Top ▲
Target has curated data in GtoImmuPdb
Target id: 601
Nomenclature: Liver X receptor-β
Systematic Nomenclature: NR1H2
Gene and Protein Information | |||||
Species | AA | Chromosomal Location | Gene Symbol | Gene Name | Reference |
Human | 460 | 19q13.3 | NR1H2 | nuclear receptor subfamily 1 group H member 2 | 36 |
Mouse | 446 | 7 B3 | Nr1h2 | nuclear receptor subfamily 1, group H, member 2 | 35 |
Rat | 446 | 1q22 | Nr1h2 | nuclear receptor subfamily 1, group H, member 2 | 37 |
Database Links | |
Alphafold | P55055 (Hs), Q60644 (Mm), Q62755 (Rn) |
CATH/Gene3D | 3.30.50.10 |
ChEMBL Target | CHEMBL4093 (Hs), CHEMBL2417346 (Mm), CHEMBL4105785 (Rn) |
Ensembl Gene | ENSG00000131408 (Hs), ENSMUSG00000060601 (Mm), ENSRNOG00000019812 (Rn) |
Entrez Gene | 7376 (Hs), 22260 (Mm), 58851 (Rn) |
Human Protein Atlas | ENSG00000131408 (Hs) |
KEGG Gene | hsa:7376 (Hs), mmu:22260 (Mm), rno:58851 (Rn) |
OMIM | 600380 (Hs) |
Pharos | P55055 (Hs) |
RefSeq Nucleotide | NM_007121 (Hs), NM_009473 (Mm), NM_031626 (Rn) |
RefSeq Protein | NP_009052 (Hs), NP_033499 (Mm), NP_113814 (Rn) |
SynPHARM |
6433 (in complex with 24(S), 25-epoxycholesterol) 6435 (in complex with GW3965) 6436 (in complex with T0901317) |
UniProtKB | P55055 (Hs), Q60644 (Mm), Q62755 (Rn) |
Wikipedia | NR1H2 (Hs) |
Selected 3D Structures | |||||||||||||
|
Natural/Endogenous Ligands |
24(S), 25-epoxycholesterol |
24(S)-hydroxycholesterol |
27-hydroxycholesterol |
22R-hydroxycholesterol |
Comments: A series of oxysterols are natural ligands |
Potency order (Human) |
20S-hydroxycholesterol, 22R-hydroxycholesterol, 24(S)-hydroxycholesterol > 25-hydroxycholesterol, 27-hydroxycholesterol [21] |
Download all structure-activity data for this target as a CSV file
Agonists | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | View all chemical structures | Click column headers to sort | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Agonist Comments | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Other endogenous agonist include cholic acid [39]. |
Antagonists | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | View all chemical structures | Click column headers to sort | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
View species-specific antagonist tables | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Antagonist Comments | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inverse agonist SR9243 induces interaction between Liver-X receptors and their corepressors, resulting in an inhibition of aerobic glycolysis and lipogenesis [9]. |
Allosteric Modulators | |||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | View all chemical structures | Click column headers to sort | |||||||||||||||||||||||||||||||||||||||||||||||||
|
Immunopharmacology Comments |
Liver X receptors are involved in the regulation of lipid metabolism and inflammatory responses. LXRs are drug targets for cholesterol homeostasis (hypercholesterolaemia), inflammation, and with therapeutic potential in neurodegenerative diseases [42]. Vitae Pharmaceuticals/Allergan had their selective LXRβ agonist VTP-38543 (structure not disclosed) in Phase 2 trial as a topically applied atopic dermatitis candidate [7] (NCT02655679). The VTP-38543 programme was terminated due to (unreported) safety issues that were identified in Phase 2. |
Co-binding Partners | |||
Name | Interaction | Effect | Reference |
Retinoid X receptor-α | Physical | 35 | |
SHP | Physical, Functional | 3 |
Main Co-regulators | ||||||
Name | Activity | Specific | Ligand dependent | AF-2 dependent | Comments | References |
NCOA1 | Co-activator | No | Yes | No | 30 | |
EP300 | Co-activator | No | Yes | No | 15 | |
NCOR1 | Co-activator | No | Yes | No | 14 | |
NCOR2 | None | No | Yes | No | 14 |
Main Target Genes | |||||
Name | Species | Effect | Technique | Comments | References |
VEGFA | Human | Activated | Angiogenesis and neovascularization | 41 | |
ABCA1 | Human | Activated | Transient transfection, EMSA | Reverse cholesterol transport efflux | 6,33 |
NR1H3 | Human | Activated | Transient transfection, EMSA | 19 | |
CPOC1 | Human | Activated | Transient transfection | 26 | |
APOC2 | Human | Activated | Transient transfection | 26 | |
APOC4 | Human | Activated | Transient transfection | 26 | |
CETP | Human | Activated | Transient transfection, EMSA | 25 | |
ABCG1 | Human | Activated | Transient transfection, EMSA | Reverse cholesterol transport efflux | 18,40 |
SREBF1 | Human | Activated | Transient transfection, EMSA | Fatty acid and triglycerides synthesis | 32 |
SLC2A4 | Human | Activated | Transient transfection, EMSA | Insulin stimulated glucose uptake | 8 |
FASN | Human | Activated | Transient transfection, EMSA | Fatty acid synthesis | 17 |
Abcg8 | Mouse | Activated | Intestinal cholesterol efflux | 31 | |
Npc1l1 | Mouse | Repressed | Intestinal cholesterol absorption | 23 | |
APOE | Human | Activated | Transient transfection, EMSA | Cholesterol transport | 20 |
Scd1 | Mouse | Activated | Unsaturated fatty acid synthesis | ||
CYP7A1 | Human | Activated | Cholesterol to bile acid conversion | ||
Abcg5 | Mouse | Activated | Intestinal cholesterol efflux | 31 | |
Mylip | Mouse | Activated | Induce lipoprotein receptor (LDLR) degradation, the receptor responsible for cholesterol uptake | 44 |
Tissue Distribution | ||||||||
|
Physiological Consequences of Altering Gene Expression | ||||||||||
|
||||||||||
Physiological Consequences of Altering Gene Expression Comments | ||||||||||
Normal resistance to dietary cholesterol, unlike the LXRα KO. LXRβ KO mice are also reported to show alterations in adipocyte growth, glucose homeostasis and beta cell function. |
Phenotypes, Alleles and Disease Models | Mouse data from MGI | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
1. Alberti S, Schuster G, Parini P, Feltkamp D, Diczfalusy U, Rudling M, Angelin B, Björkhem I, Pettersson S, Gustafsson JA. (2001) Hepatic cholesterol metabolism and resistance to dietary cholesterol in LXRbeta-deficient mice. J Clin Invest, 107 (5): 565-73. [PMID:11238557]
2. AstraZeneca. AZD9291. Accessed on 12/09/2014. Modified on 12/09/2014. astrazeneca.com, http://openinnovation.astrazeneca.com/what-we-offer/compound/azd9291/
3. Brendel C, Schoonjans K, Botrugno OA, Treuter E, Auwerx J. (2002) The small heterodimer partner interacts with the liver X receptor alpha and represses its transcriptional activity. Mol Endocrinol, 16 (9): 2065-76. [PMID:12198243]
4. Chao EY, Caravella JA, Watson MA, Campobasso N, Ghisletti S, Billin AN, Galardi C, Wang P, Laffitte BA, Iannone MA et al.. (2008) Structure-guided design of N-phenyl tertiary amines as transrepression-selective liver X receptor modulators with anti-inflammatory activity. J Med Chem, 51 (18): 5758-65. [PMID:18800767]
5. Collins JL, Fivush AM, Watson MA, Galardi CM, Lewis MC, Moore LB, Parks DJ, Wilson JG, Tippin TK, Binz JG, Plunket KD, Morgan DG, Beaudet EJ, Whitney KD, Kliewer SA, Willson TM. (2002) Identification of a nonsteroidal liver X receptor agonist through parallel array synthesis of tertiary amines. J Med Chem, 45 (10): 1963-6. [PMID:11985463]
6. Costet P, Luo Y, Wang N, Tall AR. (2000) Sterol-dependent transactivation of the ABC1 promoter by the liver X receptor/retinoid X receptor. J Biol Chem, 275 (36): 28240-5. [PMID:10858438]
7. Czarnowicki T, Dohlman AB, Malik K, Antonini D, Bissonnette R, Chan TC, Zhou L, Wen HC, Estrada Y, Xu H et al.. (2018) Effect of short-term liver X receptor activation on epidermal barrier features in mild to moderate atopic dermatitis: A randomized controlled trial. Ann Allergy Asthma Immunol, 120 (6): 631-640.e11. [PMID:29567358]
8. Dalen KT, Ulven SM, Bamberg K, Gustafsson JA, Nebb HI. (2003) Expression of the insulin-responsive glucose transporter GLUT4 in adipocytes is dependent on liver X receptor alpha. J Biol Chem, 278 (48): 48283-91. [PMID:12970362]
9. Flaveny CA, Griffett K, El-Gendy Bel-D, Kazantzis M, Sengupta M, Amelio AL, Chatterjee A, Walker J, Solt LA, Kamenecka TM et al.. (2015) Broad Anti-tumor Activity of a Small Molecule that Selectively Targets the Warburg Effect and Lipogenesis. Cancer Cell, 28 (1): 42-56. [PMID:26120082]
10. Fu X, Menke JG, Chen Y, Zhou G, MacNaul KL, Wright SD, Sparrow CP, Lund EG. (2001) 27-hydroxycholesterol is an endogenous ligand for liver X receptor in cholesterol-loaded cells. J Biol Chem, 276 (42): 38378-87. [PMID:11504730]
11. Gerin I, Dolinsky VW, Shackman JG, Kennedy RT, Chiang SH, Burant CF, Steffensen KR, Gustafsson JA, MacDougald OA. (2005) LXRbeta is required for adipocyte growth, glucose homeostasis, and beta cell function. J Biol Chem, 280 (24): 23024-31. [PMID:15831500]
12. Griffett K, Solt LA, El-Gendy Bel-D, Kamenecka TM, Burris TP. (2013) A liver-selective LXR inverse agonist that suppresses hepatic steatosis. ACS Chem Biol, 8 (3): 559-67. [PMID:23237488]
13. Hoerer S, Schmid A, Heckel A, Budzinski RM, Nar H. (2003) Crystal structure of the human liver X receptor beta ligand-binding domain in complex with a synthetic agonist. J Mol Biol, 334 (5): 853-61. [PMID:14643652]
14. Hu X, Li S, Wu J, Xia C, Lala DS. (2003) Liver X receptors interact with corepressors to regulate gene expression. Mol Endocrinol, 17 (6): 1019-26. [PMID:12663743]
15. Huuskonen J, Fielding PE, Fielding CJ. (2004) Role of p160 coactivator complex in the activation of liver X receptor. Arterioscler Thromb Vasc Biol, 24 (4): 703-8. [PMID:14764426]
16. Janowski BA, Willy PJ, Devi TR, Falck JR, Mangelsdorf DJ. (1996) An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha. Nature, 383 (6602): 728-31. [PMID:8878485]
17. Joseph SB, Laffitte BA, Patel PH, Watson MA, Matsukuma KE, Walczak R, Collins JL, Osborne TF, Tontonoz P. (2002) Direct and indirect mechanisms for regulation of fatty acid synthase gene expression by liver X receptors. J Biol Chem, 277 (13): 11019-25. [PMID:11790787]
18. Kennedy MA, Venkateswaran A, Tarr PT, Xenarios I, Kudoh J, Shimizu N, Edwards PA. (2001) Characterization of the human ABCG1 gene: liver X receptor activates an internal promoter that produces a novel transcript encoding an alternative form of the protein. J Biol Chem, 276 (42): 39438-47. [PMID:11500512]
19. Laffitte BA, Joseph SB, Walczak R, Pei L, Wilpitz DC, Collins JL, Tontonoz P. (2001) Autoregulation of the human liver X receptor alpha promoter. Mol Cell Biol, 21 (22): 7558-68. [PMID:11604492]
20. Laffitte BA, Repa JJ, Joseph SB, Wilpitz DC, Kast HR, Mangelsdorf DJ, Tontonoz P. (2001) LXRs control lipid-inducible expression of the apolipoprotein E gene in macrophages and adipocytes. Proc Natl Acad Sci USA, 98 (2): 507-12. [PMID:11149950]
21. Lehmann JM, Kliewer SA, Moore LB, Smith-Oliver TA, Oliver BB, Su JL, Sundseth SS, Winegar DA, Blanchard DE, Spencer TA, Willson TM. (1997) Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway. J Biol Chem, 272 (6): 3137-40. [PMID:9013544]
22. Li N, Wang X, Xu Y, Lin Y, Zhu N, Liu P, Lu D, Si S. (2017) Identification of a Novel Liver X Receptor Agonist that Regulates the Expression of Key Cholesterol Homeostasis Genes with Distinct Pharmacological Characteristics. Mol Pharmacol, 91 (4): 264-276. [PMID:28087808]
23. Lo Sasso G, Murzilli S, Salvatore L, D'Errico I, Petruzzelli M, Conca P, Jiang ZY, Calabresi L, Parini P, Moschetta A. (2010) Intestinal specific LXR activation stimulates reverse cholesterol transport and protects from atherosclerosis. Cell Metab, 12 (2): 187-93. [PMID:20674863]
24. Lu TT, Repa JJ, Mangelsdorf DJ. (2001) Orphan nuclear receptors as eLiXiRs and FiXeRs of sterol metabolism. J Biol Chem, 276 (41): 37735-8. [PMID:11459853]
25. Luo Y, Tall AR. (2000) Sterol upregulation of human CETP expression in vitro and in transgenic mice by an LXR element. J Clin Invest, 105 (4): 513-20. [PMID:10683381]
26. Mak PA, Laffitte BA, Desrumaux C, Joseph SB, Curtiss LK, Mangelsdorf DJ, Tontonoz P, Edwards PA. (2002) Regulated expression of the apolipoprotein E/C-I/C-IV/C-II gene cluster in murine and human macrophages. A critical role for nuclear liver X receptors alpha and beta. J Biol Chem, 277 (35): 31900-8. [PMID:12032151]
27. Menke JG, Macnaul KL, Hayes NS, Baffic J, Chao YS, Elbrecht A, Kelly LJ, Lam MH, Schmidt A, Sahoo S, Wang J, Wright SD, Xin P, Zhou G, Moller DE, Sparrow CP. (2002) A novel liver X receptor agonist establishes species differences in the regulation of cholesterol 7alpha-hydroxylase (CYP7a). Endocrinology, 143 (7): 2548-58. [PMID:12072387]
28. Mohan R. (2013) Liver x receptor (lxr) modulators for the treatment of dermal diseases, disorders and conditions. Patent number: WO2013130892. Assignee: Anayaderm, Inc. Priority date: 02/03/2012. Publication date: 06/09/2013.
29. Nomura S, Endo-Umeda K, Aoyama A, Makishima M, Hashimoto Y, Ishikawa M. (2015) Styrylphenylphthalimides as Novel Transrepression-Selective Liver X Receptor (LXR) Modulators. ACS Med Chem Lett, 6 (8): 902-7. [PMID:26288691]
30. Otte K, Kranz H, Kober I, Thompson P, Hoefer M, Haubold B, Remmel B, Voss H, Kaiser C, Albers M, Cheruvallath Z, Jackson D, Casari G, Koegl M, Pääbo S, Mous J, Kremoser C, Deuschle U. (2003) Identification of farnesoid X receptor beta as a novel mammalian nuclear receptor sensing lanosterol. Mol Cell Biol, 23 (3): 864-72. [PMID:12529392]
31. Repa JJ, Berge KE, Pomajzl C, Richardson JA, Hobbs H, Mangelsdorf DJ. (2002) Regulation of ATP-binding cassette sterol transporters ABCG5 and ABCG8 by the liver X receptors alpha and beta. J Biol Chem, 277 (21): 18793-800. [PMID:11901146]
32. Repa JJ, Liang G, Ou J, Bashmakov Y, Lobaccaro JM, Shimomura I, Shan B, Brown MS, Goldstein JL, Mangelsdorf DJ. (2000) Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta. Genes Dev, 14 (22): 2819-30. [PMID:11090130]
33. Repa JJ, Turley SD, Lobaccaro JA, Medina J, Li L, Lustig K, Shan B, Heyman RA, Dietschy JM, Mangelsdorf DJ. (2000) Regulation of absorption and ABC1-mediated efflux of cholesterol by RXR heterodimers. Science, 289 (5484): 1524-9. [PMID:10968783]
34. Schultz JR, Tu H, Luk A, Repa JJ, Medina JC, Li L, Schwendner S, Wang S, Thoolen M, Mangelsdorf DJ, Lustig KD, Shan B. (2000) Role of LXRs in control of lipogenesis. Genes Dev, 14 (22): 2831-8. [PMID:11090131]
35. Seol W, Choi HS, Moore DD. (1995) Isolation of proteins that interact specifically with the retinoid X receptor: two novel orphan receptors. Mol Endocrinol, 9 (1): 72-85. [PMID:7760852]
36. Shinar DM, Endo N, Rutledge SJ, Vogel R, Rodan GA, Schmidt A. (1994) NER, a new member of the gene family encoding the human steroid hormone nuclear receptor. Gene, 147 (2): 273-6. [PMID:7926814]
37. Song C, Kokontis JM, Hiipakka RA, Liao S. (1994) Ubiquitous receptor: a receptor that modulates gene activation by retinoic acid and thyroid hormone receptors. Proc Natl Acad Sci USA, 91 (23): 10809-13. [PMID:7971966]
38. Sparrow CP, Baffic J, Lam MH, Lund EG, Adams AD, Fu X, Hayes N, Jones AB, Macnaul KL, Ondeyka J, Singh S, Wang J, Zhou G, Moller DE, Wright SD, Menke JG. (2002) A potent synthetic LXR agonist is more effective than cholesterol loading at inducing ABCA1 mRNA and stimulating cholesterol efflux. J Biol Chem, 277 (12): 10021-7. [PMID:11790770]
39. Theofilopoulos S, Wang Y, Kitambi SS, Sacchetti P, Sousa KM, Bodin K, Kirk J, Saltó C, Gustafsson M, Toledo EM et al.. (2013) Brain endogenous liver X receptor ligands selectively promote midbrain neurogenesis. Nat Chem Biol, 9 (2): 126-33. [PMID:23292650]
40. Venkateswaran A, Repa JJ, Lobaccaro JM, Bronson A, Mangelsdorf DJ, Edwards PA. (2000) Human white/murine ABC8 mRNA levels are highly induced in lipid-loaded macrophages. A transcriptional role for specific oxysterols. J Biol Chem, 275 (19): 14700-7. [PMID:10799558]
41. Walczak R, Joseph SB, Laffitte BA, Castrillo A, Pei L, Tontonoz P. (2004) Transcription of the vascular endothelial growth factor gene in macrophages is regulated by liver X receptors. J Biol Chem, 279 (11): 9905-11. [PMID:14699103]
42. Xu P, Li D, Tang X, Bao X, Huang J, Tang Y, Yang Y, Xu H, Fan X. (2013) LXR agonists: new potential therapeutic drug for neurodegenerative diseases. Mol Neurobiol, 48 (3): 715-28. [PMID:23625315]
43. Yang C, McDonald JG, Patel A, Zhang Y, Umetani M, Xu F, Westover EJ, Covey DF, Mangelsdorf DJ, Cohen JC et al.. (2006) Sterol intermediates from cholesterol biosynthetic pathway as liver X receptor ligands. J Biol Chem, 281 (38): 27816-26. [PMID:16857673]
44. Zelcer N, Hong C, Boyadjian R, Tontonoz P. (2009) LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor. Science, 325 (5936): 100-4. [PMID:19520913]
45. Zuercher WJ, Buckholz RG, Campobasso N, Collins JL, Galardi CM, Gampe RT, Hyatt SM, Merrihew SL, Moore JT, Oplinger JA et al.. (2010) Discovery of tertiary sulfonamides as potent liver X receptor antagonists. J Med Chem, 53 (8): 3412-6. [PMID:20345102]