Top ▲

CoV 3C-like (main) protease

Click here for help

Target not currently curated in GtoImmuPdb

Target id: 3111

Nomenclature: CoV 3C-like (main) protease

Family: Coronavirus (CoV) proteins

Gene and Protein Information Click here for help
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
SARS-CoV-2 - 306
SARS-CoV - 306
Gene and Protein Information Comments
The SARS-CoV main protease (Mpro) is a 306 amino acid cysteine protease that is encoded in the viral RNA replicase gene. It is amino acids 3241-3546 of the full length SARS-CoV polyprotein (3919 amino acids).
The SARS-CoV-2 Mpro is also 306 amino acids (3264-3569 of the full length polyprotein). The RefSeq YP_009725301 was allocated to SARS-CoV-2 Mpro. The protein has been crystalised in complex with the inhibitor PRD_002214 (N3), and the structure was submitted to the RCSB Protein Databank with ID 6LU7 [28]. The UniProt ID P0DTD1 refers to the complete SARS-CoV-2 replicase polyprotein (length 7096 amino acids). Mpro has been assigned the IUBMB enzyme nomenclature identifier EC 3.4.22.69.
Previous and Unofficial Names Click here for help
3c-like proteinase | SARS-CoV-2 Mpro | Chain A, 3c-like Proteinase | 3CL protease | Mpro | nsp5
Database Links Click here for help
ChEMBL Target
RefSeq Protein
UniProtKB
Selected 3D Structures Click here for help
Image of receptor 3D structure from RCSB PDB
Description:  Structure of SARS-CoV-2 3CL protease in complex with inhibitor 10c
PDB Id:  7T49
Ligand:  compound 10c [Dampalla et al., 2022]
Resolution:  1.75Å
Species:  SARS-CoV-2
References:  16
Image of receptor 3D structure from RCSB PDB
Description:  Crystal structure (monoclinic form) of the complex resulting from the reaction between SARS-CoV-2 (2019-nCoV) main protease and tert-butyl (1-((S)-1-(((S)-4-(benzylamino)-3,4-dioxo-1-((S)-2-oxopyrrolidin-3-yl)butan-2-yl)amino)-3-cyclopropyl-1-oxopropan-2-yl)-2-oxo-1,2-dihydropyridin-3-yl)carbamate (alpha-ketoamide 13b)
PDB Id:  6Y2F
Ligand:  compound 13b [PMID: 32198291]
Resolution:  1.95Å
Species:  SARS-CoV-2
References:  69
Image of receptor 3D structure from RCSB PDB
Description:  The crystal structure of COVID-19 main protease in complex with an inhibitor N3 (PRD_002214).
PDB Id:  6LU7
Ligand:  PRD_002214
Resolution:  2.16Å
Species:  SARS-CoV-2
References:  28
Image of receptor 3D structure from RCSB PDB
Description:  The crystal structure of COVID-19 main protease in complex with an inhibitor 11a
PDB Id:  6LZE
Ligand:  bofutrelvir
Resolution:  1.5Å
Species:  SARS-CoV-2
References:  14
Image of receptor 3D structure from RCSB PDB
Description:  Crystal structure of SARS-CoV 3C-like protease in apo form
PDB Id:  3VB3
Resolution:  2.2Å
Species:  SARS-CoV
References:  11
Image of receptor 3D structure from RCSB PDB
Description:  Crystal structure of SARS coronavirus 3CL protease inhibitor complex
PDB Id:  2GX4
Ligand:  TG-0205221
Resolution:  1.93Å
Species:  SARS-CoV
References:  63
Image of receptor 3D structure from RCSB PDB
Description:  Covalent complex of SARS-CoV main protease with N-[(2S)-1-({(2S,3S)-3,4-dihydroxy-1-[(3S)-2-oxopyrrolidin-3-yl]butan-2-yl}amino)-4-methyl-1-oxopentan-2-yl]-4-methoxy-1H-indole-2-carboxamide
PDB Id:  6XHL
Ligand:  PF-00835231
Resolution:  1.47Å
Species:  SARS-CoV
References:  26
Image of receptor 3D structure from RCSB PDB
Description:  Crystal structure of SARS-CoV-2 main protease in complex with MI-23
PDB Id:  7D3I
Ligand:  MI-23
Resolution:  2.0Å
Species:  SARS-CoV-2
References:  46
Image of receptor 3D structure from RCSB PDB
Description:  The crystal structure of SARS-CoV-2 Main Protease in complex with masitinib
PDB Id:  7JU7
Ligand:  masitinib
Resolution:  1.6Å
Species:  SARS-CoV-2
References:  19
Image of receptor 3D structure from RCSB PDB
Description:  Crystal structure of the SARS-CoV-2 (COVID-19) main protease in complex with inhibitor UAWJ9-36-3
PDB Id:  7lyi
Ligand:  UAWJ9-36-3
Resolution:  1.9Å
Species:  SARS-CoV-2
References:  60
Image of receptor 3D structure from RCSB PDB
Description:  Crystal structure of SARS-CoV-2 main protease in complex with protease inhibitor PF-07321332
PDB Id:  7VH8
Ligand:  nirmatrelvir
Resolution:  1.59Å
Species:  SARS-CoV-2
References:  70
Image of receptor 3D structure from RCSB PDB
Description:  Structure of SARS-CoV2 3CL protease covalently bound to peptidomimetic inhibitor
PDB Id:  7MBI
Ligand:  compound 15l [PMID: 34242027]
Resolution:  2.15Å
Species:  SARS-CoV-2
References:  3
EC number (SARS-CoV-2)
3.4.22.69

Download all structure-activity data for this target as a CSV file go icon to follow link

Inhibitors
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
WU-04 Small molecule or natural product Ligand has a PDB structure SARS-CoV-2 Inhibition 7.4 pKd 27
pKd 7.4 (Kd 3.7x10-8 M) [27]
Description: binding to SARS-CoV-2 Mpro
compound 19 [PMID: 35142215] Small molecule or natural product SARS-CoV-2 Inhibition 7.4 pKd 37
pKd 7.4 (Kd 3.8x10-8 M) [37]
Description: Binding affinity
nirmatrelvir Small molecule or natural product Approved drug SARS-CoV-2 Inhibition 9.6 pKi 42
pKi 9.6 (Ki 2.71x10-10 M) [42]
Description: Determined in vitro, in a TR-FRET enzyme assay
PF-00835231 Small molecule or natural product Ligand has a PDB structure SARS-CoV Inhibition 8.4 pKi 26
pKi 8.4 (Ki 4x10-9 M) [26]
Description: Determined using an in vitro SARS-CoV-1 3CLpro FRET assay.
YH-53 Small molecule or natural product Ligand has a PDB structure SARS-CoV Inhibition 8.2 pKi 50
pKi 8.2 (Ki 6.3x10-9 M) [50]
example 10 [WO2022129953] Small molecule or natural product SARS-CoV-2 Inhibition 8.2 pKi 12
pKi 8.2 (Ki 6.3x10-9 M) [12]
compound 17 [PMID: 33655614] Small molecule or natural product SARS-CoV-2 Inhibition 8.0 pKi 6
pKi 8.0 (Ki 1x10-8 M) [6]
compound 8 [PMID: 33655614] Small molecule or natural product SARS-CoV-2 Inhibition 7.6 pKi 6
pKi 7.6 (Ki 2.4x10-8 M) [6]
YH-53 Small molecule or natural product Ligand has a PDB structure SARS-CoV-2 Inhibition 7.5 – 7.8 pKi 21,24,29
pKi 7.8 (Ki 1.76x10-8 M) [21,24]
pKi 7.5 (Ki 3.47x10-8 M) [29]
CDD-1976 Small molecule or natural product SARS-CoV-2 Inhibition 7.4 pKi 8
pKi 7.4 (Ki 3.7x10-8 M) [8]
TG-0205221 Peptide Ligand has a PDB structure SARS-CoV Inhibition 7.3 pKi 63
pKi 7.3 (Ki 5.3x10-8 M) [63]
TG-0203770 Small molecule or natural product Ligand has a PDB structure SARS-CoV Inhibition 7.2 pKi 32
pKi 7.2 (Ki 5.8x10-8 M) [32]
compound 7d [PMID: 34528437] Small molecule or natural product SARS-CoV-2 Inhibition 7.1 pKi 21
pKi 7.1 (Ki 7.3x10-8 M) [21]
compound 3 [PMID: 16884309] Peptide SARS-CoV Inhibition 6.2 pKi 63
pKi 6.2 (Ki 6.6x10-7 M) [63]
boceprevir Small molecule or natural product Approved drug SARS-CoV-2 Inhibition 5.9 pKi 38
pKi 5.9 (Ki 1.18x10-6 M) [38]
Description: Inhibition of recombinat enzyme in vitro.
Z-AVLD-FMK Peptide SARS-CoV-2 Inhibition 9.1 pIC50 39
pIC50 9.1 (IC50 8x10-10 M) [39]
Description: Inhibition in a FRET-based enzyme activity assay
compound 6 [WO2022133588] Small molecule or natural product SARS-CoV-2 Inhibition 9.0 pIC50 41
pIC50 9.0 (IC50 1x10-9 M) [41]
example 18 [WO2022013684] Small molecule or natural product SARS-CoV-2 Inhibition 8.8 pIC50 43
pIC50 8.8 (IC50 1.55x10-9 M) [43]
YH-6 Small molecule or natural product SARS-CoV-2 Inhibition 8.4 pIC50 25
pIC50 8.4 (IC50 3.8x10-9 M) [25]
compound 17 [PMID: 33655614] Small molecule or natural product SARS-CoV Inhibition 8.1 pIC50 5
pIC50 8.1 (IC50 7x10-9 M) [5]
example 37 [WO2022021841A1] Small molecule or natural product SARS-CoV-2 Inhibition 8.1 pIC50
pIC50 8.1 (IC50 7x10-9 M)
Description: In vitro enzymatic activity inhibition
TKB245 Small molecule or natural product SARS-CoV-2 Inhibition 8.1 pIC50 40
pIC50 8.1 (IC50 7x10-9 M) [40]
Description: inhibition of enzyme activity
MI-23 Small molecule or natural product Ligand has a PDB structure SARS-CoV-2 Inhibition 8.1 pIC50 46
pIC50 8.1 (IC50 7.6x10-9 M) [46]
Description: Inhibition of recombinant enzyme in vitro
PF-00835231 Small molecule or natural product Ligand has a PDB structure SARS-CoV-2 Inhibition 8.1 pIC50 56
pIC50 8.1 (IC50 8x10-9 M) [56]
TG-0205221 Peptide Ligand has a PDB structure SARS-CoV-2 Inhibition 8.1 pIC50 56
pIC50 8.1 (IC50 9x10-9 M) [56]
ensitrelvir Small molecule or natural product Approved drug Ligand has a PDB structure SARS-CoV-2 Inhibition 7.9 pIC50 54
pIC50 7.9 (IC50 1.3x10-8 M) [54]
MI-09 Small molecule or natural product SARS-CoV-2 Inhibition 7.8 pIC50 46
pIC50 7.8 (IC50 1.52x10-8 M) [46]
Description: Inhibition of recombinant enzyme in vitro
NK01-63 Small molecule or natural product Ligand has a PDB structure SARS-CoV-2 Inhibition 7.8 pIC50 35
pIC50 7.8 (IC50 1.6x10-8 M) [35]
MI-30 Small molecule or natural product SARS-CoV-2 Inhibition 7.8 pIC50 46
pIC50 7.8 (IC50 1.72x10-8 M) [46]
Description: Inhibition of recombinant enzyme in vitro
compound 15l [PMID: 34242027] Small molecule or natural product Ligand has a PDB structure SARS-CoV-2 Inhibition 7.7 pIC50 3
pIC50 7.7 (IC50 1.9x10-8 M) [3]
Description: Inhibition of enzymatic activity in a FRET-based kinetic assay.
CCF981 Small molecule or natural product SARS-CoV Inhibition 7.7 pIC50 23
pIC50 7.7 (IC50 1.9x10-8 M) [23]
compound 58 [WO2021252491A1] Small molecule or natural product SARS-CoV-2 Inhibition >7.7 pIC50 55
pIC50 >7.7 (IC50 <2x10-8 M) [55]
GDI-036 Small molecule or natural product SARS-CoV-2 Inhibition 7.7 pIC50 36
pIC50 7.7 (IC50 2x10-8 M) [36]
example 100 [WO2022043374] Small molecule or natural product SARS-CoV-2 Inhibition 7.6 pIC50 9
pIC50 7.6 (IC50 2.4x10-8 M) [9]
nirmatrelvir Small molecule or natural product Approved drug SARS-CoV-2 Inhibition 7.5 – 7.7 pIC50 37
pIC50 7.7 (IC50 1.9x10-8 M) Value provided at a session by Dafydd Owen (Pfizer) at the ACS Spring 2021 meeting; not yet published
pIC50 7.5 (IC50 3.3x10-8 M) [37]
bofutrelvir Small molecule or natural product Ligand has a PDB structure SARS-CoV-2 Inhibition 7.3 – 7.8 pIC50 14,56
pIC50 7.8 (IC50 1.4x10-8 M) [56]
pIC50 7.3 (IC50 5.3x10-8 M) [14]
Description: In vitro inhibition of recombinant SARS-CoV-2 Mpro enzymatic activity.
compound 11b [PMID: 32321856] Small molecule or natural product SARS-CoV-2 Inhibition 7.4 – 7.6 pIC50 14,56
pIC50 7.6 (IC50 2.3x10-8 M) [56]
pIC50 7.4 (IC50 4x10-8 M) [14]
Description: In vitro inhibition of recombinant SARS-CoV-2 Mpro enzymatic activity.
GRL-0496 Small molecule or natural product SARS-CoV Inhibition 7.5 pIC50 20
pIC50 7.5 (IC50 3x10-8 M) [20]
example 100 [WO2022043374] Small molecule or natural product SARS-CoV Inhibition 7.5 pIC50 9
pIC50 7.5 (IC50 3.1x10-8 M) [9]
MP13 Small molecule or natural product SARS-CoV-2 Inhibition 7.5 pIC50 62
pIC50 7.5 (IC50 3.3x10-8 M) [62]
example 4 [WO2017114509] Small molecule or natural product SARS-CoV-2 Inhibition 7.5 pIC50 13
pIC50 7.5 (IC50 3.4x10-8 M) [13]
ML1000 Small molecule or natural product SARS-CoV-2 Inhibition 7.5 pIC50 59
pIC50 7.5 (IC50 3.4x10-8 M) [59]
compound 19 [Zhang et al., 2021] Small molecule or natural product SARS-CoV-2 Inhibition 7.4 pIC50 65
pIC50 7.4 (IC50 4.4x10-8 M) [65]
Description: Inhibition of Mpro proteolytic activity, determined using a substrate peptide cleavage FRET assay.
GC-376 Small molecule or natural product SARS-CoV Inhibition 7.3 – 7.4 pIC50 57,60
pIC50 7.4 (IC50 4.1x10-8 M) [60]
pIC50 7.3 (IC50 5x10-8 M) [57]
GRL-0496 Small molecule or natural product SARS-CoV-2 Inhibition 7.3 pIC50 45
pIC50 7.3 (IC50 5x10-8 M) [45]
compound 15c [PMID: 34865476] Small molecule or natural product MERS-CoV Inhibition 7.3 pIC50 17
pIC50 7.3 (IC50 5x10-8 M) [17]
UAWJ9-36-3 Small molecule or natural product Ligand has a PDB structure SARS-CoV-2 Inhibition 7.3 pIC50 60
pIC50 7.3 (IC50 5.4x10-8 M) [60]
WU-04 Small molecule or natural product Ligand has a PDB structure SARS-CoV Inhibition 7.3 pIC50 27
pIC50 7.3 (IC50 5.5x10-8 M) [27]
Description: inhibition of SARS-CoV Mpro
example 45 [WO2022229458] Small molecule or natural product SARS-CoV-2 Inhibition 7.2 pIC50 7
pIC50 7.2 (IC50 5.7x10-8 M) [7]
INSCoV-614 (1B) Small molecule or natural product SARS-CoV-2 Inhibition 7.2 pIC50 64
pIC50 7.2 (IC50 6x10-8 M) [64]
compound 21 [Zhang et al., 2021] Small molecule or natural product SARS-CoV-2 Inhibition 7.2 pIC50 65
pIC50 7.2 (IC50 6.1x10-8 M) [65]
Description: Inhibition of Mpro proteolytic activity, determined using a substrate peptide cleavage FRET assay.
compound 17 [PMID: 33655614] Small molecule or natural product SARS-CoV-2 Inhibition 7.2 pIC50 56
pIC50 7.2 (IC50 6.5x10-8 M) [56]
CCF981 Small molecule or natural product SARS-CoV-2 Inhibition 7.2 pIC50 23
pIC50 7.2 (IC50 6.8x10-8 M) [23]
GC-373 Peptide SARS-CoV Inhibition 7.2 pIC50 57
pIC50 7.2 (IC50 7x10-8 M) [57]
WU-04 Small molecule or natural product Ligand has a PDB structure SARS-CoV-2 Inhibition 7.1 pIC50 27
pIC50 7.1 (IC50 7.2x10-8 M) [27]
Description: enzyme inhibition
compound 19 [PMID: 35142215] Small molecule or natural product SARS-CoV-2 Inhibition 7.1 pIC50 37
pIC50 7.1 (IC50 7.7x10-8 M) [37]
Description: Inhibtion of protease activity
PET-UNK-29afea89-2 Small molecule or natural product SARS-CoV-2 Inhibition 7.1 pIC50 22
pIC50 7.1 (IC50 8x10-8 M) [22]
compound 2i [PMID: 23245752] Small molecule or natural product Ligand has a PDB structure SARS-CoV-2 Inhibition 7.0 pIC50 56
pIC50 7.0 (IC50 9.4x10-8 M) [56]
UAWJ9-36-3 Small molecule or natural product Ligand has a PDB structure SARS-CoV Inhibition 7.0 pIC50 60
pIC50 7.0 (IC50 9.9x10-8 M) [60]
GC-376 Small molecule or natural product SARS-CoV-2 Inhibition 6.4 – 7.5 pIC50 18,37-38,57,60
pIC50 7.5 (IC50 3x10-8 M) [38]
pIC50 7.4 (IC50 4.1x10-8 M) [60]
pIC50 7.1 (IC50 7.3x10-8 M) [37]
pIC50 6.7 (IC50 1.9x10-7 M) [57]
pIC50 6.4 (IC50 4.1x10-7 M) [18]
GC-373 Peptide SARS-CoV-2 Inhibition 6.4 – 7.4 pIC50 56-57
pIC50 7.4 (IC50 4.2x10-8 M) [56]
pIC50 6.4 (IC50 4x10-7 M) [57]
compound 5 [Zhang et al., 2021] Small molecule or natural product Ligand has a PDB structure SARS-CoV-2 Inhibition 6.8 pIC50 66
pIC50 6.8 (IC50 1.4x10-7 M) [66]
compound 6e [PMID: 32747425] Small molecule or natural product SARS-CoV-2 Inhibition 6.8 pIC50 47
pIC50 6.8 (IC50 1.7x10-7 M) [47]
compound 15c [PMID: 34865476] Small molecule or natural product SARS-CoV-2 Inhibition 6.8 pIC50 17
pIC50 6.8 (IC50 1.7x10-7 M) [17]
compound 1 [PMID: 34210738] Small molecule or natural product SARS-CoV-2 Inhibition 6.8 pIC50 18
pIC50 6.8 (IC50 1.7x10-7 M) [18]
compound 11r [PMID: 32045235] Small molecule or natural product SARS-CoV-2 Inhibition 6.7 pIC50 68
pIC50 6.7 (IC50 1.8x10-7 M) [68]
compound 2a [PMID: 34213885] Small molecule or natural product SARS-CoV-2 Inhibition 6.7 pIC50 15
pIC50 6.7 (IC50 1.8x10-7 M) [15]
Description: Determined in a FRET enzyme assay.
MAT-POS-932d1078-3 Small molecule or natural product SARS-CoV-2 Inhibition 6.7 pIC50 52
pIC50 6.7 (IC50 1.91x10-7 M) [52]
MAT-POS-b3e365b9-1 Small molecule or natural product SARS-CoV-2 Inhibition 6.7 pIC50 22
pIC50 6.7 (IC50 2x10-7 M) [22]
example I-1 [WO2023283831] Small molecule or natural product SARS-CoV-2 Inhibition >6.7 pIC50 49
pIC50 >6.7 (IC50 <2x10-7 M) [49]
compound 10c [Dampalla et al., 2022] Small molecule or natural product Ligand has a PDB structure SARS-CoV-2 Inhibition 6.6 pIC50 16
pIC50 6.6 (IC50 2.4x10-7 M) [16]
walrycin B Small molecule or natural product SARS-CoV-2 Inhibition 6.6 pIC50 71
pIC50 6.6 (IC50 2.6x10-7 M) [71]
Description: Inhibition determined in an HTS fluorogenic enzyme activity assay.
compound 3 [PMID: 16884309] Peptide SARS-CoV-2 Inhibition 6.5 pIC50 56
pIC50 6.5 (IC50 2.86x10-7 M) [56]
compound 10c [Dampalla et al., 2022] Small molecule or natural product Ligand has a PDB structure MERS-CoV Inhibition 6.5 pIC50 16
pIC50 6.5 (IC50 3.3x10-7 M) [16]
DAV-CRI-14a23e73-1 Small molecule or natural product SARS-CoV-2 Inhibition 6.3 pIC50 45
pIC50 6.3 (IC50 4.7x10-7 M) [45]
compound 6j [PMID: 32747425] Small molecule or natural product SARS-CoV-2 Inhibition 6.3 pIC50 47
pIC50 6.3 (IC50 4.8x10-7 M) [47]
compound 13b [PMID: 32198291] Small molecule or natural product Ligand has a PDB structure SARS-CoV-2 Inhibition 6.2 pIC50 68
pIC50 6.2 (IC50 6.7x10-7 M) [68]
compound 6e [PMID: 32747425] Small molecule or natural product SARS-CoV Inhibition 6.1 pIC50 47
pIC50 6.1 (IC50 9x10-7 M) [47]
WU-04 Small molecule or natural product Ligand has a PDB structure MERS-CoV Inhibition 6.0 pIC50
pIC50 6.0 (IC50 1.02x10-6 M)
Description: inhibition of MERS-CoV Mpro
compound 6j [PMID: 32747425] Small molecule or natural product SARS-CoV Inhibition 5.9 pIC50 47
pIC50 5.9 (IC50 1.2x10-6 M) [47]
boceprevir Small molecule or natural product Approved drug SARS-CoV Inhibition 5.6 – 6.0 pIC50 1,4
pIC50 5.6 – 6.0 (IC50 2.5x10-6 – 9.49x10-7 M) [1,4]
compound 2i [PMID: 23245752] Small molecule or natural product Ligand has a PDB structure SARS-CoV Inhibition 5.8 pIC50 30
pIC50 5.8 (IC50 1.7x10-6 M) [30]
MG-132 Peptide Ligand has a PDB structure SARS-CoV-2 Inhibition 5.4 pIC50 38
pIC50 5.4 (IC50 3.9x10-6 M) [38]
boceprevir Small molecule or natural product Approved drug SARS-CoV-2 Inhibition 5.4 pIC50 38
pIC50 5.4 (IC50 4.13x10-6 M) [38]
ML300 Small molecule or natural product Ligand has a PDB structure SARS-CoV Inhibition 5.3 – 5.4 pIC50 23,53
pIC50 5.4 (IC50 4.1x10-6 M) [53]
pIC50 5.3 (IC50 4.45x10-6 M) [23]
compound 451 [WO2021252644A1] Small molecule or natural product SARS-CoV-2 Inhibition 5.0 – 5.7 pIC50 2
pIC50 5.0 – 5.7 (IC50 1x10-5 – 2x10-6 M) [2]
Description: In vitro inhibition of Mpro; binned IC50 value
ML300 Small molecule or natural product Ligand has a PDB structure SARS-CoV-2 Inhibition 5.3 pIC50 23
pIC50 5.3 (IC50 4.99x10-6 M) [23]
MG-115 Peptide SARS-CoV-2 Inhibition 5.2 pIC50 38
pIC50 5.2 (IC50 6.14x10-6 M) [38]
PRD_002214 Small molecule or natural product SARS-CoV Inhibition 5.1 pIC50 61
pIC50 5.1 (IC50 9x10-6 M) [61]
calpeptin Peptide SARS-CoV-2 Inhibition 5.0 pIC50 38
pIC50 5.0 (IC50 1.069x10-5 M) [38]
telaprevir Small molecule or natural product SARS-CoV-2 Inhibition 4.9 pIC50 44
pIC50 4.9 (IC50 1.147x10-5 M) [44]
Z-FA-FMK Peptide Immunopharmacology Ligand SARS-CoV-2 Inhibition 4.9 pIC50 71
pIC50 4.9 (IC50 1.139x10-5 M) [71]
Description: Inhibition determined in an HTS fluorogenic enzyme activity assay.
compound 25c [PMID: 23747811] Peptide SARS-CoV Inhibition 4.7 pIC50 51
pIC50 4.7 (IC50 2.1x10-5 M) [51]
PRD_002214 Small molecule or natural product SARS-CoV-2 Irreversible inhibition - - 28
[28]
View species-specific inhibitor tables
Inhibitor Comments
PRD_002214 (N3) inhibits SARS-CoV-2 plaque formation in Vero cell culture with an IC50 of 16.77 μM [28].
The MERS-CoV inhibitor compound 11r [PMID: 32045235] is active against SARS-CoV-2 [67].
Baker et al. (2021) performed a large scale repurposing screen, which corroborated the inhibitory activity of boceprevir (and other hepatitis C NS3/4A protease inhibitors) against SARS-CoV-2 Mpro [4].
Chia et al. published a review of patents claiming coronavirus 3CLpro inhibitors in October 2021 [10].
Other Binding Ligands
Key to terms and symbols Click column headers to sort
Ligand Sp. Action Value Parameter Reference
CoV Mpro CRBN PROTAC 9 [US11530195] Small molecule or natural product SARS-CoV-2 Binding >7.0 pIC50 34
pIC50 >7.0 (IC50 <1x10-7 M) [34]
CoV Mpro VHL PROTAC 9 [US11518759] Small molecule or natural product SARS-CoV-2 Binding >7.0 pIC50 33
pIC50 >7.0 (IC50 <1x10-7 M) [33]
General Comments
The coronavirus (CoV) main proteases (Mpro) are cysteine proteases that are encoded in the viral RNA replicase gene. Mpro catalyses the proteolytic processing (cleavage) of replicase precursor polyproteins in to discrete functional proteins. In total There are 11 Mpro cleavage site within the C-terminus of the replicase polyprotein. Mpro plays a central role in the viral life cycle, and in light of evidence from other coronaviruses, SARS-CoV Mpro was a lead target for antiviral drug discovery. Many of the compounds that were discovered to inhibit the activity of MERS- and SARS-CoV Mpro enzymes have been tested for activity against SARS-CoV-2 [48]. Inhibitor design and development in response to SARS-CoV-2 has been intense [31].

Mpro has been reported to induce damage to the microvascular network in the brain, via proteolytic cleavage and inactivation of the endothelially-expressed protein NEMO (an essential NF-κB modulator with a central role in immunity; HGNC symbol IKBKG) [58]. Depletion of NEMO leads to cell death, and this cell death is dependent on receptor-interacting protein kinase 3 (RIPK3) signalling. A small molecule inhibitor of RIPK1, an upstream kinase that activates RIPK3, was shown to block the Mpro-induced microvascular pathology. It is interesting to note that a RIPK1 inhibitor (SAR443122) is already under clinical evaluation in COVID-19 patients.

Although Mpro is strictly a component of the CoV replicase polyprotein(s) 1a and 1ab, we have included it as a separate entity to allow us to more sensibly curate pharmacological information (particularly regarding inhibitor development) that is specific for this protease, and to facilitate data retrieval.

References

Show »

1. Anson BJ, Chapman ME, Lendy EK, Pshenychnyi S, D’Aquila RT, Satchell KJF, Mesecar AD. (2020) Broad-spectrum inhibition of coronavirus main and papain-like proteases by HCV drugs. Nature Research, PrePrint, Under Review. DOI: 10.21203/rs.3.rs-26344/v1

2. Arnold LD, Jennings A, Keung W. (2021) Inhibitors of cysteine proteases and methods of use thereof. Patent number: WO2021252644A1. Assignee: Pardes Biosciences, Inc.. Priority date: 09/06/2020. Publication date: 16/12/2021.

3. Bai B, Belovodskiy A, Hena M, Kandadai AS, Joyce MA, Saffran HA, Shields JA, Khan MB, Arutyunova E, Lu J et al.. (2021) Peptidomimetic α-Acyloxymethylketone Warheads with Six-Membered Lactam P1 Glutamine Mimic: SARS-CoV-2 3CL Protease Inhibition, Coronavirus Antiviral Activity, and in Vitro Biological Stability. J Med Chem, [Epub ahead of print]. DOI: 10.1021/acs.jmedchem.1c00616 [PMID:34242027]

4. Baker JD, Uhrich RL, Kraemer GC, Love JE, Kraemer BC. (2021) A drug repurposing screen identifies hepatitis C antivirals as inhibitors of the SARS-CoV2 main protease. PLoS One, 16 (2): e0245962. [PMID:33524017]

5. Botyanszki J, Catalano G, Chong PY, Dickson H, Jin Q, Leivers A, Maynard A, Liao X, Miller J, Shotwell JB et al.. (2018) Compounds that inhibit 3c and 3cl proteases and methods of use thereof. Patent number: WO2018042343A2. Assignee: Glaxosmithkline Intellectual Property (No.2) Limited. Priority date: 30/08/2016. Publication date: 08/03/2018.

6. Breidenbach J, Lemke C, Pillaiyar T, Schäkel L, Al Hamwi G, Diett M, Gedschold R, Geiger N, Lopez V, Mirza S et al.. (2021) Targeting the Main Protease of SARS-CoV-2: From the Establishment of High Throughput Screening to the Design of Tailored Inhibitors. Angew Chem Int Ed Engl, [Epub ahead of print]. DOI: 0.1002/anie.202016961 [PMID:33655614]

7. Carlsson J, Danielson H, Moodie L, Sandstrom A. (2022) SUBSTITUTED HYDANTOIN COMPOUNDS, METHODS FOR PREPARATION THEREOF AND USE THEREOF IN THE TREATMENT AND/OR PREVENTION OF A CORONA VIRUS DISEASE. Patent number: WO2022229458. Priority date: 22/06/2021. Publication date: 03/11/2022.

8. Chamakuri S, Lu S, Ucisik MN, Bohren KM, Chen YC, Du HC, Faver JC, Jimmidi R, Li F, Li JY et al.. (2021) DNA-encoded chemistry technology yields expedient access to SARS-CoV-2 Mpro inhibitors. Proc Natl Acad Sci U S A, 118 (36). DOI: 10.1073/pnas.2111172118 [PMID:34426525]

9. Chen J, Liang C, Miao K, Wu Y, Yun H, Zhang W. (2022) Aminocarbamoyl compounds for the treatment of viral infections. Patent number: WO2022043374. Assignee: Hoffman La Roche. Priority date: 25/08/2021. Publication date: 03/03/2022.

10. Chia CSB, Xu W, Ng PS. (2021) A patent review on SARS coronavirus main protease (3CLpro) inhibitors. ChemMedChem, [Epub ahead of print]. DOI: 10.1002/cmdc.202100576 [PMID:34651447]

11. Chuck CP, Chen C, Ke Z, Wan DC, Chow HF, Wong KB. (2013) Design, synthesis and crystallographic analysis of nitrile-based broad-spectrum peptidomimetic inhibitors for coronavirus 3C-like proteases. Eur J Med Chem, 59: 1-6. [PMID:23202846]

12. Congreve MS, Christopher JA, Pickworth M, De Graff C, Higueruelo AP, Mason JS, Kulkarni SS. (2022) SARS-COV-2 MPRO INHIBITOR COMPOUNDS. Patent number: WO2022129953. Assignee: HEPTARES THERAPEUTICS LIMITED. Priority date: 18/12/2021. Publication date: 23/06/2022.

13. Dai W, Jochmans D, Xie H, Yang H, Li J, Su H, Chang D, Wang J, Peng J, Zhu L et al.. (2021) Design, Synthesis, and Biological Evaluation of Peptidomimetic Aldehydes as Broad-Spectrum Inhibitors against Enterovirus and SARS-CoV-2. J Med Chem, [Epub ahead of print]. DOI: 10.1021/acs.jmedchem.0c02258 [PMID:33872498]

14. Dai W, Zhang B, Jiang XM, Su H, Li J, Zhao Y, Xie X, Jin Z, Peng J, Liu F et al.. (2020) Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science, 368 (6497): 1331-1335. [PMID:32321856]

15. Dampalla CS, Kim Y, Bickmeier N, Rathnayake AD, Nguyen HN, Zheng J, Kashipathy MM, Baird MA, Battaile KP, Lovell S et al.. (2021) Structure-Guided Design of Conformationally Constrained Cyclohexane Inhibitors of Severe Acute Respiratory Syndrome Coronavirus-2 3CL Protease. J Med Chem, [Epub ahead of print]. DOI: 10.1021/acs.jmedchem.1c00319 [PMID:34213885]

16. Dampalla CS, Rathnayake AD, Galasiti Kankanamalage AC, Kim Y, Perera KD, Nguyen HN, Miller MJ, Madden TK, Picard HR, Thurman HA et al.. (2022) Structure-Guided Design of Potent Spirocyclic Inhibitors of Severe Acute Respiratory Syndrome Coronavirus-2 3C-like Protease. Journal of Medicinal Chemistry,. DOI: 10.1021/acs.jmedchem.2c00224

17. Dampalla CS, Rathnayake AD, Perera KD, Jesri AM, Nguyen HN, Miller MJ, Thurman HA, Zheng J, Kashipathy MM, Battaile KP et al.. (2021) Structure-Guided Design of Potent Inhibitors of SARS-CoV-2 3CL Protease: Structural, Biochemical, and Cell-Based Studies. J Med Chem, 64 (24): 17846-17865. [PMID:34865476]

18. Dampalla CS, Zheng J, Perera KD, Wong LR, Meyerholz DK, Nguyen HN, Kashipathy MM, Battaile KP, Lovell S, Kim Y et al.. (2021) Postinfection treatment with a protease inhibitor increases survival of mice with a fatal SARS-CoV-2 infection. Proc Natl Acad Sci U S A, 118 (29). DOI: 10.1073/pnas.2101555118 [PMID:34210738]

19. Drayman R, DeMarco JK, Jones KA, Azizi S-A, Froggatt HM, Tan K, Maltseva NI, Chen S, Nicolaescu V, Dvorkin S et al.. (2021) Masitinib is a broad coronavirus 3CL inhibitor that blocks replication of SARS-CoV-2. Science, {Epub ahead of print]. DOI: 10.1126/science.abg5827

20. Ghosh AK, Gong G, Grum-Tokars V, Mulhearn DC, Baker SC, Coughlin M, Prabhakar BS, Sleeman K, Johnson ME, Mesecar AD. (2008) Design, synthesis and antiviral efficacy of a series of potent chloropyridyl ester-derived SARS-CoV 3CLpro inhibitors. Bioorg Med Chem Lett, 18 (20): 5684-8. [PMID:18796354]

21. Ghosh AK, Raghavaiah J, Shahabi D, Yadav M, Anson BJ, Lendy EK, Hattori SI, Higashi-Kuwata N, Mitsuya H, Mesecar AD. (2021) Indole Chloropyridinyl Ester-Derived SARS-CoV-2 3CLpro Inhibitors: Enzyme Inhibition, Antiviral Efficacy, Structure-Activity Relationship, and X-ray Structural Studies. J Med Chem, 64 (19): 14702-14714. [PMID:34528437]

22. Glaser J, Sedova A, Galanie S, Kneller DW, Davidson RB, Maradzike E, Del Galdo S, Labbé A, Hsu DJ, Agarwal R et al.. (2022) Hit Expansion of a Noncovalent SARS-CoV-2 Main Protease Inhibitor. ACS Pharmacol Transl Sci, 5 (4): 255-265. [PMID:35434531]

23. Han SH, Goins CM, Arya T, Shin WJ, Maw J, Hooper A, Sonawane DP, Porter MR, Bannister BE, Crouch RD et al.. (2021) Structure-Based Optimization of ML300-Derived, Noncovalent Inhibitors Targeting the Severe Acute Respiratory Syndrome Coronavirus 3CL Protease (SARS-CoV-2 3CLpro). J Med Chem, [Epub ahead of print]. DOI: 10.1021/acs.jmedchem.1c00598 [PMID:34347470]

24. Hattori SI, Higashi-Kuwata N, Hayashi H, Allu SR, Raghavaiah J, Bulut H, Das D, Anson BJ, Lendy EK, Takamatsu Y et al.. (2021) A small molecule compound with an indole moiety inhibits the main protease of SARS-CoV-2 and blocks virus replication. Nat Commun, 12 (1): 668. [PMID:33510133]

25. Hirose Y, Shindo N, Mori M, Onitsuka S, Isogai H, Hamada R, Hiramoto T, Ochi J, Takahashi D, Ueda T et al.. (2022) Discovery of Chlorofluoroacetamide-Based Covalent Inhibitors for Severe Acute Respiratory Syndrome Coronavirus 2 3CL Protease. J Med Chem, 65 (20): 13852-13865. [PMID:36229406]

26. Hoffman RL, Kania RS, Brothers MA, Davies JF, Ferre RA, Gajiwala KS, He M, Hogan RJ, Kozminski K, Li LY et al.. (2020) Discovery of Ketone-Based Covalent Inhibitors of Coronavirus 3CL Proteases for the Potential Therapeutic Treatment of COVID-19. J Med Chem, 63 (21): 12725-12747. [PMID:33054210]

27. Hou N, Shuai L, Zhang L, Xie X, Tang K, Zhu Y, Yu Y, Zhang W, Tan Q, Zhong G et al.. (2023) Development of Highly Potent Noncovalent Inhibitors of SARS-CoV-2 3CLpro. ACS Cent Sci, 9 (2): 217-227. [PMID:36844503]

28. Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhang B, Li X, Zhang L, Peng C, Duan Y. (2020) Structure of Mpro from COVID-19 virus and discovery of its inhibitors. bioRxiv, Preprint. DOI: 10.1101/2020.02.26.964882

29. Konno S, Kobayashi K, Senda M, Funai Y, Seki Y, Tamai A, Schakel L, Sakata K, Pillaiyar T, Taguchi A et al.. (2021) 3CL Protease Inhibitors with an Electrophilic Arylketone Moiety as Anti-SARS-CoV-2 Agents. Journal of Medicinal Chemistry, [Epub ahead of print]. DOI: 10.1021/acs.jmedchem.1c00665 [PMID:34313428]

30. Konno S, Thanigaimalai P, Yamamoto T, Nakada K, Kakiuchi R, Takayama K, Yamazaki Y, Yakushiji F, Akaji K, Kiso Y et al.. (2013) Design and synthesis of new tripeptide-type SARS-CoV 3CL protease inhibitors containing an electrophilic arylketone moiety. Bioorg Med Chem, 21 (2): 412-24. [PMID:23245752]

31. La Monica G, Bono A, Lauria A, Martorana A. (2022) Targeting SARS-CoV-2 Main Protease for Treatment of COVID-19: Covalent Inhibitors Structure-Activity Relationship Insights and Evolution Perspectives. J Med Chem, [Epub ahead of print]. DOI: 10.1021/acs.jmedchem.2c01005 [PMID:36169610]

32. Lee CC, Kuo CJ, Ko TP, Hsu MF, Tsui YC, Chang SC, Yang S, Chen SJ, Chen HC, Hsu MC et al.. (2009) Structural basis of inhibition specificities of 3C and 3C-like proteases by zinc-coordinating and peptidomimetic compounds. J Biol Chem, 284 (12): 7646-55. [PMID:19144641]

33. Liang C, Xin L, Tian L, Xia J, Qin N, Li J, Qiang T, Li H, Wang X, Xie X et al.. (2022) Protacs based on VHL ligand targeting coronavirus 3CL protease and preparation method and application thereof. Patent number: US11518759B1. Assignee: Shaanxi Panlong Pharmaceutical Co Ltd. Priority date: 23/06/2022. Publication date: 06/12/2022.

34. Liang C, Xin L, Tian L, Xia J, Qin N, Li J, Qiang T, Li H, Wang X, Xie X et al.. (2022) Protacs targeting coronavirus 3CL protease and preparation method and application thereof. Patent number: US11530195B1. Assignee: Shaanxi Panlong Pharmaceutical Co Ltd. Priority date: 20/05/2022. Publication date: 20/12/2022.

35. Liu H, Iketani S, Zask A, Khanizeman N, Bednarova E, Forouhar F, Fowler B, Hong SJ, Mohri H, Nair MS et al.. (2022) Development of optimized drug-like small molecule inhibitors of the SARS-CoV-2 3CL protease for treatment of COVID-19. Nat Commun, 13 (1): 1891. [PMID:35393402]

36. Liu R, Xu Y, Hua L, Zhou J, Deng H, Chu X, Ding S. (2023) 3CL PROTEASE SMALL-MOLECULE INHIBITOR FOR TREATING OR PREVENTING CORONAVIRUS INFECTION, AND USE THEREOF. Patent number: WO2023011443. Assignee: THE GLOBAL HEALTH DRUG DISCOVERY INSTITUTE [CN]. Priority date: 02/08/2021. Publication date: 09/02/2023.

37. Luttens A, Gullberg H, Abdurakhmanov E, Vo DD, Akaberi D, Talibov VO, Nekhotiaeva N, Vangeel L, De Jonghe S, Jochmans D et al.. (2022) Ultralarge Virtual Screening Identifies SARS-CoV-2 Main Protease Inhibitors with Broad-Spectrum Activity against Coronaviruses. J Am Chem Soc, [Epub ahead of print]. DOI: 10.1021/jacs.1c08402 [PMID:35142215]

38. Ma C, Sacco MD, Hurst B, Townsend JA, Hu Y, Szeto T, Zhang X, Tarbet B, Marty MT, Chen Y et al.. (2020) Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease. Cell Res, 30 (8): 678-692. DOI: 10.1038/s41422-020-0356-z [PMID:32541865]

39. Milligan JC, Zeisner TU, Papageorgiou G, Joshi D, Soudy C, Ulferts R, Wu M, Lim CT, Tan KW, Weissmann F et al.. (2021) Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of Nsp5 main protease. Biochem J, 478 (13): 2499-2515. [PMID:34198327]

40. Mitsuya H, Tamamura H, Kuwata N. (2023) COMPOUND EXHIBITING PHYSIOLOGICAL ACTIVITY SUCH AS ANTIVIRAL ACTIVITY. Patent number: WO2023286844. Assignee: NATIONAL CENTER FOR GLOBAL HEALTH AND MEDICINE [JP]. Priority date: 15/07/2021. Publication date: 10/01/2023.

41. Nieman JA, Lemieux MJ, Tyrrell DL, Bai B, Belovodskiy A, Hena M, Kandadai AS, Joyce MA. (2022) RNA VIRUS INHIBITOR COMPOUNDS AND USES THEREOF. Patent number: WO2022133588. Assignee: THE GOVERNORS OF THE UNIVERSITY OF ALBERTA [CA]. Priority date: 21/12/2020. Publication date: 30/06/2022.

42. Owen DR, Allerton CMN, Anderson AS, Aschenbrenner L, Avery M, Berritt S, Boras B, Cardin RD, Carlo A, Coffman KJ et al.. (2021) An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19. Science, 374 (6575): 1586-1593. [PMID:34726479]

43. Owen DR, Pettersson MY, Reese MR, Sammona MF, Tuttle JB, Yang Q. (2022) Antiviral heteroaryl ketone derivatives. Patent number: WO2022013684A1. Assignee: Pfizer Inc.. Priority date: 07/07/2021. Publication date: 20/01/2022.

44. Pathak N, Chen YT, Hsu YC, Hsu NY, Kuo CJ, Tsai HP, Kang JJ, Huang CH, Chang SY, Chang YH et al.. (2021) Uncovering Flexible Active Site Conformations of SARS-CoV-2 3CL Proteases through Protease Pharmacophore Clusters and COVID-19 Drug Repurposing. ACS Nano, 15 (1): 857-872. [PMID:33373194]

45. PostEra AI. MPro Activity Data. Accessed on 11/08/2020. Modified on 11/08/2020. postera.ai/covid/activity_data, https://postera.ai/covid/activity_data

46. Qiao J, Li YS, Zeng R, Liu FL, Luo RH, Huang C, Wang YF, Zhang J, Quan B, Shen C et al.. (2021) SARS-CoV-2 Mpro inhibitors with antiviral activity in a transgenic mouse model. Science, [Epub ahead of print]. [PMID:33602867]

47. Rathnayake AD, Zheng J, Kim Y, Perera KD, Mackin S, Meyerholz DK, Kashipathy MM, Battaile KP, Lovell S, Perlman S et al.. (2020) 3C-like protease inhibitors block coronavirus replication in vitro and improve survival in MERS-CoV-infected mice. Sci Transl Med, 12 (557). DOI: 10.1126/scitranslmed.abc5332 [PMID:32747425]

48. Riva L, Yuan S, Yin X, Martin-Sancho L, Matsunaga N, Pache L, Burgstaller-Muehlbacher S, De Jesus PD, Teriete P, Hull MV et al.. (2020) Discovery of SARS-CoV-2 antiviral drugs through large-scale compound repurposing. Nature, [Epub ahead of print]. DOI: 10.1038/s41586-020-2577-1

49. Shen Z, Li Y, Zhu J, Huang Q, Yin J, Xu Y, Wu A, Su W, Kuai L. (2023) VIRUS MAIN PROTEASE INHIBITOR, PREPARATION METHOD THEREFOR, AND USE. Patent number: WO2023283831. Assignee: WUXI APPTEC (SHANGHAI) CO., LTD.. Priority date: 14/07/2021. Publication date: 19/01/2023.

50. Thanigaimalai P, Konno S, Yamamoto T, Koiwai Y, Taguchi A, Takayama K, Yakushiji F, Akaji K, Chen SE, Naser-Tavakolian A et al.. (2013) Development of potent dipeptide-type SARS-CoV 3CL protease inhibitors with novel P3 scaffolds: design, synthesis, biological evaluation, and docking studies. Eur J Med Chem, 68: 372-84. [PMID:23994330]

51. Thanigaimalai P, Konno S, Yamamoto T, Koiwai Y, Taguchi A, Takayama K, Yakushiji F, Akaji K, Kiso Y, Kawasaki Y et al.. (2013) Design, synthesis, and biological evaluation of novel dipeptide-type SARS-CoV 3CL protease inhibitors: structure-activity relationship study. Eur J Med Chem, 65: 436-47. [PMID:23747811]

52. The COVID Moonshot Consortium, Achdout H, Aimon A, Bar-David E, Barr H, Ben-Shmuel A, Bennett J, Boby ML, Borden B, Bowman GR et al.. (2021) Open Science Discovery of Oral Non-Covalent SARS-CoV-2 Main Protease Inhibitor Therapeutics. bioRxiv, Preprint. DOI: 10.1101/2020.10.29.339317

53. Turlington M, Chun A, Tomar S, Eggler A, Grum-Tokars V, Jacobs J, Daniels JS, Dawson E, Saldanha A, Chase P et al.. (2013) Discovery of N-(benzo[1,2,3]triazol-1-yl)-N-(benzyl)acetamido)phenyl) carboxamides as severe acute respiratory syndrome coronavirus (SARS-CoV) 3CLpro inhibitors: identification of ML300 and noncovalent nanomolar inhibitors with an induced-fit binding. Bioorg Med Chem Lett, 23 (22): 6172-7. [PMID:24080461]

54. Unoh Y, Uehara S, Nakahara K, Nobori H, Yamatsu Y, Yamamoto S, Maruyama Y, Taoda Y, Kasamatsu K, Suto T et al.. (2022) Discovery of S-217622, a Noncovalent Oral SARS-CoV-2 3CL Protease Inhibitor Clinical Candidate for Treating COVID-19. J Med Chem, 65 (9): 6499-6512. [PMID:35352927]

55. Vandyck K, Raboisson P, Beigelman L, Serebryany V, Stoycheva A, Bardiot D, Boland S, Marchand A. (2021) Anti-viral compounds for treating coronavirus, picornavirus, and norovirus infections. Patent number: WO2021252491A1. Assignee: Aligos Therapeutics, Inc., Katholieke Universiteit Leuven. Priority date: 10/06/2020. Publication date: 16/12/2021.

56. Vankadara S, Wong YX, Liu B, See YY, Tan LH, Tan QW, Wang G, Karuna R, Guo X, Tan ST et al.. (2021) A head-to-head comparison of the inhibitory activities of 15 peptidomimetic SARS-CoV-2 3CLpro inhibitors. Bioorg Med Chem Lett, 48: 128263 [Epub ahead of print]. [PMID:34271072]

57. Vuong W, Khan MB, Fischer C, Arutyunova E, Lamer T, Shields J, Saffran HA, McKay RT, van Belkum MJ, Joyce MA et al.. (2020) Feline coronavirus drug inhibits the main protease of SARS-CoV-2 and blocks virus replication. Nat Commun, 11 (1): 4282. [PMID:32855413]

58. Wenzel J, Lampe J, Müller-Fielitz H, Schuster R, Zille M, Müller K, Krohn M, Körbelin J, Zhang L, Özorhan Ü et al.. (2021) The SARS-CoV-2 main protease Mpro causes microvascular brain pathology by cleaving NEMO in brain endothelial cells. Nat Neurosci, [Epub ahead of print]. DOI: 10.1038/s41593-021-00926-1 [PMID:34675436]

59. Westberg M, Su Y, Zou X, Ning L, Hurst B, Tarbet B, Lin MZ. (2021) Rational design of a new class of protease inhibitors for the potential treatment of coronavirus diseases. bioRxiv, Preprint. DOI: 10.1101/2020.09.15.275891

60. Xia Z, Sacco M, Hu Y, Ma C, Meng X, Zhang F, Szeto T, Xiang Y, Chen Y, Wang J. (2021) Rational Design of Hybrid SARS-CoV-2 Main Protease Inhibitors Guided by the Superimposed Cocrystal Structures with the Peptidomimetic Inhibitors GC-376, Telaprevir, and Boceprevir. ACS Pharmacol Transl Sci, 4 (4): 1408-1421. [PMID:34414360]

61. Yang H, Xie W, Xue X, Yang K, Ma J, Liang W, Zhao Q, Zhou Z, Pei D, Ziebuhr J et al.. (2005) Design of wide-spectrum inhibitors targeting coronavirus main proteases. PLoS Biol, 3 (10): e324. [PMID:16128623]

62. Yang KS, Ma XR, Ma Y, Alugubelli YR, Scott DA, Vatansever EC, Drelich AK, Sankaran B, Geng ZZ, Blankenship LR et al.. (2020) A Speedy Route to Multiple Highly Potent SARS-CoV-2 Main Protease Inhibitors. bioRxiv, Preprint. DOI: 10.1101/2020.07.28.223784 [PMID:32766582]

63. Yang S, Chen SJ, Hsu MF, Wu JD, Tseng CT, Liu YF, Chen HC, Kuo CW, Wu CS, Chang LW et al.. (2006) Synthesis, crystal structure, structure-activity relationships, and antiviral activity of a potent SARS coronavirus 3CL protease inhibitor. J Med Chem, 49 (16): 4971-80. [PMID:16884309]

64. Zavoronkovs A, Ivanenkov YA, Zagribelnyy B. (2021) Sars-cov-2 inhibitors having covalent modifications for treating coronavirus infections. Patent number: WO2021219089A1. Assignee: Insilico Medicine Ip Limited. Priority date: 30/04/2020. Publication date: 04/11/2021.

65. Zhang C-H, Spasov KA, Reilly RA, Hollander K, Stone EA, Ippolito JA, Liosi M-A, Deshmukh MG, Tirado-Rives J, Zhang S et al.. (2021) Optimization of Triarylpyridinone Inhibitors of the Main Protease of SARS-CoV-2 to Low-Nanomolar Antiviral Potency. ACS Medicinal Chemistry Letters, [Epub ahead of print]. DOI: 10.1021/acsmedchemlett.1c00326

66. Zhang C-H, Stone EA, Deshmukh M, Ippolito JA, Ghahremanpour MM, Tirado-Rives J, Spasov KA, Zhang S, Takeo Y, Kudalkar SN et al.. (2021) Potent Noncovalent Inhibitors of the Main Protease of SARS-CoV-2 from Molecular Sculpting of the Drug Perampanel Guided by Free Energy Perturbation Calculations. ACS Central Science,. DOI: 10.1021/acscentsci.1c00039

67. Zhang L, Lin D, Kusov Y, Nian Y, Ma Q, Wang J, von Brunn A, Leyssen P, Lanko K, Neyts J et al.. (2020) α-Ketoamides as Broad-Spectrum Inhibitors of Coronavirus and Enterovirus Replication: Structure-Based Design, Synthesis, and Activity Assessment. J Med Chem, 63 (9): 4562-4578. [PMID:32045235]

68. Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, Backer S, Rox K, Hilgenfeld R. (2020) Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science,. DOI: 10.1126/science.abb3405

69. Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, Becker S, Rox K, Hilgenfeld R. (2020) Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science, 368 (6489): 409-412. [PMID:32198291]

70. Zhao Y, Fang C, Zhang Q, Zhang R, Zhao X, Duan Y, Wang H, Zhu Y, Feng L, Zhao J et al.. (2021) Crystal structure of SARS-CoV-2 main protease in complex with protease inhibitor PF-07321332. Protein Cell, [Epub ahead of print]. DOI: 10.1007/s13238-021-00883-2 [PMID:34687004]

71. Zhu W, Xu M, Chen CZ, Guo H, Shen M, Hu X, Shinn P, Klumpp-Thomas C, Michael SG, Zheng W. (2020) Identification of SARS-CoV-2 3CL Protease Inhibitors by a Quantitative High-throughput Screening. ACS Pharmacol Transl Sci, [Epub ahead of print]. DOI: 10.1021/acsptsci.0c00108

How to cite this page