Top ▲

RXFP3

Click here for help

Target not currently curated in GtoImmuPdb

Target id: 353

Nomenclature: RXFP3

Family: Relaxin family peptide receptors

Gene and Protein Information Click here for help
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 469 5p13.2 RXFP3 relaxin family peptide receptor 3 53
Mouse 7 472 15 A1 Rxfp3 relaxin family peptide receptor 3 70
Rat 7 476 2q16 Rxfp3 relaxin family peptide receptor 3
Previous and Unofficial Names Click here for help
RLN3R1 | RXFPR3 | GPCR135 | relaxin/insulin like family peptide receptor 3
Database Links Click here for help
Specialist databases
GPCRdb rl3r1_human (Hs), rl3r1_mouse (Mm), q5y986_rat (Rn)
Other databases
Alphafold
ChEMBL Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Natural/Endogenous Ligands Click here for help
INSL5 {Sp: Human}
relaxin-3 {Sp: Human}
relaxin {Sp: Human}
relaxin-3 (B chain) {Sp: Human}
Comments: Relaxin-3 is a potent endogenous agonist for RXFP3. Unlike other relaxins, the relaxin-3 (B) chain has some bioactivity. Relaxin is a biased agonist at RXFP3. Neither relaxin-3 (B) chain or relaxin are known to act on RXFP3 in vivo.
Potency order of endogenous ligands (Human)
relaxin-3 (RLN3, Q8WXF3) > relaxin-3 (B chain) (RLN3, Q8WXF3) > relaxin (RLN2, P04090)  [46]

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
relaxin {Sp: Human} Peptide Click here for species-specific activity table Hs Full agonist 10.0 pKd 74
pKd 10.0 [74]
[125I]relaxin-3 (human) Peptide Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Full agonist 9.5 pKd 46
pKd 9.5 [46]
[125I]relaxin-3-B/INSL5 A chimera Peptide Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Agonist 9.3 pKd 45
pKd 9.3 (Kd 5x10-10 M) [45]
europium-labelled relaxin-3-B/INSL5 A chimera Peptide Click here for species-specific activity table Ligand is labelled Hs Full agonist 9.3 pKd 23,64
pKd 9.3 [23,64]
R3/I5- SmBiT Peptide Ligand is labelled Hs Agonist 9.2 pKd 30
pKd 9.2 [30]
DOTA/Eu relaxin-3 Peptide Ligand is labelled Hs Agonist 8.7 pKd 86
pKd 8.7 [86]
europium-labelled relaxin-3-B/INSL5 A chimera Peptide Click here for species-specific activity table Ligand is labelled Hs Agonist 8.3 pKd 23
pKd 8.3 (Kd 5x10-9 M) [23]
relaxin-3 {Sp: Human} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Hs Full agonist 7.8 – 8.9 pKi 28,64,76
pKi 7.8 – 8.9 [28,64,76]
minimised relaxin-3 analogue 2 Peptide Click here for species-specific activity table Hs Full agonist 7.9 pKi 15,64
pKi 7.9 [15,64]
compound 10d [PMID: 34855388] Small molecule or natural product Click here for species-specific activity table Hs Agonist 7.2 pKi 20
pKi 7.2 (Ki 6.9x10-8 M) [20]
Description: Receptor binding
relaxin-3 B chain dimer Peptide Hs Full agonist 6.6 pKi 76
pKi 6.6 [76]
B1-27 Peptide Hs Agonist 5.9 pKi 40
pKi 5.9 (Ki 1.23x10-6 M) [40]
minimised relaxin-3 analogue 2 Peptide Click here for species-specific activity table Hs Full agonist 8.4 – 10.4 pEC50 64
pEC50 8.4 – 10.4 [64]
relaxin-3 {Sp: Human} Peptide Click here for species-specific activity table Hs Full agonist 8.3 – 9.9 pEC50 28,36,64,74,76
pEC50 8.3 – 9.9 [28,36,64,74,76]
compound 10d [PMID: 34855388] Small molecule or natural product Click here for species-specific activity table Hs Agonist 8.5 pEC50 20
pEC50 8.5 (EC50 3.1x10-9 M) [20]
Description: Receptor activation via cAMP assay
compound 4 [PMID: 30824200] Small molecule or natural product Click here for species-specific activity table Hs Agonist 7.9 pEC50 16
pEC50 7.9 (EC50 1.28x10-8 M) [16]
relaxin {Sp: Human} Peptide Click here for species-specific activity table Hs Full agonist 7.1 – 8.4 pEC50 36,74
pEC50 7.1 – 8.4 [36,74]
WNN0109-C011 Small molecule or natural product Click here for species-specific activity table Hs Agonist 5.6 pEC50 44
pEC50 5.6 (EC50 2.511x10-6 M) [44]
Description: Determined in a cAMP accumulation assay
R3(BΔ23-27)R/I5 chimeric peptide Peptide Rn Partial agonist 10.1 pIC50 37
pIC50 10.1 [37]
[G(B24)S]R3/I5 Peptide Hs Agonist 10.1 pIC50 82
pIC50 10.1 [82]
relaxin-3 {Sp: Human} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Hs Full agonist 9.4 – 9.6 pIC50 13,46
pIC50 9.4 – 9.6 [13,46]
R3(BΔ23-27)R/I5 chimeric peptide Peptide Click here for species-specific activity table Hs Partial agonist 9.4 pIC50 37
pIC50 9.4 [37]
R3/I5 Peptide Click here for species-specific activity table Hs Full agonist 9.3 pIC50 18,45
pIC50 9.3 [18,45]
H3 Ac-B10-27(13-17 HC) Peptide Hs Full agonist 8.5 pIC50 26
pIC50 8.5 [26]
relaxin-3 {Sp: Rat} Peptide Ligand is endogenous in the given species Rn Full agonist ~8.0 pIC50 29
pIC50 ~8.0 (IC50 ~1x10-8 M) [29]
H3 14s18 stapled B-chain Peptide Hs Full agonist 7.5 pIC50 33,52
pIC50 7.5 [33,52]
relaxin-3 (B chain) {Sp: Human} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Hs Full agonist 6.9 pIC50 46
pIC50 6.9 [46]
NanoLuc R3/I5 chimera Peptide Click here for species-specific activity table Ligand is labelled Hs Agonist - - 79,81
[79,81]
View species-specific agonist tables
Agonist Comments
Relaxin-3 activates RXFP3 but also RXFP4 and RXFP1. Relaxin-3 is highly conserved across species and is believed to be the ancestral relaxin. Affinity and pEC50 values were obtained in COS-7 cells transiently expressing RXFP3 or CHO or HEK293 cells stably expressing RXFP3. Relaxin is a biased agonist at RXFP3, compared to relaxin-3. Europium R3/I5 is used as a labelled ligand as an alternative to 125I labelled ligands in binding studies. The 'HC' in H3 Ac-B10-27(13-17HC)= hydrocarbon staple.
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
europium-labelled R3(B1-22R) Peptide Ligand is labelled Hs Antagonist 7.6 pKd 24
pKd 7.6 [24]
R3(BΔ23-27)R/I5 chimeric peptide Peptide Click here for species-specific activity table Hs Antagonist 8.5 pKi 23
pKi 8.5 [23]
minimised relaxin-3 analogue 3 Peptide Click here for species-specific activity table Hs Antagonist 7.6 pKi 64
pKi 7.6 [64]
R3 B1-22R Peptide Hs Antagonist 7.4 – 7.7 pKi 23-24
pKi 7.7 (Ki 2.04x10-8 M) [24]
pKi 7.4 (Ki 3.63x10-8 M) [23]
INSL5 {Sp: Human} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Hs Antagonist 7.0 pKi 89
pKi 7.0 [89]
R3(BΔ23-27)R/I5 chimeric peptide Peptide Click here for species-specific activity table Hs Antagonist 8.9 – 9.0 pEC50 36
pEC50 8.9 – 9.0 [36]
R3(BΔ23-27)R/I5 chimeric peptide Peptide Rn Antagonist 9.2 pIC50 37
pIC50 9.2 [37]
R3(BΔ23-27)R/I5 chimeric peptide Peptide Click here for species-specific activity table Hs Antagonist 8.1 – 9.2 pIC50 37-38
pIC50 9.2 (IC50 6.7x10-10 M) [38]
pIC50 8.1 [37]
RLX-33 Small molecule or natural product Hs Antagonist 5.6 pIC50 19
pIC50 5.6 (IC50 2.36x10-6 M) [19]
View species-specific antagonist tables
Antagonist Comments
Affinity values were determined in COS-7 cells transiently expressing or CHO or HEK293 cells stably expressing human RXFP3 labelled using [125I]relaxin-3, [125I]R3/I5 or europium-R3/I5. Antagonists produce rightward shifts of the concentration-response curve to relaxin-3 induced inhibition of forskolin stimulated cAMP accumulation in SK-N-MC cells expressing human RXFP3. R3(BΔ23-27)R/I5 also acts as a partial agonist or biased agonist in some systems [36]. Europium labelled R3(B1-22R) is used as an alternative to radiolabelled ligands.
Allosteric Modulators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
135PAM1 Small molecule or natural product Hs Positive 6.1 pEC50 3
pEC50 6.1 [3]
Allosteric Modulator Comments
135PAM1 only allosterically modulates responses to the amidated form of relaxin-3 not the native form.
Primary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gi/Go family Other - See Comments
Comments:  In addition to adenylyl cyclase inhibition, activation of RXFP3 also causes GTPγS binding, ERK1/2 and p38MAP kinase phosphorylation. In CHO cells Gi2 is the major G protein involved but in HEK293 cells Gi3 GOB and GOA are all involved suggesting that cellular context is important in determining the response observed.
References:  5,13,45-47
Tissue Distribution Click here for help
Brain, testis, thymus, adrenal gland.
Species:  Human
Technique:  RT-PCR.
References:  25,46
Hypothalamus, supraoptic nucleus, periaqueductal gray, nucleus incertus, brainstem, olfactory bulb, sensory cortex, amygdala, thalamus, paraventricular nucleus, inferior and superior colliculus.
Species:  Human
Technique:  in situ hybridisation.
References:  46,71
High levels of mRNA and protein in amygdala - amygdalo-hippocampal area, basolateral nucleus and medial nucleus; medial division of the bed nucleus of the stria terminalis; oriens and hilar layers of the hippocampal formation; paraventricular hypothalamic nucleus; dorsal cortex of the inferior colliculus: medial inferior olive. High levels of mRNA in peripeduncular nucleus, anterior tegmental nucleus and dorsomedial tegmental area. High levels of protein in anterodorsal thalamic nucleus and superficial gray and zona layers of the superior colliculus
Species:  Mouse
Technique:  In situ hybridisation, [125I] R3/I5 binding, immunohistochemistry
References:  8,21-22,59,69,77
Medial septum and diagonal band neurons
Species:  Mouse
Technique:  Multiplex fluorescent in situ hybridization.
References:  2
Brain, testis.
Species:  Mouse
Technique:  RT-PCR.
References:  13
Olfactory bulb, sensory cortex, amygdala, thalamus, paraventricular nucleus, supraoptic nucleus, inferior and superior colliculus.
Species:  Rat
Technique:  Autoradiography.
References:  45,62,71
Adipocyte
Species:  Rat
Technique:  RT/PCR
References:  83
Heart
Species:  Rat
Technique:  RT/PCR
References:  88
Brain, testis.
Species:  Rat
Technique:  RT-PCR.
References:  13
High levels of mRNA and protein in forebrain, olfactory, hippocampus, amygdala, septum, thalamus, hypothalamus, brainstem with particularly high concentrations in the bed nuclei of the stria terminalis, septohypothalamic nuclei, interpedicular nucleus and nucleus incertus
Species:  Rat
Technique:  in situ hybridisation, [125I] R3/I5 binding, RT/PCR, immunohistochemistry
References:  14,34,43,57,63,68
Nucleus incertus, cortex, septum, hippocampus, thalamus, hypothalamus and midbrain. Highest densities in the medial septum, lateral preoptic area, lateral hypothalamus/medial forebrain bundle and ventral hippocampus; additional fibers in olfactory bulb and olfactory and frontal/cingulate cortices, bed nucleus of the stria terminalis, dorsal endopiriform, intergeniculate, and supramammillary nuclei, and the periaqueductal gray and dorsal raphe
Species:  Rat
Technique:  [125I] R3/I5 binding
References:  50
Somatostatin-expressing GABA-ergic interneurons in hippocampus and medial septum
Species:  Rat
Technique:  Multiplex in situ hybridisation
References:  63
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays Click here for help
Reporter gene assay in SK-N-MC/β-gal cells stably transfected with human RXFP3 receptors.
Species:  Human
Tissue:  SK-N-MC cells.
Response measured:  Increased β-galactosidase expression.
References:  45,47
[35S] GTPγS incorporation in CHO-K1 cells stably transfected with human RXFP3 receptors.
Species:  Human
Tissue:  CHO-K1 cells.
Response measured:  [35S] GTPγS incorporation.
References:  13,46
Extracellular acidification rate response of CHO-K1 cells stably expressing human RXFP3 receptors in the cytosensor microphysiometer.
Species:  Human
Tissue:  CHO-K1 cells.
Response measured:  Increased extracellular acidification rate.
References:  75
Inhibition of forskolin stimulated cAMP responses in CHO-K1 cells stably transfected with human RXFP3 receptors.
Species:  Human
Tissue:  CHO-K1 cells.
Response measured:  cAMP accumulation.
References:  13,26,33,45-47
ERK1/2 phosphorylation
Species:  Human
Tissue:  CHO or HEK293 cells expressing RXFP3
Response measured:  increased ERK1/2 phosphorylation
References:  33,36,64,74,76
Adenylyl cyclase inhibition
Species:  Human
Tissue:  CHO cells expressing RXFP3
Response measured:  Inhibition of forskolin stimulated cAMP accumulation
References:  3,28,38,64,74,76
GTPγS binding
Species:  Human
Tissue:  CHO cells expressing RXFP3
Response measured:  Increased GTPγS binding
References:  89
p38MAPK phosphorylation
Species:  Human
Tissue:  CHO cells expressing RXFP3
Response measured:  Increased p38MAPK phosphorylation
References:  36
Ca2+ mobilisation assay in HEK 293 cells transiently expressing human RXFP3 receptors and G16.
Species:  Human
Tissue:  HEK 293 cells.
Response measured:  Ca2+ dye Fluo-3 fluorescence.
References:  45,47
Species:  Human
Tissue:  CHO cells expressing RXFP3
Response measured:  Increased phosphorylation of p38MAPK, JNK1/2 or ERK1/2 or inhibition of forskolin stimulated cAMP production
References:  36
Inhibition of CRE-controlled NanoLuc reporter
Species:  Human
Tissue:  HEK293 cells expressing RXFP3 & CRE controlled NanoLuc reporter
Response measured:  Decreased cAMP signal
References:  31-32,79-80,82,87
Species:  Human
Tissue:  Flp-In CHO cells expressing RXFP3 and reporter genes AP1, CRE, Myc, GRE, HSRE, NFaT, NFκB or SRE
Response measured:  Increased signal
References:  36
Real time BRET of RXFP3 interaction with G proteins
Species:  Human
Tissue:  Flp-In CHO cells transiently expressing RXFP3 Rluc8, Gγ2venus Gβ1 and one of Gαi2, Gαi3, GαoA, GαoB, Gαs or Gαq
Response measured:  Increased BRET
References:  36
Real time BRET of RXFP3 interaction with β-arrestins
Species:  Human
Tissue:  HEK293 cells inducibly co-expressing RXFP3-Luc & RXFP3-EGFP
Response measured:  Removal of RXFP3 from cell surface
References:  48-49
Reporter gene cAMP assay
Species:  Human
Tissue:  CHO cell stably expressing RXFP3 & transfected with pCRE- β-galactosidase reporter gene and stimulated with forskolin
Response measured:  Decreased cAMP signal
References:  65
Real time cAMP activity using BRET biosensor
Species:  Human
Tissue:  CHO or HEK cells stably expressing RXFP3 & transiently expressing CAMYEL (cAMP sensor using YFP-Epac-Rluc)
Response measured:  Decreased cAMP signal
References:  73
Physiological Functions Click here for help
Sensory processing particularly under stressful conditions.
Species:  Rat
Tissue:  Brain.
References:  71
Behavioural activation and arousal
Species:  Rat
Tissue:  Hippocampus
References:  51
Regulation of stress
Species:  Rat
Tissue:  Nucleus incertus, relaxin-3 neurones and their target RXFP3 in forebrain connections
References:  4,7,9,42,54,72,84
Regulation of feeding behaviour
Species:  Mouse
Tissue:  Brain
References:  12,67
Alcohol self administration and stress-induced relapse
Species:  Rat
Tissue:  Brain/Bed nucleus stria terminalis/hippocampus
References:  61-63
Modulation of feeding
Species:  Rat
Tissue:  Paraventricular nucleus/hypothalamus
References:  11,18,29,37-38,55-56,64
Anxiety-and depressive-like behaviours
Species:  Rat
Tissue:  Brain
References:  39,60
Anxiety-and depressive-like behaviours
Species:  Mouse
Tissue:  Brain
References:  85
Social recognition
Species:  Rat
Tissue:  Amygdala
References:  1
Protection from ischaemic stroke
Species:  Rat
Tissue:  Brain
References:  6
Stress-induced binge eating
Species:  Rat
Tissue:  Brain
References:  9-10,35
Influence of oestrus cycle on food intake and RXFP3 system
Species:  Rat
Tissue:  Brain
References:  14
Modulation of respiration
Species:  Rat
Tissue:  Nucleus incertus
References:  17
Spatial reference and working memory
Species:  Mouse
Tissue:  Hippocampus
References:  21
Depression in Alzheimer’s disease
Species:  Human
Tissue:  Parietal cortex
References:  41
Physiological Consequences of Altering Gene Expression Click here for help
Mice with RXFP3 knockout display dark phase hypoactivity on voluntary home-cage running wheels
Species:  Mouse
Tissue:  Brain
Technique:  Gene knockouts
References:  27
Mice with RXFP3 knockout display decrease in anxiety like behaviour in elevated plus maze and dark/light box paradigms
Species:  Mouse
Tissue:  Brain
Technique:  Gene knockouts
References:  27
Mice with RXFP3 knockout lose high alcohol preference associated with stress
Species:  Mouse
Tissue:  Brain
Technique:  Gene knockouts
References:  78
Injection of lentiviral construct secreting RXFP3 agonist R3/I5 causes behavioural arousal
Species:  Mouse
Tissue:  Brain regions proximal to cerebral ventricles
Technique:  Injection of lentiviral construct into cerebral ventricles
References:  66
Rats fed high energy diet show alterations in relaxin-3 and RXFP3 expression in nucleus incertus
Species:  Rat
Tissue:  Nucleus incertus
Technique:  High energy diet fed to diet inducible or diet resistant rats
References:  43
Increased anxiety-like behaviour
Species:  Rat
Tissue:  Ventral hippocampus
Technique:  Adeno-associated virus secreting R3/I5
References:  63
Clinically-Relevant Mutations and Pathophysiology Click here for help
Disease:  Hypercholesterolemia
Disease Ontology: DOID:2487
Biologically Significant Variants Click here for help
Type:  Single nucleotide polymorphism
Species:  Human
Description:  The SNP rs7702361 is associated with hypercholesterolemia and obesity
SNP accession: 
References:  58
Type:  Single nucleotide polymorphism
Species:  Human
Description:  The SNP rs42868 is associated with hypercholesterolemia and diabetes
SNP accession: 
References:  58

References

Show »

1. Albert-Gasco H, Sanchez-Sarasua S, Ma S, García-Díaz C, Gundlach AL, Sanchez-Perez AM, Olucha-Bordonau FE. (2019) Central relaxin-3 receptor (RXFP3) activation impairs social recognition and modulates ERK-phosphorylation in specific GABAergic amygdala neurons. Brain Struct Funct, 224 (1): 453-469. [PMID:30368554]

2. Albert-Gascó H, Ma S, Ros-Bernal F, Sánchez-Pérez AM, Gundlach AL, Olucha-Bordonau FE. (2017) GABAergic Neurons in the Rat Medial Septal Complex Express Relaxin-3 Receptor (RXFP3) mRNA. Front Neuroanat, 11: 133. [PMID:29403361]

3. Alvarez-Jaimes L, Sutton SW, Nepomuceno D, Motley ST, Cik M, Stocking E, Shoblock J, Bonaventure P. (2012) In vitro pharmacological characterization of RXFP3 allosterism: an example of probe dependency. PLoS ONE, 7 (2): e30792. [PMID:22347403]

4. Banerjee A, Shen PJ, Ma S, Bathgate RA, Gundlach AL. (2010) Swim stress excitation of nucleus incertus and rapid induction of relaxin-3 expression via CRF1 activation. Neuropharmacology, 58 (1): 145-55. [PMID:19560474]

5. Bathgate RA, Halls ML, van der Westhuizen ET, Callander GE, Kocan M, Summers RJ. (2013) Relaxin family peptides and their receptors. Physiol Rev, 93 (1): 405-80. [PMID:23303914]

6. Bergeron LH, Willcox JM, Alibhai FJ, Connell BJ, Saleh TM, Wilson BC, Summerlee AJ. (2015) Relaxin peptide hormones are protective during the early stages of ischemic stroke in male rats. Endocrinology, 156 (2): 638-46. [PMID:25456068]

7. Blasiak A, Blasiak T, Lewandowski MH, Hossain MA, Wade JD, Gundlach AL. (2013) Relaxin-3 innervation of the intergeniculate leaflet of the rat thalamus - neuronal tract-tracing and in vitro electrophysiological studies. Eur J Neurosci, 37 (8): 1284-94. [PMID:23432696]

8. Boels K, Hermans-Borgmeyer I, Schaller HC. (2004) Identification of a mouse orthologue of the G-protein-coupled receptor SALPR and its expression in adult mouse brain and during development. Brain Res Dev Brain Res, 152 (2): 265-8. [PMID:15351514]

9. Calvez J, de Ávila C, Matte LO, Guèvremont G, Gundlach AL, Timofeeva E. (2016) Role of relaxin-3/RXFP3 system in stress-induced binge-like eating in female rats. Neuropharmacology, 102: 207-15. [PMID:26607097]

10. Calvez J, de Ávila C, Timofeeva E. (2017) Sex-specific effects of relaxin-3 on food intake and body weight gain. Br J Pharmacol, 174 (10): 1049-1060. [PMID:27245781]

11. Calvez J, Lenglos C, de Ávila C, Guèvremont G, Timofeeva E. (2015) Differential effects of central administration of relaxin-3 on food intake and hypothalamic neuropeptides in male and female rats. Genes Brain Behav, 14 (7): 550-63. [PMID:26234422]

12. Ch'ng SS, Fu J, Brown RM, Smith CM, Hossain MA, McDougall SJ, Lawrence AJ. (2019) Characterization of the relaxin family peptide receptor 3 system in the mouse bed nucleus of the stria terminalis. J Comp Neurol, 527 (16): 2615-2633. [PMID:30947365]

13. Chen J, Kuei C, Sutton SW, Bonaventure P, Nepomuceno D, Eriste E, Sillard R, Lovenberg TW, Liu C. (2005) Pharmacological characterization of relaxin-3/INSL7 receptors GPCR135 and GPCR142 from different mammalian species. J Pharmacol Exp Ther, 312 (1): 83-95. [PMID:15367576]

14. de Ávila C, Chometton S, Calvez J, Guèvremont G, Kania A, Torz L, Lenglos C, Blasiak A, Rosenkilde MM, Holst B et al.. (2021) Estrous Cycle Modulation of Feeding and Relaxin-3/Rxfp3 mRNA Expression: Implications for Estradiol Action. Neuroendocrinology, 111 (12): 1201-1218. [PMID:33333517]

15. de Ávila C, Chometton S, Lenglos C, Calvez J, Gundlach AL, Timofeeva E. (2018) Differential effects of relaxin-3 and a selective relaxin-3 receptor agonist on food and water intake and hypothalamic neuronal activity in rats. Behav Brain Res, 336: 135-144. [PMID:28864207]

16. DeChristopher B, Park SH, Vong L, Bamford D, Cho HH, Duvadie R, Fedolak A, Hogan C, Honda T, Pandey P et al.. (2019) Discovery of a small molecule RXFP3/4 agonist that increases food intake in rats upon acute central administration. Bioorg Med Chem Lett, 29 (8): 991-994. [PMID:30824200]

17. Furuya WI, Dhingra RR, Gundlach AL, Hossain MA, Dutschmann M. (2020) Relaxin-3 receptor (RXFP3) activation in the nucleus of the solitary tract modulates respiratory rate and the arterial chemoreceptor reflex in rat. Respir Physiol Neurobiol, 271: 103310. [PMID:31568840]

18. Ganella DE, Callander GE, Ma S, Bye CR, Gundlach AL, Bathgate RA. (2013) Modulation of feeding by chronic rAAV expression of a relaxin-3 peptide agonist in rat hypothalamus. Gene Ther, 20 (7): 703-16. [PMID:23135160]

19. Gay EA, Guan D, Van Voorhies K, Vasukuttan V, Mathews KM, Besheer J, Jin C. (2022) Discovery and Characterization of the First Nonpeptide Antagonists for the Relaxin-3/RXFP3 System. J Med Chem, 65 (11): 7959-7974. [PMID:35594150]

20. Guan D, Rahman MT, Gay EA, Vasukuttan V, Mathews KM, Decker AM, Williams AH, Zhan CG, Jin C. (2021) Indole-Containing Amidinohydrazones as Nonpeptide, Dual RXFP3/4 Agonists: Synthesis, Structure-Activity Relationship, and Molecular Modeling Studies. J Med Chem, 64 (24): 17866-17886. [PMID:34855388]

21. Haidar M, Guèvremont G, Zhang C, Bathgate RAD, Timofeeva E, Smith CM, Gundlach AL. (2017) Relaxin-3 inputs target hippocampal interneurons and deletion of hilar relaxin-3 receptors in "floxed-RXFP3" mice impairs spatial memory. Hippocampus, 27 (5): 529-546. [PMID:28100033]

22. Haidar M, Tin K, Zhang C, Nategh M, Covita J, Wykes AD, Rogers J, Gundlach AL. (2019) Septal GABA and Glutamate Neurons Express RXFP3 mRNA and Depletion of Septal RXFP3 Impaired Spatial Search Strategy and Long-Term Reference Memory in Adult Mice. Front Neuroanat, 13: 30. [PMID:30906254]

23. Haugaard-Kedström LM, Shabanpoor F, Hossain MA, Clark RJ, Ryan PJ, Craik DJ, Gundlach AL, Wade JD, Bathgate RA, Rosengren KJ. (2011) Design, synthesis, and characterization of a single-chain peptide antagonist for the relaxin-3 receptor RXFP3. J Am Chem Soc, 133 (13): 4965-74. [PMID:21384867]

24. Haugaard-Kedström LM, Wong LL, Bathgate RA, Rosengren KJ. (2015) Synthesis and pharmacological characterization of a europium-labelled single-chain antagonist for binding studies of the relaxin-3 receptor RXFP3. Amino Acids, 47 (6): 1267-71. [PMID:25792111]

25. Heidari S, Taromchi AH, Nejatbakhsh R, Shokri S. (2018) Expression and localisation of RXFP3 in human spermatozoa and impact of INSL7 on sperm functions. Andrologia, 50 (3). [PMID:29159832]

26. Hojo K, Hossain MA, Tailhades J, Shabanpoor F, Wong LL, Ong-Pålsson EE, Kastman HE, Ma S, Gundlach AL, Rosengren KJ et al.. (2016) Development of a Single-Chain Peptide Agonist of the Relaxin-3 Receptor Using Hydrocarbon Stapling. J Med Chem, 59 (16): 7445-56. [PMID:27464307]

27. Hosken IT, Sutton SW, Smith CM, Gundlach AL. (2015) Relaxin-3 receptor (Rxfp3) gene knockout mice display reduced running wheel activity: Implications for role of relaxin-3/RXFP3 signalling in sustained arousal. Behav Brain Res, 278: 167-75. [PMID:25257104]

28. Hossain MA, Rosengren KJ, Haugaard-Jönsson LM, Zhang S, Layfield S, Ferraro T, Daly NL, Tregear GW, Wade JD, Bathgate RA. (2008) The A-chain of human relaxin family peptides has distinct roles in the binding and activation of the different relaxin family peptide receptors. J Biol Chem, 283 (25): 17287-97. [PMID:18434306]

29. Hossain MA, Smith CM, Ryan PJ, Büchler E, Bathgate RA, Gundlach AL, Wade JD. (2013) Chemical synthesis and orexigenic activity of rat/mouse relaxin-3. Amino Acids, 44 (6): 1529-36. [PMID:23456488]

30. Hu MJ, Shao XX, Li HZ, Nie WH, Wang JH, Liu YL, Xu ZG, Guo ZY. (2018) Development of a novel ligand binding assay for relaxin family peptide receptor 3 and 4 using NanoLuc complementation. Amino Acids, 50 (8): 1111-1119. [PMID:29770870]

31. Hu MJ, Shao XX, Wang JH, Wei D, Guo YQ, Liu YL, Xu ZG, Guo ZY. (2016) Mechanism for insulin-like peptide 5 distinguishing the homologous relaxin family peptide receptor 3 and 4. Sci Rep, 6: 29648. [PMID:27404393]

32. Hu MJ, Shao XX, Wang JH, Wei D, Liu YL, Xu ZG, Guo ZY. (2016) Identification of hydrophobic interactions between relaxin-3 and its receptor RXFP3: implication for a conformational change in the B-chain C-terminus during receptor binding. Amino Acids, 48 (9): 2227-36. [PMID:27193232]

33. Jayakody T, Marwari S, Lakshminarayanan R, Tan FC, Johannes CW, Dymock BW, Poulsen A, Herr DR, Dawe GS. (2016) Hydrocarbon stapled B chain analogues of relaxin-3 retain biological activity. Peptides, 84: 44-57. [PMID:27498038]

34. Kania A, Gugula A, Grabowiecka A, de Ávila C, Blasiak T, Rajfur Z, Lewandowski MH, Hess G, Timofeeva E, Gundlach AL et al.. (2017) Inhibition of oxytocin and vasopressin neuron activity in rat hypothalamic paraventricular nucleus by relaxin-3-RXFP3 signalling. J Physiol (Lond.), 595 (11): 3425-3447. [PMID:28098344]

35. Kania A, Szlaga A, Sambak P, Gugula A, Blasiak E, Micioni Di Bonaventura MV, Hossain MA, Cifani C, Hess G, Gundlach AL et al.. (2020) RLN3/RXFP3 Signaling in the PVN Inhibits Magnocellular Neurons via M-like Current Activation and Contributes to Binge Eating Behavior. J Neurosci, 40 (28): 5362-5375. [PMID:32532885]

36. Kocan M, Sarwar M, Hossain MA, Wade JD, Summers RJ. (2014) Signalling profiles of H3 relaxin, H2 relaxin and R3(BΔ23-27)R/I5 acting at the relaxin family peptide receptor 3 (RXFP3). Br J Pharmacol, 171 (11): 2827-41. [PMID:24641548]

37. Kristensson L, Mayer G, Ploj K, Wetterlund M, Arlbrandt S, Björquist A, Wissing BM, Castaldo M, Larsson N. (2015) Partial agonist activity of R3(BΔ23-27)R/I5 at RXFP3--investigation of in vivo and in vitro pharmacology. Eur J Pharmacol, 747: 123-31. [PMID:25496752]

38. Kuei C, Sutton S, Bonaventure P, Pudiak C, Shelton J, Zhu J, Nepomuceno D, Wu J, Chen J, Kamme F et al.. (2007) R3(BDelta23 27)R/I5 chimeric peptide, a selective antagonist for GPCR135 and GPCR142 over relaxin receptor LGR7: in vitro and in vivo characterization. J Biol Chem, 282 (35): 25425-35. [PMID:17606621]

39. Lawther AJ, Clissold ML, Ma S, Kent S, Lowry CA, Gundlach AL, Hale MW. (2015) Anxiogenic drug administration and elevated plus-maze exposure in rats activate populations of relaxin-3 neurons in the nucleus incertus and serotonergic neurons in the dorsal raphe nucleus. Neuroscience, 303: 270-84. [PMID:26141847]

40. Lee HS, Postan M, Song A, Clark RJ, Bathgate RAD, Haugaard-Kedström LM, Rosengren KJ. (2020) Development of Relaxin-3 Agonists and Antagonists Based on Grafted Disulfide-Stabilized Scaffolds. Front Chem, 8: 87. [PMID:32133341]

41. Lee JH, Koh SQ, Guadagna S, Francis PT, Esiri MM, Chen CP, Wong PT, Dawe GS, Lai MK. (2016) Altered relaxin family receptors RXFP1 and RXFP3 in the neocortex of depressed Alzheimer's disease patients. Psychopharmacology (Berl), 233 (4): 591-8. [PMID:26542729]

42. Lenglos C, Mitra A, Guèvremont G, Timofeeva E. (2013) Sex differences in the effects of chronic stress and food restriction on body weight gain and brain expression of CRF and relaxin-3 in rats. Genes Brain Behav, 12 (4): 370-87. [PMID:23425370]

43. Lenglos C, Mitra A, Guèvremont G, Timofeeva E. (2014) Regulation of expression of relaxin-3 and its receptor RXFP3 in the brain of diet-induced obese rats. Neuropeptides, 48 (3): 119-32. [PMID:24629399]

44. Lin G, Feng Y, Cai X, Zhou C, Shao L, Chen Y, Chen L, Liu Q, Zhou Q, Bathgate RAD et al.. (2021) High-Throughput Screening Campaign Identified a Potential Small Molecule RXFP3/4 Agonist. Molecules, 26 (24): 7511. [PMID:34946593]

45. Liu C, Chen J, Kuei C, Sutton S, Nepomuceno D, Bonaventure P, Lovenberg TW. (2005) Relaxin-3/insulin-like peptide 5 chimeric peptide, a selective ligand for G protein-coupled receptor (GPCR)135 and GPCR142 over leucine-rich repeat-containing G protein-coupled receptor 7. Mol Pharmacol, 67 (1): 231-40. [PMID:15465925]

46. Liu C, Eriste E, Sutton S, Chen J, Roland B, Kuei C, Farmer N, Jörnvall H, Sillard R, Lovenberg TW. (2003) Identification of relaxin-3/INSL7 as an endogenous ligand for the orphan G-protein-coupled receptor GPCR135. J Biol Chem, 278 (50): 50754-64. [PMID:14522968]

47. Liu C, Kuei C, Sutton S, Chen J, Bonaventure P, Wu J, Nepomuceno D, Kamme F, Tran DT, Zhu J et al.. (2005) INSL5 is a high affinity specific agonist for GPCR142 (GPR100). J Biol Chem, 280 (1): 292-300. [PMID:15525639]

48. Liu Y, Song G, Shao XX, Liu YL, Guo ZY. (2015) Quantitative measurement of cell membrane receptor internalization by the nanoluciferase reporter: Using the G protein-coupled receptor RXFP3 as a model. Biochim Biophys Acta, 1848 (2): 688-94. [PMID:25434927]

49. Liu Y, Zhang L, Shao XX, Hu MJ, Liu YL, Xu ZG, Guo ZY. (2016) A negatively charged transmembrane aspartate residue controls activation of the relaxin-3 receptor RXFP3. Arch Biochem Biophys, 604: 113-20. [PMID:27353281]

50. Ma S, Bonaventure P, Ferraro T, Shen PJ, Burazin TC, Bathgate RA, Liu C, Tregear GW, Sutton SW, Gundlach AL. (2007) Relaxin-3 in GABA projection neurons of nucleus incertus suggests widespread influence on forebrain circuits via G-protein-coupled receptor-135 in the rat. Neuroscience, 144 (1): 165-90. [PMID:17071007]

51. Ma S, Olucha-Bordonau FE, Hossain MA, Lin F, Kuei C, Liu C, Wade JD, Sutton SW, Nuñez A, Gundlach AL. (2009) Modulation of hippocampal theta oscillations and spatial memory by relaxin-3 neurons of the nucleus incertus. Learn Mem, 16 (11): 730-42. [PMID:19880588]

52. Marwari S, Poulsen A, Shih N, Lakshminarayanan R, Kini RM, Johannes CW, Dymock BW, Dawe GS. (2019) Intranasal administration of a stapled relaxin-3 mimetic has anxiolytic- and antidepressant-like activity in rats. Br J Pharmacol, 176 (20): 3899-3923. [PMID:31220339]

53. Matsumoto M, Kamohara M, Sugimoto T, Hidaka K, Takasaki J, Saito T, Okada M, Yamaguchi T, Furuichi K. (2000) The novel G-protein coupled receptor SALPR shares sequence similarity with somatostatin and angiotensin receptors. Gene, 248 (1-2): 183-9. [PMID:10806363]

54. McGowan BM, Minnion JS, Murphy KG, Roy D, Stanley SA, Dhillo WS, Gardiner JV, Ghatei MA, Bloom SR. (2014) Relaxin-3 stimulates the neuro-endocrine stress axis via corticotrophin-releasing hormone. J Endocrinol, 221 (2): 337-46. [PMID:24578294]

55. McGowan BM, Stanley SA, Smith KL, Minnion JS, Donovan J, Thompson EL, Patterson M, Connolly MM, Abbott CR, Small CJ et al.. (2006) Effects of acute and chronic relaxin-3 on food intake and energy expenditure in rats. Regul Pept, 136 (1-3): 72-7. [PMID:16764952]

56. McGowan BM, Stanley SA, Smith KL, White NE, Connolly MM, Thompson EL, Gardiner JV, Murphy KG, Ghatei MA, Bloom SR. (2005) Central relaxin-3 administration causes hyperphagia in male Wistar rats. Endocrinology, 146 (8): 3295-300. [PMID:15845619]

57. Meadows KL, Byrnes EM. (2015) Sex- and age-specific differences in relaxin family peptide receptor expression within the hippocampus and amygdala in rats. Neuroscience, 284: 337-348. [PMID:25313002]

58. Munro J, Skrobot O, Sanyoura M, Kay V, Susce MT, Glaser PE, de Leon J, Blakemore AI, Arranz MJ. (2012) Relaxin polymorphisms associated with metabolic disturbance in patients treated with antipsychotics. J Psychopharmacol (Oxford), 26 (3): 374-9. [PMID:21693553]

59. Paul EJ, Tossell K, Ungless MA. (2019) Transcriptional profiling aligned with in situ expression image analysis reveals mosaically expressed molecular markers for GABA neuron sub-groups in the ventral tegmental area. Eur J Neurosci, 50 (11): 3732-3749. [PMID:31374129]

60. Ryan PJ, Büchler E, Shabanpoor F, Hossain MA, Wade JD, Lawrence AJ, Gundlach AL. (2013) Central relaxin-3 receptor (RXFP3) activation decreases anxiety- and depressive-like behaviours in the rat. Behav Brain Res, 244: 142-51. [PMID:23380674]

61. Ryan PJ, Kastman HE, Krstew EV, Rosengren KJ, Hossain MA, Churilov L, Wade JD, Gundlach AL, Lawrence AJ. (2013) Relaxin-3/RXFP3 system regulates alcohol-seeking. Proc Natl Acad Sci USA, 110 (51): 20789-94. [PMID:24297931]

62. Ryan PJ, Krstew EV, Sarwar M, Gundlach AL, Lawrence AJ. (2014) Relaxin-3 mRNA levels in nucleus incertus correlate with alcohol and sucrose intake in rats. Drug Alcohol Depend, 140: 8-16. [PMID:24837581]

63. Rytova V, Ganella DE, Hawkes D, Bathgate RAD, Ma S, Gundlach AL. (2019) Chronic activation of the relaxin-3 receptor on GABA neurons in rat ventral hippocampus promotes anxiety and social avoidance. Hippocampus, 29 (10): 905-920. [PMID:30891856]

64. Shabanpoor F, Akhter Hossain M, Ryan PJ, Belgi A, Layfield S, Kocan M, Zhang S, Samuel CS, Gundlach AL, Bathgate RA et al.. (2012) Minimization of human relaxin-3 leading to high-affinity analogues with increased selectivity for relaxin-family peptide 3 receptor (RXFP3) over RXFP1. J Med Chem, 55 (4): 1671-81. [PMID:22257012]

65. Shabanpoor F, Bathgate RA, Wade JD, Hossain MA. (2013) C-terminus of the B-chain of relaxin-3 is important for receptor activity. PLoS One, 8 (12): e82567. [PMID:24349312]

66. Smith CM, Blasiak A, Ganella DE, Chua BE, Layfield SL, Bathgate RA, Gundlach AL. (2013) Viral-mediated delivery of an RXFP3 agonist into brain promotes arousal in mice. Ital J Anat Embryol, 118 (1 Suppl): 42-6. [PMID:24640570]

67. Smith CM, Chua BE, Zhang C, Walker AW, Haidar M, Hawkes D, Shabanpoor F, Hossain MA, Wade JD, Rosengren KJ et al.. (2014) Central injection of relaxin-3 receptor (RXFP3) antagonist peptides reduces motivated food seeking and consumption in C57BL/6J mice. Behav Brain Res, 268: 117-26. [PMID:24681162]

68. Smith CM, Ryan PJ, Hosken IT, Ma S, Gundlach AL. (2011) Relaxin-3 systems in the brain--the first 10 years. J Chem Neuroanat, 42 (4): 262-75. [PMID:21693186]

69. Smith CM, Shen PJ, Banerjee A, Bonaventure P, Ma S, Bathgate RA, Sutton SW, Gundlach AL. (2010) Distribution of relaxin-3 and RXFP3 within arousal, stress, affective, and cognitive circuits of mouse brain. J Comp Neurol, 518 (19): 4016-45. [PMID:20737598]

70. Strausberg RL, Feingold EA, Grouse LH, Derge JG, Klausner RD, Collins FS, Wagner L, Shenmen CM, Schuler GD, Altschul SF et al.. (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci USA, 99 (26): 16899-903. [PMID:12477932]

71. Sutton SW, Bonaventure P, Kuei C, Roland B, Chen J, Nepomuceno D, Lovenberg TW, Liu C. (2004) Distribution of G-protein-coupled receptor (GPCR)135 binding sites and receptor mRNA in the rat brain suggests a role for relaxin-3 in neuroendocrine and sensory processing. Neuroendocrinology, 80 (5): 298-307. [PMID:15677880]

72. Tanaka M, Iijima N, Miyamoto Y, Fukusumi S, Itoh Y, Ozawa H, Ibata Y. (2005) Neurons expressing relaxin 3/INSL 7 in the nucleus incertus respond to stress. Eur J Neurosci, 21 (6): 1659-70. [PMID:15845093]

73. Valkovic AL, Leckey MB, Whitehead AR, Hossain MA, Inoue A, Kocan M, Bathgate RAD. (2018) Real-time examination of cAMP activity at relaxin family peptide receptors using a BRET-based biosensor. Pharmacol Res Perspect, 6 (5): e00432. [PMID:30263124]

74. van der Westhuizen ET, Christopoulos A, Sexton PM, Wade JD, Summers RJ. (2010) H2 relaxin is a biased ligand relative to H3 relaxin at the relaxin family peptide receptor 3 (RXFP3). Mol Pharmacol, 77 (5): 759-72. [PMID:20159943]

75. Van der Westhuizen ET, Sexton PM, Bathgate RA, Summers RJ. (2005) Responses of GPCR135 to human gene 3 (H3) relaxin in CHO-K1 cells determined by microphysiometry. Ann N Y Acad Sci, 1041: 332-7. [PMID:15956730]

76. van der Westhuizen ET, Werry TD, Sexton PM, Summers RJ. (2007) The relaxin family peptide receptor 3 activates extracellular signal-regulated kinase 1/2 through a protein kinase C-dependent mechanism. Mol Pharmacol, 71 (6): 1618-29. [PMID:17351017]

77. Voglsanger LM, Read J, Ch'ng SS, Zhang C, Eraslan IM, Gray L, Rivera LR, Hamilton LD, Williams R, Gundlach AL et al.. (2020) Differential Level of RXFP3 Expression in Dopaminergic Neurons Within the Arcuate Nucleus, Dorsomedial Hypothalamus and Ventral Tegmental Area of RXFP3-Cre/tdTomato Mice. Front Neurosci, 14: 594818. [PMID:33584175]

78. Walker AW, Smith CM, Chua BE, Krstew EV, Zhang C, Gundlach AL, Lawrence AJ. (2015) Relaxin-3 receptor (RXFP3) signalling mediates stress-related alcohol preference in mice. PLoS ONE, 10 (4): e0122504. [PMID:25849482]

79. Wang JH, Hu MJ, Zhang L, Shao XX, Lv CH, Liu YL, Xu ZG, Guo ZY. (2018) Exploring receptor selectivity of the chimeric relaxin family peptide R3/I5 by incorporating unnatural amino acids. Biochimie, 154: 77-85. [PMID:30102931]

80. Wang JH, Shao XX, Hu MJ, Liu YL, Xu ZG, Guo ZY. (2019) Functionality of an absolutely conserved glycine residue in the chimeric relaxin family peptide R3/I5. Amino Acids, 51 (4): 619-626. [PMID:30604098]

81. Wang JH, Shao XX, Hu MJ, Wei D, Nie WH, Liu YL, Xu ZG, Guo ZY. (2017) Rapid preparation of bioluminescent tracers for relaxin family peptides using sortase-catalysed ligation. Amino Acids, 49 (9): 1611-1617. [PMID:28631012]

82. Wei D, Hu MJ, Shao XX, Wang JH, Nie WH, Liu YL, Xu ZG, Guo ZY. (2017) Development of a selective agonist for relaxin family peptide receptor 3. Sci Rep, 7 (1): 3230. [PMID:28607363]

83. Yamamoto H, Shimokawa H, Haga T, Fukui Y, Iguchi K, Unno K, Hoshino M, Takeda A. (2014) The expression of relaxin-3 in adipose tissue and its effects on adipogenesis. Protein Pept Lett, 21 (6): 517-22. [PMID:24345292]

84. Zhang C, Baimoukhametova DV, Smith CM, Bains JS, Gundlach AL. (2017) Relaxin-3/RXFP3 signalling in mouse hypothalamus: no effect of RXFP3 activation on corticosterone, despite reduced presynaptic excitatory input onto paraventricular CRH neurons in vitro. Psychopharmacology (Berl), 234 (11): 1725-1739. [PMID:28314951]

85. Zhang C, Chua BE, Yang A, Shabanpoor F, Hossain MA, Wade JD, Rosengren KJ, Smith CM, Gundlach AL. (2015) Central relaxin-3 receptor (RXFP3) activation reduces elevated, but not basal, anxiety-like behaviour in C57BL/6J mice. Behav Brain Res, 292: 125-32. [PMID:26057358]

86. Zhang WJ, Luo X, Liu YL, Shao XX, Wade JD, Bathgate RA, Guo ZY. (2012) Site-specific DOTA/europium-labeling of recombinant human relaxin-3 for receptor-ligand interaction studies. Amino Acids, 43 (2): 983-92. [PMID:22187146]

87. Zhang WJ, Wang XY, Guo YQ, Luo X, Gao XJ, Shao XX, Liu YL, Xu ZG, Guo ZY. (2014) The highly conserved negatively charged Glu141 and Asp145 of the G-protein-coupled receptor RXFP3 interact with the highly conserved positively charged arginine residues of relaxin-3. Amino Acids, 46 (5): 1393-402. [PMID:24615237]

88. Zhang X, Pan L, Yang K, Fu Y, Liu Y, Chen W, Ma X, Yin X. (2017) Alterations of relaxin and its receptor system components in experimental diabetic cardiomyopathy rats. Cell Tissue Res, 370 (2): 297-304. [PMID:28776188]

89. Zhu J, Kuei C, Sutton S, Kamme F, Yu J, Bonaventure P, Atack J, Lovenberg TW, Liu C. (2008) Identification of the domains in RXFP4 (GPCR142) responsible for the high affinity binding and agonistic activity of INSL5 at RXFP4 compared to RXFP3 (GPCR135). Eur J Pharmacol, 590 (1-3): 43-52. [PMID:18582868]

Contributors

Show »

How to cite this page