMID: 10843684 
Ccr5tm1Sush Ccr5tm1Sush/Ccr5tm1Sush
B6.129P2-Ccr5
MGI:107182  MP:0005095 decreased T cell proliferation PMID: 12524535 
Ccr5tm1Kuz Ccr5tm1Kuz/Ccr5tm1Kuz
involves: 129P2/OlaHsd * C57BL/6
MGI:107182  MP:0005496 impaired macrophage recruitment PMID: 10528159  12618265 
Ccr5tm1Kuz Ccr5tm1Kuz/Ccr5tm1Kuz
B6.129P2-Ccr5
MGI:107182  MP:0003545 increased alcohol consumption PMID: 16105698 
Ccr5tm1Kuz Ccr5tm1Kuz/Ccr5tm1Kuz
B6.129P2-Ccr5
MGI:107182  MP:0003911 increased drinking behavior PMID: 16105698 
Ccr5tm1Brv Ccr5tm1Brv/Ccr5tm1Brv
either: (involves: 129S1/Sv * ICR) or (involves: 129S1/Sv * 129X1/SvJ * ICR)
MGI:107182  MP:0008499 increased IgG1 level PMID: 9558111 
Ccr5tm1Brv Ccr5tm1Brv/Ccr5tm1Brv
either: (involves: 129S1/Sv * ICR) or (involves: 129S1/Sv * 129X1/SvJ * ICR)
MGI:107182  MP:0008566 increased interferon-gamma secretion PMID: 9558111 
Ccr5tm1Brv Ccr5tm1Brv/Ccr5tm1Brv
either: (involves: 129S1/Sv * ICR) or (involves: 129S1/Sv * 129X1/SvJ * ICR)
MGI:107182  MP:0008699 increased interleukin-4 secretion PMID: 9558111 
Ccr5tm1Blck Ccr5tm1Blck/Ccr5tm1Blck
B6.129P2-Ccr5
MGI:107182  MP:0004751 increased length of allograft survival PMID: 15307189 
Ccr5tm1Kuz Ccr5tm1Kuz/Ccr5tm1Kuz
involves: 129P2/OlaHsd * C57BL/6
MGI:107182  MP:0008039 increased NK T cell number PMID: 10843684 
Ccr5tm1Brv Ccr5tm1Brv/Ccr5tm1Brv
either: (involves: 129S1/Sv * ICR) or (involves: 129S1/Sv * 129X1/SvJ * ICR)
MGI:107182  MP:0002412 increased susceptibility to bacterial infection PMID: 9558111 
Ccr5tm1Kuz Ccr5tm1Kuz/Ccr5tm1Kuz
involves: 129P2/OlaHsd * C57BL/6
MGI:107182  MP:0005399 increased susceptibility to fungal infection PMID: 10528159 
Ccr5tm1Brv Ccr5tm1Brv/Ccr5tm1Brv
either: (involves: 129S1/Sv * ICR) or (involves: 129S1/Sv * 129X1/SvJ * ICR)
MGI:107182  MP:0005617 increased susceptibility to type IV hypersensitivity reaction PMID: 9558111 
Clinically-Relevant Mutations and Pathophysiology Click here for help
Disease:  Diabetes mellitus, insulin-dependent, 22; IDDM22
OMIM: 612522
Disease:  Human immunodeficiency virus type 1, susceptibility to
Synonyms: Human immunodeficiency virus infectious disease [Disease Ontology: DOID:526]
Disease Ontology: DOID:526
OMIM: 609423
Orphanet: ORPHA319269
Disease:  West nile virus, susceptibility to
Synonyms: West Nile virus infectious disease [Disease Ontology: DOID:4121]
Disease Ontology: DOID:4121
OMIM: 610379
Biologically Significant Variants Click here for help
Type:  Naturally occurring mutation
Species:  Human
Description:  The CCR5Δ32 variant may be associated with an increased risk of the development of sarcoidosis.
References:  58
Type:  Naturally occurring mutation
Species:  Human
Description:  The CCR5Δ32 variant may be linked to an increased risk of symptomatic West Nile virus (WNV) infection.
References:  29
Type:  Naturally occurring mutation
Species:  Human
Description:  A 32 bp deletion in the CCR5 gene gives rise to the CCR5Δ32 receptor variant. Individuals homozygous for the CCR5Δ32 allele are highly resistant to HIV-1 infection and heterozygotes have delayed AIDS progression.
References:  15,47,53
Type:  Naturally occurring mutation
Species:  Human
Description:  The CCR5Δ32 receptor variant identified in Dutch Caucasian women is thought to be linked to a lower incidence of tubal pathology following Chlamydia trachomatis genital infection.
References:  13
Type:  Naturally occurring mutation
Species:  Human
Description:  The CCR5Δ32 variant may contribute to the control of the chronic inflammation state present in sickle cell disease sufferers.
References:  19,71
Type:  Single nucleotide polymorphism
Species:  Human
Description:  Gene promotor polymorphisms have been associated with risk of HIV disease progression.
References:  45
Type:  Naturally occurring mutation
Species:  Human
Description:  The CCR5Δ32 variant may be linked to an increased age of multiple sclerosis (MS) onset but a higher mortality rate among MS sufferers.
References:  12,26

References

Show »

1. Adams JL, Smothers J, Srinivasan R, Hoos A. (2015) Big opportunities for small molecules in immuno-oncology. Nat Rev Drug Discov, 14 (9): 603-22. [PMID:26228631]

2. Ajuebor MN, Aspinall AI, Zhou F, Le T, Yang Y, Urbanski SJ, Sidobre S, Kronenberg M, Hogaboam CM, Swain MG. (2005) Lack of chemokine receptor CCR5 promotes murine fulminant liver failure by preventing the apoptosis of activated CD1d-restricted NKT cells. J Immunol, 174 (12): 8027-37. [PMID:15944310]

3. Albright AV, Shieh JT, Itoh T, Lee B, Pleasure D, O'Connor MJ, Doms RW, González-Scarano F. (1999) Microglia express CCR5, CXCR4, and CCR3, but of these, CCR5 is the principal coreceptor for human immunodeficiency virus type 1 dementia isolates. J Virol, 73 (1): 205-13. [PMID:9847323]

4. Algood HM, Flynn JL. (2004) CCR5-deficient mice control Mycobacterium tuberculosis infection despite increased pulmonary lymphocytic infiltration. J Immunol, 173 (5): 3287-96. [PMID:15322191]

5. Ambati BK, Anand A, Joussen AM, Kuziel WA, Adamis AP, Ambati J. (2003) Sustained inhibition of corneal neovascularization by genetic ablation of CCR5. Invest Ophthalmol Vis Sci, 44: 590-593. [PMID:12556387]

6. Andres PG, Beck PL, Mizoguchi E, Mizoguchi A, Bhan AK, Dawson T, Kuziel WA, Maeda N, MacDermott RP, Podolsky DK et al.. (2000) Mice with a selective deletion of the CC chemokine receptors 5 or 2 are protected from dextran sodium sulfate-mediated colitis: lack of CC chemokine receptor 5 expression results in a NK1.1+ lymphocyte-associated Th2-type immune response in the intestine. J Immunol, 164 (12): 6303-12. [PMID:10843684]

7. Aramori I, Ferguson SS, Bieniasz PD, Zhang J, Cullen B, Cullen MG. (1997) Molecular mechanism of desensitization of the chemokine receptor CCR-5: receptor signaling and internalization are dissociable from its role as an HIV-1 co-receptor. EMBO J, 16 (15): 4606-16. [PMID:9303305]

8. Ayehunie S, Garcia-Zepeda EA, Hoxie JA, Horuk R, Kupper TS, Luster AD, Ruprecht RM. (1997) Human immunodeficiency virus-1 entry into purified blood dendritic cells through CC and CXC chemokine coreceptors. Blood, 90 (4): 1379-86. [PMID:9269754]

9. Baba M, Nishimura O, Kanzaki N, Okamoto M, Sawada H, Iizawa Y, Shiraishi M, Aramaki Y, Okonogi K, Ogawa Y et al.. (1999) A small-molecule, nonpeptide CCR5 antagonist with highly potent and selective anti-HIV-1 activity. Proc Natl Acad Sci USA, 96 (10): 5698-703. [PMID:10318947]

10. Baba M, Takashima K, Miyake H, Kanzaki N, Teshima K, Wang X, Shiraishi M, Iizawa Y. (2005) TAK-652 inhibits CCR5-mediated human immunodeficiency virus type 1 infection in vitro and has favorable pharmacokinetics in humans. Antimicrob Agents Chemother, 49: 4584-4591. [PMID:16251299]

11. Bao L, Zhu Y, Zhu J, Lindgren JU. (2005) Decreased IgG production but increased MIP-1beta expression in collagen-induced arthritis in C-C chemokine receptor 5-deficient mice. Cytokine, 31 (1): 64-71. [PMID:15967376]

12. Barcellos LF, Schito AM, Rimmler JB, Vittinghoff E, Shih A, Lincoln R, Callier S, Elkins MK, Goodkin DE, Haines JL et al.. (2000) CC-chemokine receptor 5 polymorphism and age of onset in familial multiple sclerosis. Multiple Sclerosis Genetics Group. Immunogenetics, 51 (4-5): 281-8. [PMID:10803840]

13. Barr EL, Ouburg S, Igietseme JU, Morré SA, Okwandu E, Eko FO, Ifere G, Belay T, He Q, Lyn D et al.. (2005) Host inflammatory response and development of complications of Chlamydia trachomatis genital infection in CCR5-deficient mice and subfertile women with the CCR5delta32 gene deletion. J Microbiol Immunol Infect, 38 (4): 244-54. [PMID:16118671]

14. Belnoue E, Kayibanda M, Deschemin JC, Viguier M, Mack M, Kuziel WA, Rénia L. (2003) CCR5 deficiency decreases susceptibility to experimental cerebral malaria. Blood, 101: 4253-4259. [PMID:12560237]

15. Benkirane M, Jin DY, Chun RF, Koup RA, Jeang KT. (1997) Mechanism of transdominant inhibition of CCR5-mediated HIV-1 infection by ccr5delta32. J Biol Chem, 272 (49): 30603-6. [PMID:9388191]

16. Blanpain C, Migeotte I, Lee B, Vakili J, Doranz BJ, Govaerts C, Vassart G, Doms RW, Parmentier M. (1999) CCR5 binds multiple CC-chemokines: MCP-3 acts as a natural antagonist. Blood, 94 (6): 1899-905. [PMID:10477718]

17. Carter PH, Brown GD, Cherney RJ, Batt DG, Chen J, Clark CM, Cvijic ME, Duncia JV, Ko SS, Mandlekar S et al.. (2015) Discovery of a Potent and Orally Bioavailable Dual Antagonist of CC Chemokine Receptors 2 and 5. ACS Med Chem Lett, 6 (4): 439-44. [PMID:25893046]

18. Cartier L, Dubois-Dauphin M, Hartley O, Irminger-Finger I, Krause KH. (2003) Chemokine-induced cell death in CCR5-expressing neuroblastoma cells. J Neuroimmunol, 145 (1-2): 27-39. [PMID:14644028]

19. Chies JA, Hutz MH. (2003) High frequency of the CCR5delta32 variant among individuals from an admixed Brazilian population with sickle cell anemia. Braz J Med Biol Res, 36 (1): 71-5. [PMID:12532229]

20. Choe H, Farzan M, Sun Y, Sullivan N, Rollins B, Ponath PD, Wu L, Mackay CR, LaRosa G, Newman W et al.. (1996) The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell, 85 (7): 1135-48. [PMID:8674119]

21. Combadiere C, Ahuja SK, Tiffany HL, Murphy PM. (1996) Cloning and functional expression of CC CKR5, a human monocyte CC chemokine receptor selective for MIP-1(alpha), MIP-1(beta), and RANTES. J Leukoc Biol, 60 (1): 147-52. [PMID:8699119]

22. Corcione A, Tortolina G, Bonecchi R, Battilana N, Taborelli G, Malavasi F, Sozzani S, Ottonello L, Dallegri F, Pistoia V. (2002) Chemotaxis of human tonsil B lymphocytes to CC chemokine receptor (CCR) 1, CCR2 and CCR4 ligands is restricted to non-germinal center cells. Int Immunol, 14: 883-892. [PMID:12147625]

23. Cumming JG, Tucker H, Oldfield J, Fielding C, Highton A, Faull A, Wild M, Brown D, Wells S, Shaw J. (2012) Balancing hERG affinity and absorption in the discovery of AZD5672, an orally active CCR5 antagonist for the treatment of rheumatoid arthritis. Bioorg Med Chem Lett, 22 (4): 1655-9. [PMID:22266038]

24. CytoDyn. PRO 140. Accessed on 15/02/2018. Modified on 15/02/2018. www.cytodyn.com, https://www.cytodyn.com/drug-pipeline/pro-140

25. Flynn G, Maru S, Loughlin J, Romero IA, Male D. (2003) Regulation of chemokine receptor expression in human microglia and astrocytes. J Neuroimmunol, 136 (1-2): 84-93. [PMID:12620646]

26. Gade-Andavolu R, Comings DE, MacMurray J, Rostamkhani M, Cheng LS, Tourtellotte WW, Cone LA. (2004) Association of CCR5 delta32 deletion with early death in multiple sclerosis. Genet Med, 6 (3): 126-31. [PMID:15354329]

27. Glass WG, Lim JK, Cholera R, Pletnev AG, Gao JL, Murphy PM. (2005) Chemokine receptor CCR5 promotes leukocyte trafficking to the brain and survival in West Nile virus infection. J Exp Med, 202 (8): 1087-98. [PMID:16230476]

28. Glass WG, Liu MT, Kuziel WA, Lane TE. (2001) Reduced macrophage infiltration and demyelination in mice lacking the chemokine receptor CCR5 following infection with a neurotropic coronavirus. Virology, 288 (1): 8-17. [PMID:11543653]

29. Glass WG, McDermott DH, Lim JK, Lekhong S, Yu SF, Frank WA, Pape J, Cheshier RC, Murphy PM. (2006) CCR5 deficiency increases risk of symptomatic West Nile virus infection. J Exp Med, 203 (1): 35-40. [PMID:16418398]

30. Habasque C, Aubry F, Jégou B, Samson M. (2002) Study of the HIV-1 receptors CD4, CXCR4, CCR5 and CCR3 in the human and rat testis. Mol Hum Reprod, 8 (5): 419-25. [PMID:11994538]

31. Hardison JL, Wrightsman RA, Carpenter PM, Kuziel WA, Lane TE, Manning JE. (2006) The CC chemokine receptor 5 is important in control of parasite replication and acute cardiac inflammation following infection with Trypanosoma cruzi. Infect Immun, 74 (1): 135-43. [PMID:16368966]

32. Huffnagle GB, McNeil LK, McDonald RA, Murphy JW, Toews GB, Maeda N, Kuziel WA. (1999) Cutting edge: Role of C-C chemokine receptor 5 in organ-specific and innate immunity to Cryptococcus neoformans. J Immunol, 163 (9): 4642-6. [PMID:10528159]

33. Hutchings CJ, Koglin M, Olson WC, Marshall FH. (2017) Opportunities for therapeutic antibodies directed at G-protein-coupled receptors. Nat Rev Drug Discov, 16 (9): 787-810. [PMID:28706220]

34. Iikura M, Miyamasu M, Yamaguchi M, Kawasaki H, Matsushima K, Kitaura M, Morita Y, Yoshie O, Yamamoto K, Hirai K. (2001) Chemokine receptors in human basophils: inducible expression of functional CXCR4. J Leukoc Biol, 70: 113-120. [PMID:11435493]

35. Imamura S, Ichikawa T, Nishikawa Y, Kanzaki N, Takashima K, Niwa S, Iizawa Y, Baba M, Sugihara Y. (2006) Discovery of a piperidine-4-carboxamide CCR5 antagonist (TAK-220) with highly potent Anti-HIV-1 activity. J Med Chem, 49 (9): 2784-93. [PMID:16640339]

36. Jiang Y, Salafranca MN, Adhikari S, Xia Y, Feng L, Sonntag MK, deFiebre CM, Pennell NA, Streit WJ, Harrison JK. (1998) Chemokine receptor expression in cultured glia and rat experimental allergic encephalomyelitis. J Neuroimmunol, 86 (1): 1-12. [PMID:9655467]

37. Jülg B, Goebel FD. (2005) CCR5 antagonists: a new tool in fighting HIV. J HIV Ther, 10 (4): 68-71. [PMID:16519245]

38. Jülg B, Goebel FD. (2005) What's New in HIV/AIDS? Chemokine receptor antagonists: a new era of HIV therapy?. Infection, 33: 408-410. [PMID:16258879]

39. Kivisäkk P, Trebst C, Lee JC, Tucky BH, Rudick RA, Campbell JJ, Ransohoff RM. (2003) Expression of CCR2, CCR5, and CXCR3 by CD4+ T cells is stable during a 2-year longitudinal study but varies widely between individuals. J Neurovirol, 9 (3): 291-9. [PMID:12775413]

40. Kledal TN, Rosenkilde MM, Coulin F, Simmons G, Johnsen AH, Alouani S, Power CA, Lüttichau HR, Gerstoft J, Clapham PR et al.. (1997) A broad-spectrum chemokine antagonist encoded by Kaposi's sarcoma-associated herpesvirus. Science, 277 (5332): 1656-9. [PMID:9287217]

41. Machado FS, Koyama NS, Carregaro V, Ferreira BR, Milanezi CM, Teixeira MM, Rossi MA, Silva JS. (2005) CCR5 plays a critical role in the development of myocarditis and host protection in mice infected with Trypanosoma cruzi. J Infect Dis, 191 (4): 627-36. [PMID:15655788]

42. Mack M, Cihak J, Simonis C, Luckow B, Proudfoot AE, Plachý J, Brühl H, Frink M, Anders HJ, Vielhauer V et al.. (2001) Expression and characterization of the chemokine receptors CCR2 and CCR5 in mice. J Immunol, 166 (7): 4697-704. [PMID:11254730]

43. Maeda K, Das D, Ogata-Aoki H, Nakata H, Miyakawa T, Tojo Y, Norman R, Takaoka Y, Ding J, Arnold GF, Arnold E, Mitsuya H. (2006) Structural and molecular interactions of CCR5 inhibitors with CCR5. J Biol Chem, 281: 12688-12698. [PMID:16476734]

44. Maeda K, Yoshimura K, Shibayama S, Habashita H, Tada H, Sagawa K, Miyakawa T, Aoki M, Fukushima D, Mitsuya H. (2001) Novel low molecular weight spirodiketopiperazine derivatives potently inhibit R5 HIV-1 infection through their antagonistic effects on CCR5. J Biol Chem, 276 (37): 35194-200. [PMID:11454872]

45. McDermott DH, Zimmerman PA, Guignard F, Kleeberger CA, Leitman SF, Murphy PM. (1998) CCR5 promoter polymorphism and HIV-1 disease progression. Multicenter AIDS Cohort Study (MACS). Lancet, 352 (9131): 866-70. [PMID:9742978]

46. Meucci O, Fatatis A, Simen AA, Bushell TJ, Gray PW, Miller RJ. (1998) Chemokines regulate hippocampal neuronal signaling and gp120 neurotoxicity. Proc Natl Acad Sci USA, 95 (24): 14500-5. [PMID:9826729]

47. Misrahi M, Teglas JP, N'Go N, Burgard M, Mayaux MJ, Rouzioux C, Delfraissy JF, Blanche S. (1998) CCR5 chemokine receptor variant in HIV-1 mother-to-child transmission and disease progression in children. French Pediatric HIV Infection Study Group. JAMA, 279 (4): 277-80. [PMID:9450710]

48. Nanki T, Lipsky PE. (2000) Lack of correlation between chemokine receptor and T(h)1/T(h)2 cytokine expression by individual memory T cells. Int Immunol, 12 (12): 1659-67. [PMID:11099305]

49. Napier C, Sale H, Mosley M, Rickett G, Dorr P, Mansfield R, Holbrook M. (2005) Molecular cloning and radioligand binding characterization of the chemokine receptor CCR5 from rhesus macaque and human. Biochem Pharmacol, 71 (1-2): 163-72. [PMID:16298345]

50. Ng-Cashin J, Kuhns JJ, Burkett SE, Powderly JD, Craven RR, van Deventer HW, Kirby SL, Serody JS. (2003) Host absence of CCR5 potentiates dendritic cell vaccination. J Immunol, 170 (8): 4201-8. [PMID:12682253]

51. Oh SB, Endoh T, Simen AA, Ren D, Miller RJ. (2002) Regulation of calcium currents by chemokines and their receptors. J Neuroimmunol, 123 (1-2): 66-75. [PMID:11880151]

52. Olson WC, Maddon PJ, Tsurushita N, Hinton PR, Vasquez M. (2006) Anti-CCR5 antibody. Patent number: US7122185B2. Assignee: CytoDyn Inc; AbbVie Biotherapeutics Inc. Priority date: 22/02/2002. Publication date: 17/10/2006.

53. Ometto L, Zanchetta M, Cabrelle A, Esposito G, Mainardi M, Chieco-Bianchi L, De Rossi A. (1999) Restriction of HIV type 1 infection in macrophages heterozygous for a deletion in the CC-chemokine receptor 5 gene. AIDS Res Hum Retroviruses, 15: 1441-1452. [PMID:10555107]

54. Ortiz Zacarías NV, van Veldhoven JPD, den Hollander LS, Dogan B, Openy J, Hsiao YY, Lenselink EB, Heitman LH, IJzerman AP. (2019) Synthesis and Pharmacological Evaluation of Triazolopyrimidinone Derivatives as Noncompetitive, Intracellular Antagonists for CC Chemokine Receptors 2 and 5. J Med Chem, 62 (24): 11035-11053. [PMID:31742400]

55. Ottaviani C, Nasorri F, Bedini C, de Pità O, Girolomoni G, Cavani A. (2006) CD56brightCD16(-) NK cells accumulate in psoriatic skin in response to CXCL10 and CCL5 and exacerbate skin inflammation. Eur J Immunol, 36 (1): 118-28. [PMID:16323244]

56. Palani A, Shapiro S, Clader JW, Greenlee WJ, Cox K, Strizki J, Endres M, Baroudy BM. (2001) Discovery of 4-[(Z)-(4-bromophenyl)- (ethoxyimino)methyl]-1'-[(2,4-dimethyl-3- pyridinyl)carbonyl]-4'-methyl-1,4'- bipiperidine N-oxide (SCH 351125): an orally bioavailable human CCR5 antagonist for the treatment of HIV infection. J Med Chem, 44 (21): 3339-42. [PMID:11585437]

57. Peng P, Chen H, Zhu Y, Wang Z, Li J, Luo RH, Wang J, Chen L, Yang LM, Jiang H et al.. (2018) Structure-Based Design of 1-Heteroaryl-1,3-propanediamine Derivatives as a Novel Series of CC-Chemokine Receptor 5 Antagonists. J Med Chem, 61 (21): 9621-9636. [PMID:30234300]

58. Petrek M, Drábek J, Kolek V, Zlámal J, Welsh KI, Bunce M, Weigl E, Du Bois R. (2000) CC chemokine receptor gene polymorphisms in Czech patients with pulmonary sarcoidosis. Am J Respir Crit Care Med, 162 (3 Pt 1): 1000-3. [PMID:10988120]

59. Procopiou PA, Barrett JW, Barton NP, Begg M, Clapham D, Copley RC, Ford AJ, Graves RH, Hall DA, Hancock AP et al.. (2013) Synthesis and structure-activity relationships of indazole arylsulfonamides as allosteric CC-chemokine receptor 4 (CCR4) antagonists. J Med Chem, 56 (5): 1946-60. [PMID:23409871]

60. Raport CJ, Gosling J, Schweickart VL, Gray PW, Charo IF. (1996) Molecular cloning and functional characterization of a novel human CC chemokine receptor (CCR5) for RANTES, MIP-1beta, and MIP-1alpha. J Biol Chem, 271 (29): 17161-6. [PMID:8663314]

61. Ruffing N, Sullivan N, Sharmeen L, Sodroski J, Wu L. (1998) CCR5 has an expanded ligand-binding repertoire and is the primary receptor used by MCP-2 on activated T cells. Cell Immunol, 189 (2): 160-8. [PMID:9790730]

62. Samson M, Labbe O, Mollereau C, Vassart G, Parmentier M. (1996) Molecular cloning and functional expression of a new human CC-chemokine receptor gene. Biochemistry, 35 (11): 3362-7. [PMID:8639485]

63. Samson M, Soularue P, Vassart G, Parmentier M. (1996) The genes encoding the human CC-chemokine receptors CC-CKR1 to CC-CKR5 (CMKBR1-CMKBR5) are clustered in the p21.3-p24 region of chromosome 3. Genomics, 36: 522-526. [PMID:8884276]

64. Sato N, Kuziel WA, Melby PC, Reddick RL, Kostecki V, Zhao W, Maeda N, Ahuja SK, Ahuja SS. (1999) Defects in the generation of IFN-gamma are overcome to control infection with Leishmania donovani in CC chemokine receptor (CCR) 5-, macrophage inflammatory protein-1 alpha-, or CCR2-deficient mice. J Immunol, 163 (10): 5519-25. [PMID:10553079]

65. Schuh JM, Blease K, Hogaboam CM. (2002) The role of CC chemokine receptor 5 (CCR5) and RANTES/CCL5 during chronic fungal asthma in mice. FASEB J, 16 (2): 228-30. [PMID:11744622]

66. Strizki JM, Tremblay C, Xu S, Wojcik L, Wagner N, Gonsiorek W, Hipkin RW, Chou CC, Pugliese-Sivo C, Xiao Y et al.. (2005) Discovery and characterization of vicriviroc (SCH 417690), a CCR5 antagonist with potent activity against human immunodeficiency virus type 1. Antimicrob Agents Chemother, 49 (12): 4911-9. [PMID:16304152]

67. Sørensen TL, Roed H, Sellebjerg F. (2002) Chemokine receptor expression on B cells and effect of interferon-beta in multiple sclerosis. J Neuroimmunol, 122 (1-2): 125-31. [PMID:11777551]

68. Tan Q, Zhu Y, Li J, Chen Z, Han GW, Kufareva I, Li T, Ma L, Fenalti G, Li J et al.. (2013) Structure of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex. Science, 341 (6152): 1387-90. [PMID:24030490]

69. Vallet S, Raje N, Ishitsuka K, Hideshima T, Podar K, Chhetri S, Pozzi S, Breitkreutz I, Kiziltepe T, Yasui H et al.. (2007) MLN3897, a novel CCR1 inhibitor, impairs osteoclastogenesis and inhibits the interaction of multiple myeloma cells and osteoclasts. Blood, 110 (10): 3744-52. [PMID:17715391]

70. van Deventer HW, O'Connor Jr W, Brickey WJ, Aris RM, Ting JP, Serody JS. (2005) C-C chemokine receptor 5 on stromal cells promotes pulmonary metastasis. Cancer Res, 65 (8): 3374-9. [PMID:15833871]

71. Vargas AE, da Silva MA, Silla L, Chies JA. (2005) Polymorphisms of chemokine receptors and eNOS in Brazilian patients with sickle cell disease. Tissue Antigens, 66 (6): 683-90. [PMID:16305685]

72. Westby M, van der Ryst E. (2005) CCR5 antagonists: host-targeted antivirals for the treatment of HIV infection. Antivir Chem Chemother, 16 (6): 339-54. [PMID:16329283]

73. Yang MG, Xiao Z, Cherney RJ, Tebben AJ, Batt DG, Brown GD, Chen J, Cvijic ME, Dabros M, Duncia JV et al.. (2019) Use of a Conformational-Switching Mechanism to Modulate Exposed Polarity: Discovery of CCR2 Antagonist BMS-741672. ACS Med Chem Lett, 10 (3): 300-305. [PMID:30891130]

74. Yang MG, Xiao Z, Zhao R, Tebben AJ, Wang B, Cherney RJ, Batt DG, Brown GD, Cvijic ME, Duncia JV et al.. (2021) Discovery of BMS-753426: A Potent Orally Bioavailable Antagonist of CC Chemokine Receptor 2. ACS Med Chem Lett, 12 (6): 969-975. [PMID:34141082]

75. Yano S, Mentaverri R, Kanuparthi D, Bandyopadhyay S, Rivera A, Brown EM, Chattopadhyay N. (2005) Functional expression of beta-chemokine receptors in osteoblasts: role of regulated upon activation, normal T cell expressed and secreted (RANTES) in osteoblasts and regulation of its secretion by osteoblasts and osteoclasts. Endocrinology, 146 (5): 2324-35. [PMID:15718270]

76. Zhao J, Ma L, Wu YL, Wang P, Hu W, Pei G. (1998) Chemokine receptor CCR5 functionally couples to inhibitory G proteins and undergoes desensitization. J Cell Biochem, 71: 36-45. [PMID:9736452]

77. Zhou Y, Kurihara T, Ryseck RP, Yang Y, Ryan C, Loy J, Warr G, Bravo R. (1998) Impaired macrophage function and enhanced T cell-dependent immune response in mice lacking CCR5, the mouse homologue of the major HIV-1 coreceptor. J Immunol, 160 (8): 4018-25. [PMID:9558111]

78. Zoffmann S, Turcatti G, Galzi J, Dahl M, Chollet A. (2001) Synthesis and characterization of fluorescent and photoactivatable MIP-1alpha ligands and interactions with chemokine receptors CCR1 and CCR5. J Med Chem, 44 (2): 215-22. [PMID:11170631]

Contributors

Show »

How to cite this page