Top ▲

κ receptor

Click here for help

Target not currently curated in GtoImmuPdb

Target id: 318

Nomenclature: κ receptor

Family: Opioid receptors

Gene and Protein Information Click here for help
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 380 8q11.23 OPRK1 opioid receptor kappa 1 65,103,135
Mouse 7 380 1 1.89 cM Oprk1 opioid receptor, kappa 1 8,47,61,77,128
Rat 7 380 5q12 Oprk1 opioid receptor, kappa 1 16,59,67-68,76
Previous and Unofficial Names Click here for help
KOR-1 | Kappa receptor | OP2 | KOP | KOPr
Database Links Click here for help
Specialist databases
GPCRdb oprk_human (Hs), oprk_mouse (Mm), oprk_rat (Rn)
Other databases
Alphafold
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
SynPHARM
UniProtKB
Wikipedia
Selected 3D Structures Click here for help
Image of receptor 3D structure from RCSB PDB
Description:  Structure of the human kappa opioid receptor in complex with JDTic
PDB Id:  4DJH
Ligand:  JDTic
Resolution:  2.9Å
Species:  Human
References:  127
Image of receptor 3D structure from RCSB PDB
Description:  Structure of the Nanobody-Stabilized Active State of the Kappa Opioid Receptor
PDB Id:  6B73
Ligand:  MP1104
Resolution:  3.1Å
Species:  Human
References:  15
Natural/Endogenous Ligands Click here for help
big dynorphin {Sp: Human, Mouse, Rat}
dynorphin A-(1-13) {Sp: Human, Mouse, Rat}
dynorphin A {Sp: Human, Mouse, Rat}
dynorphin A-(1-8) {Sp: Human, Mouse, Rat}
dynorphin B {Sp: Human, Mouse, Rat}
β-endorphin {Sp: Human} , β-endorphin {Sp: Mouse} , β-endorphin {Sp: Rat}
[Leu]enkephalin {Sp: Human, Mouse, Rat}
[Met]enkephalin {Sp: Human, Mouse, Rat}
α-neoendorphin {Sp: Human, Mouse, Rat}
β-neoendorphin {Sp: Human, Mouse, Rat}
Comments: Dynorphin A and big dynorphin are the highest potency endogenous ligands
Principal endogenous agonists (Human)
big dynorphin (PDYN, P01213), dynorphin A (PDYN, P01213)

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
nalfurafine Small molecule or natural product Ligand has a PDB structure Hs Full agonist 10.1 pKd 124
pKd 10.1 [124]
ethylketocyclazocine Small molecule or natural product Click here for species-specific activity table Hs Full agonist 9.4 pKd 116,136
pKd 9.4 [116,136]
enadoline Small molecule or natural product Hs Full agonist 8.6 – 9.2 pKd 35
pKd 8.6 – 9.2 [35]
[3H]U69593 Small molecule or natural product Ligand is labelled Ligand is radioactive Hs Full agonist 8.7 – 8.8 pKd 51,82,103
pKd 8.7 – 8.8 (Kd 2x10-9 – 1.6x10-9 M) [51,82,103]
(-)-bremazocine Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 10.5 pKi 116
pKi 10.5 [116]
ICI-199441 Small molecule or natural product Click here for species-specific activity table Hs Agonist 10.4 pKi 50
pKi 10.4 (Ki 4x10-11 M) [50]
Description: Displacement of [3H]diprenorphine from human κ opioid receptor
dynorphin A {Sp: Human, Mouse, Rat} Peptide Ligand is endogenous in the given species Rn Full agonist 10.0 – 10.3 pKi 59,67
pKi 10.0 – 10.3 [59,67]
(-)-cyclazocine Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 10.0 pKi 116
pKi 10.0 [116]
ethylketocyclazocine Small molecule or natural product Click here for species-specific activity table Hs Full agonist 10.0 pKi 116
pKi 10.0 [116]
dynorphin A-(1-13) {Sp: Human, Mouse, Rat} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Hs Full agonist 9.3 – 10.7 pKi 82,116
pKi 9.3 – 10.7 [82,116]
butorphanol Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Partial agonist 9.9 pKi 24
pKi 9.9 (Ki 1.2x10-10 M) [24]
Description: Displacement of [3H]U69593 from human κ opioid receptor expressed in CHO cells.
dynorphin A-(1-13) {Sp: Human, Mouse, Rat} Peptide Ligand is endogenous in the given species Rn Full agonist 9.9 pKi 67
pKi 9.9 [67]
dynorphin-(1-11) Peptide Click here for species-specific activity table Hs Full agonist 9.7 pKi 116
pKi 9.7 [116]
etorphine Small molecule or natural product Click here for species-specific activity table Hs Full agonist 9.7 pKi 116
pKi 9.7 [116]
GR 89696 Small molecule or natural product Hs Full agonist 9.7 pKi 89
pKi 9.7 [89]
enadoline Small molecule or natural product Hs Full agonist 9.6 pKi 40,74
pKi 9.6 [40,74]
probe 1.1 [PMID: 24187130] Small molecule or natural product Hs Agonist 9.6 pKi 134
pKi 9.6 (Ki 2.5x10-10 M) [134]
dynorphin A {Sp: Human, Mouse, Rat} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Hs Full agonist 8.3 – 10.8 pKi 82,103,116,135-136
pKi 8.3 – 10.8 [82,103,116,135-136]
dynorphin B {Sp: Human, Mouse, Rat} Peptide Ligand is endogenous in the given species Rn Full agonist 9.5 pKi 67
pKi 9.5 [67]
U69593 Small molecule or natural product Hs Full agonist 9.5 pKi 51,116
pKi 9.5 [51,116]
naloxone benzoylhydrazone Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 9.5 pKi 116
pKi 9.5 [116]
MP1104 Small molecule or natural product Hs Agonist 9.5 pKi 15
pKi 9.5 (Ki 3.3x10-10 M) [15]
probe 2.1 [PMID: 24187130] Small molecule or natural product Hs Agonist 9.5 pKi 134
pKi 9.5 (Ki 3.5x10-10 M) [134]
α-neoendorphin {Sp: Human, Mouse, Rat} Peptide Ligand is endogenous in the given species Rn Full agonist 8.9 – 10.0 pKi 59,67
pKi 8.9 – 10.0 [59,67]
HS665 Small molecule or natural product Primary target of this compound Click here for species-specific activity table Hs Full agonist 9.3 pKi 108
pKi 9.3 (Ki 4.9x10-10 M) [108]
α-neoendorphin {Sp: Human, Mouse, Rat} Peptide Ligand is endogenous in the given species Hs Full agonist 8.3 – 10.2 pKi 103,135
pKi 8.3 – 10.2 [103,135]
β-neoendorphin {Sp: Human, Mouse, Rat} Peptide Ligand is endogenous in the given species Rn Full agonist 9.1 pKi 67
pKi 9.1 [67]
E2078 Peptide Hs Full agonist 9.1 pKi 90
pKi 9.1 [90]
dynorphin B {Sp: Human, Mouse, Rat} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Hs Partial agonist 8.1 – 9.9 pKi 82,103,116
pKi 8.1 – 9.9 [82,103,116]
spiradoline Small molecule or natural product Rn Full agonist 9.0 pKi 16
pKi 9.0 [16]
asimadoline Small molecule or natural product Immunopharmacology Ligand Cp Agonist 9.0 pKi 30
pKi 9.0 (Ki 1x10-9 M) [30]
Description: Displacement of [3H]- 69593 from K opioid receptors from guinea pig cerebellum.
dynorphin A-(1-8) {Sp: Human, Mouse, Rat} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Hs Full agonist 8.0 – 9.9 pKi 82,103,116,129
pKi 8.0 – 9.9 [82,103,116,129]
ethylketocyclazocine Small molecule or natural product Rn Full agonist 8.8 pKi 67
pKi 8.8 [67]
E2078 Peptide Rn Full agonist 8.8 pKi 67
pKi 8.8 [67]
ICI 204448 Small molecule or natural product Rn Full agonist 8.8 pKi 16
pKi 8.8 [16]
tifluadom Small molecule or natural product Hs Full agonist 8.8 pKi 136
pKi 8.8 [136]
U50488 Small molecule or natural product Hs Agonist 7.8 – 9.7 pKi 14,82,103,116,123,135-136
pKi 7.8 – 9.7 [14,82,103,116,123,135-136]
cebranopadol Small molecule or natural product Click here for species-specific activity table Hs Agonist 8.6 pKi 60
pKi 8.6 (Ki 2.6x10-9 M) [60]
Description: Radioligand binding assay
hydromorphone Small molecule or natural product Approved drug Click here for species-specific activity table Hs Agonist 8.6 pKi 125
pKi 8.6 (Ki 2.8x10-9 M) [125]
nalorphine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Partial agonist 7.9 – 9.1 pKi 116,136
pKi 7.9 – 9.1 [116,136]
U50488 Small molecule or natural product Rn Partial agonist 8.2 – 8.7 pKi 16,59,67
pKi 8.2 – 8.7 [16,59,67]
U69593 Small molecule or natural product Rn Full agonist 8.0 – 8.7 pKi 16,67
pKi 8.0 – 8.7 [16,67]
salvinorin A Small molecule or natural product Hs Full agonist 7.8 – 8.7 pKi 11,94
pKi 7.8 – 8.7 [11,94]
BU08028 Small molecule or natural product Click here for species-specific activity table Hs Agonist 8.3 pKi 44
pKi 8.3 (Ki 5.63x10-9 M) [44]
compound 3 [PMID: 23134120] Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 8.2 pKi 108
pKi 8.2 (Ki 5.9x10-9 M) [108]
(-)-pentazocine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Partial agonist 7.8 – 8.6 pKi 116,136
pKi 7.8 – 8.6 [116,136]
β-neoendorphin {Sp: Human, Mouse, Rat} Peptide Ligand is endogenous in the given species Hs Full agonist 7.9 pKi 103
pKi 7.9 [103]
tramadol Small molecule or natural product Approved drug Click here for species-specific activity table Hs Agonist 7.8 pKi 125
pKi 7.8 (Ki 1.4x10-8 M) [125]
Description: Displacement of the kappa agonist U69593 from the kappa receptor expressed in CHO cells.
normorphine Small molecule or natural product Click here for species-specific activity table Hs Full agonist 7.8 pKi 116
pKi 7.8 [116]
ADL5747 Small molecule or natural product Click here for species-specific activity table Hs Agonist 7.6 pKi 56
pKi 7.6 (Ki 2.5x10-8 M) [56]
BW373U86 Small molecule or natural product Click here for species-specific activity table Rn Agonist 7.5 pKi 12
pKi 7.5 (Ki 3.4x10-8 M) [12]
nalbuphine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Full agonist 7.4 – 7.5 pKi 136
pKi 7.4 – 7.5 [136]
ADL5859 Small molecule or natural product Click here for species-specific activity table Hs Agonist 7.4 pKi 55
pKi 7.4 (Ki 3.7x10-8 M) [55]
carfentanil Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Cp Agonist 7.4 pKi 17
pKi 7.4 (Ki 4.31x10-8 M) [17]
Description: Binding affinity- displacement of [3H]U69593 in guinea pig whole brain
morphine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Partial agonist 7.3 pKi 116
pKi 7.3 [116]
cebranopadol Small molecule or natural product Click here for species-specific activity table Rn Agonist 7.2 pKi 60
pKi 7.2 (Ki 6.4x10-8 M) [60]
Description: Radioligand binding assay
β-endorphin {Sp: Human} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Hs Partial agonist 6.3 – 7.9 pKi 103,116
pKi 6.3 – 7.9 [103,116]
dihydromorphine Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 7.1 pKi 116
pKi 7.1 [116]
fentanyl Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Partial agonist 7.1 pKi 116
pKi 7.1 [116]
etonitazene Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 6.9 pKi 116
pKi 6.9 [116]
BW373U86 Small molecule or natural product Click here for species-specific activity table Hs Agonist 6.9 pKi 55
pKi 6.9 (Ki 1.3x10-7 M) [55]
SCH221510 Small molecule or natural product Click here for species-specific activity table Hs Agonist 6.9 pKi 121
pKi 6.9 (Ki 1.31x10-7 M) [121]
Description: Radioligand binding assay
morphine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Rn Partial agonist 6.7 – 7.0 pKi 16,67
pKi 6.7 – 7.0 [16,67]
β-endorphin {Sp: Human} Peptide Click here for species-specific activity table Rn Full agonist 6.8 pKi 67
pKi 6.8 [67]
UFP-512 Small molecule or natural product Click here for species-specific activity table Hs Agonist 6.7 pKi 122
pKi 6.7 [122]
Description: Measuring displacement of [3H]-diprenorphine in vitro
hydrocodone Small molecule or natural product Approved drug Click here for species-specific activity table Hs Agonist 6.6 pKi 75
pKi 6.6 (Ki 2.6x10-7 M) [75]
(-)-methadone Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 6.5 pKi 116
pKi 6.5 [116]
DAMGO Peptide Click here for species-specific activity table Hs Partial agonist 6.5 pKi 116
pKi 6.5 [116]
SR16835 Small molecule or natural product Click here for species-specific activity table Hs Agonist 6.2 pKi 117
pKi 6.2 (Ki 6.813x10-7 M) [117]
Description: Radioligand binding assay
bilorphin Small molecule or natural product Click here for species-specific activity table Hs Agonist 6.1 pKi 21
pKi 6.1 (Ki 7.7x10-7 M) [21]
[Leu]enkephalin {Sp: Human, Mouse, Rat} Peptide Ligand is endogenous in the given species Rn Full agonist 6.0 pKi 67
pKi 6.0 [67]
[Met]enkephalin {Sp: Human, Mouse, Rat} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Immunopharmacology Ligand Rn Full agonist 6.0 pKi 67
pKi 6.0 [67]
DAMGO Peptide Click here for species-specific activity table Rn Partial agonist 5.9 pKi 67
pKi 5.9 [67]
difelikefalin Peptide Approved drug Immunopharmacology Ligand Mm Agonist 10.3 pEC50 99
pEC50 10.3 (EC50 4.8x10-11 M) [99]
difelikefalin Peptide Approved drug Primary target of this compound Immunopharmacology Ligand Hs Agonist 9.8 pEC50 99
pEC50 9.8 (EC50 1.6x10-10 M) [99]
HS665 Small molecule or natural product Primary target of this compound Click here for species-specific activity table Hs Full agonist 8.4 pEC50 108
pEC50 8.4 (EC50 3.62x10-9 M) [108]
Description: Measuring stimulation of [35S]GTPγS binding.
compound 3 [PMID: 23134120] Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 7.5 pEC50 108
pEC50 7.5 (EC50 3.5x10-8 M) [108]
Description: Measuring stimulation of [35S]GTPγS binding.
probe 1.1 [PMID: 24187130] Small molecule or natural product Hs Biased agonist 5.4 – 7.5 pEC50 134
pEC50 7.5 (EC50 3.1x10-8 M) [134]
Description: Measuring [35S]GTPγS binding
pEC50 5.4 (EC50 4.129x10-6 M) [134]
Description: Measuring βarrestin2 recruitment
probe 2.1 [PMID: 24187130] Small molecule or natural product Hs Biased agonist <5.0 – 7.1 pEC50 134
pEC50 7.1 (EC50 8.47x10-8 M) [134]
Description: Measuring [35S]GTPγS binding
pEC50 <5.0 (EC50 >1x10-5 M) [134]
Description: Measuring βarrestin2 recruitment
α-neoendorphin {Sp: Human, Mouse, Rat} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Mm Full agonist 10.0 pIC50 128
pIC50 10.0 [128]
dynorphin B {Sp: Human, Mouse, Rat} Peptide Ligand is endogenous in the given species Mm Full agonist 10.0 pIC50 128
pIC50 10.0 [128]
dynorphin A-(1-8) {Sp: Human, Mouse, Rat} Peptide Ligand is endogenous in the given species Mm Full agonist 9.7 pIC50 128
pIC50 9.7 [128]
[D-Ala2,F5,Phe4]dynorphin-(1-17)-NH2 Peptide Mm Full agonist 9.7 pIC50 128
pIC50 9.7 [128]
dynorphin-(1-17)-NH2 Peptide Mm Full agonist 9.7 pIC50 128
pIC50 9.7 [128]
(-)-bremazocine Small molecule or natural product Mm Full agonist 9.5 pIC50 128
pIC50 9.5 [128]
dynorphin A {Sp: Human, Mouse, Rat} Peptide Ligand is endogenous in the given species Mm Full agonist 9.4 pIC50 128
pIC50 9.4 [128]
[Met5]dynorphin-(1-17) Peptide Mm Full agonist 9.2 pIC50 128
pIC50 9.2 [128]
ethylketocyclazocine Small molecule or natural product Click here for species-specific activity table Mm Full agonist 9.0 pIC50 128
pIC50 9.0 [128]
U50488 Small molecule or natural product Mm Partial agonist 9.0 pIC50 128
pIC50 9.0 [128]
spiradoline Small molecule or natural product Mm Full agonist 9.0 pIC50 128
pIC50 9.0 [128]
U69593 Small molecule or natural product Mm Full agonist 8.6 pIC50 128
pIC50 8.6 [128]
ICI 204448 Small molecule or natural product Mm Full agonist 8.2 pIC50 128
pIC50 8.2 [128]
[D-Ala2,F5,Phe4]dynorphin-(1-13)-NH2 Peptide Mm Full agonist 7.7 pIC50 128
pIC50 7.7 [128]
β-endorphin {Sp: Human} Peptide Click here for species-specific activity table Mm Partial agonist 7.4 pIC50 128
pIC50 7.4 [128]
nalbuphine Small molecule or natural product Approved drug Mm Full agonist 7.4 pIC50 128
pIC50 7.4 [128]
pethidine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Agonist 5.6 pIC50 87
pIC50 5.6 (IC50 2.37x10-6 M) [87]
AR-M1000390 Small molecule or natural product Click here for species-specific activity table Hs Agonist 5.1 pIC50 4
pIC50 5.1 (IC50 7.47x10-6 M) [4]
[3H]enadoline Small molecule or natural product Ligand is labelled Ligand is radioactive Hs Full agonist - - 104
[104]
View species-specific agonist tables
Agonist Comments
Ki values were determined in the absence of Na+ and GDP, except TRK820.

Discrimination of full or partial agonism is very dependent on the level of receptor expression and on the assay used to monitor agonist effects. Many agents may behave as full agonists or potent partial agonists in cell lines expressing cloned receptors in high concentration, but in other environments they may show only weak agonist activity. The identification of agonist activity in the table is largely based on the ability to stimulate GTPγS binding in cell lines expressing cloned human kappa receptors. Agents giving 85% or greater stimulation than that given by U69593 have been characterized as Full Agonists [116].

κ opioid receptors have been divided into several different subtypes, mainly on the basis of [3H]agonist binding assays. Generally 2 subtypes are recognised: κ1 and κ2. The benzeneacetamides and peptides are considered κ1 agonists and the benzomorphans bind to κ1 and κ2. However, there is only one gene product and the subtypes are considered putative.

Selective κ agonists are of several structural types. All have high affinity for the κ receptor and are full agonists.

We have tagged the μ receptor as the primary drug target for hydrocodone based on this drug having the highest affinity at this receptor compared to the κ and δ receptors [75]. Similarly, we have tagged the μ receptor as the primary target of the drug hydromorphone [125].
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
LY2456302 Small molecule or natural product Primary target of this compound Click here for species-specific activity table Hs Antagonist 9.1 pKB 93
pKB 9.1 (KB 8.13x10-10 M) [93]
Description: Measuring inhibition of agonist-induced [35S]GTPγS binding in vitro.
zyklophin Peptide Primary target of this compound Click here for species-specific activity table Hs Antagonist 7.1 pKB 81
pKB 7.1 (KB 8.39x10-8 M) [81]
Description: Schild analysis of zyklophin vs. Dynorphin A-(1-13)NH2
[3H]diprenorphine Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Antagonist 9.1 pKd 3,103
pKd 9.1 (Kd 7.94x10-10 M) [3,103]
nor-binaltorphimine Small molecule or natural product Rn Antagonist 9.6 – 10.7 pKi 16,59,67
pKi 9.6 – 10.7 [16,59,67]
JDTic Small molecule or natural product Primary target of this compound Ligand has a PDB structure Hs Antagonist 9.0 – 11.2 pKi 71,114,131
pKi 11.2 (Ki 6x10-12 M) [114]
Description: Measuring antagonism of U50,488-induced [35S]GTPγS binding
pKi 9.0 – 9.4 (Ki 1x10-9 – 3.98x10-10 M) [71,114,131]
nor-binaltorphimine Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.9 – 11.0 pKi 82,86,103,116,135-136
pKi 8.9 – 11.0 [82,86,103,116,135-136]
5'-guanidinonaltrindole Small molecule or natural product Hs Antagonist 9.7 – 9.9 pKi 41,82,110
pKi 9.7 – 9.9 [41,82,110]
β-FNA Small molecule or natural product Click here for species-specific activity table Hs Antagonist 9.7 pKi 116
pKi 9.7 [116]
quadazocine Small molecule or natural product Click here for species-specific activity table Hs Antagonist 9.7 pKi 116
pKi 9.7 [116]
diprenorphine Small molecule or natural product Click here for species-specific activity table Hs Antagonist 9.6 – 9.7 pKi 82,116,135-136
pKi 9.6 – 9.7 [82,116,135-136]
buprenorphine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 9.1 – 10.2 pKi 116,136
pKi 9.1 – 10.2 [116,136]
samidorphan Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 9.6 pKi 126
pKi 9.6 (Ki 2.3x10-10 M) [126]
nalmefene Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 9.5 pKi 116
pKi 9.5 [116]
LY2456302 Small molecule or natural product Primary target of this compound Click here for species-specific activity table Hs Antagonist 9.1 pKi 93
pKi 9.1 (Ki 8.07x10-10 M) [93]
AT-076 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.9 pKi 116,131
pKi 8.9 (Ki 1.14x10-9 M) [116,131]
Description: Radioligand binding assay
naltrexone Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 8.4 – 9.4 pKi 82,103,116
pKi 8.4 – 9.4 [82,103,116]
BNTX Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.4 pKi 116
pKi 8.4 [116]
naltriben Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 8.4 pKi 116
pKi 8.4 [116]
NFP Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.3 pKi 133
pKi 8.3 (Ki 4.8x10-9 M) [133]
Description: In a competitive radioligand membrane binding assay measuring displacement of [3H]diprenorphine by NFP from κ receptor expressed in CHO cells.
methylnaltrexone Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 8.2 pKi 125
pKi 8.2 (Ki 6.3x10-9 M) [125]
naloxone Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 7.6 – 8.6 pKi 82,103,116,135-136
pKi 7.6 – 8.6 [82,103,116,135-136]
naltrindole Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 8.0 pKi 116
pKi 8.0 [116]
naltrindole Small molecule or natural product Ligand has a PDB structure Rn Antagonist 7.9 pKi 59
pKi 7.9 [59]
naloxone Small molecule or natural product Approved drug Rn Antagonist 7.7 – 8.0 pKi 16,59,67
pKi 7.7 – 8.0 [16,59,67]
zyklophin Peptide Primary target of this compound Click here for species-specific activity table Hs Antagonist 7.5 pKi 81
pKi 7.5 (Ki 3.03x10-8 M) [81]
alvimopan Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 7.0 pKi 54
pKi 7.0 (Ki 1x10-7 M) [54]
(+)-naloxone Small molecule or natural product Rn Antagonist 4.7 pKi 67
pKi 4.7 [67]
naltrexone Small molecule or natural product Approved drug Click here for species-specific activity table Mm Antagonist 9.2 pIC50 128
pIC50 9.2 [128]
NMRA-140 Small molecule or natural product Primary target of this compound Click here for species-specific activity table Hs Antagonist 9.1 pIC50 32
pIC50 9.1 (IC50 8x10-10 M) [32]
nor-binaltorphimine Small molecule or natural product Click here for species-specific activity table Mm Antagonist 8.9 pIC50 128
pIC50 8.9 [128]
naloxone Small molecule or natural product Approved drug Click here for species-specific activity table Mm Antagonist 8.3 pIC50 128
pIC50 8.3 [128]
naltrindole Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Mm Antagonist 7.4 pIC50 128
pIC50 7.4 [128]
View species-specific antagonist tables
Allosteric Modulator Comments
Although no small molecules are considered direct allosteric regulators of κ opioid receptors, a number of proteins such as G protein-coupled receptor kinases, β-arrestins and G proteins clearly regulate receptor affinities and function. Furthermore, sodium and guanine nucleotides can modify the functional κ receptor complex and G protein interaction. Also, other G protein-coupled receptors appear to be able to form heterodimers with κ receptors, potentially modifying κ opioid receptor activity.
Other Binding Ligands
Key to terms and symbols Click column headers to sort
Ligand Sp. Action Value Parameter Reference
compound 16 [PMID: 31498617] Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Binding 4.9 pKi 88
pKi 4.9 (Ki 1.21x10-5 M) [88]
Description: Receptor binding in a radioligand displacement assay using [3H]U-69,593 as tracer.
Primary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gi/Go family Adenylyl cyclase inhibition
Potassium channel
Calcium channel
References:  6,31,34,46,53,69,98,111
Secondary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gi/Go family
G12/G13 family
Adenylyl cyclase inhibition
Phospholipase C stimulation
Other - See Comments
Comments:  Activation of κ opioid receptors stimulates p42/p44 MAP kinase via βγ subunits of Gi/o proteins [10].
κ opioid receptors interact with NHERF-1/EBP50 to stimulate Na+/H+ exchange independent of Gi/o proteins [39].
References:  10,39,52,58,72,119
Tissue Distribution Click here for help
CNS: olfactory bulb, nucleus accumbens, caudate nucleus, putamen, temporal cortex, parietal cortex, thalamic nuclei > amygdala, occipital cortex, frontal cortex, hypothalamus, ventral tegmental area, cerebellar cortex > hippocampus, corpus mamillare, locus coeruleus, pituitary, spinal cord > globus pallidus, substantia nigra, superior colliculus, inferior colliculus, olivary nucleus.
Species:  Human
Technique:  RT-PCR.
References:  103
Skin.
Species:  Human
Technique:  RT-PCR and Immunohistochemistry.
References:  96
Immune cells.
Species:  Human
Technique:  RT-PCR.
References:  25
CNS: amygdala, caudate nucleus, hypothalamus, subthalamic nucleus > hippocampus, thalamus > substantia nigra, corpus callosum.
Species:  Human
Technique:  Northern blotting.
References:  135
Intestine.
Species:  Mouse
Technique:  RT-PCR.
References:  85
CNS: claustrum, nucleus accumbens, endopiriform nucleus, ventral pallidum, preoptic area, fundus striati, hypothalamus, substantia nigra.
Species:  Mouse
Technique:  Radioligand binding.
References:  45
CNS: olfactory tubercle, endopiriform nucleus, ventral pallidum, hypothalamus, deep cortical layers, claustrum.
Species:  Mouse
Technique:  Radioligand binding.
References:  45
Pregnant uterus.
Species:  Mouse
Technique:  in situ hybridisation.
References:  138
Ear: cochlea.
Species:  Rat
Technique:  RT-PCR and immunocytochemistry.
References:  42
CNS: amygdala, olfactory tubercle, nucleus accumbens, caudate putamen, medial preoptic area, hypothalamus, median eminence, periventricular thalamus, interpeduncular nucleus.
Species:  Rat
Technique:  Radioligand binding.
References:  64
κ1: CNS: claustrum, endopiriform nucleus, caudate putamen, nucleus accumbens, midline nuclear group of the thalamus, superficial grey layer of the superior colliculus, central grey.
κ2: CNS: caudate putamen, nucleus accumbens, amygdala, thalamus, interpeduncular nuclei.
Species:  Rat
Technique:  Radioligand binding.
References:  120
CNS: ventral forebrain, hypothalamus, thalamus, posterior pituitary, and midbrain. Primarily postsynaptic membranes.
Species:  Rat
Technique:  Immunohistochemistry.
References:  5
CNS: hippocampus, dentate gyrus, hypothalamic and thalamic nuclei, cortex, caudate putamen, olfactory tubercle, nucleus accumbens
Species:  Rat
Technique:  in situ hybridisation.
References:  27
CNS: κ receptors only represent a small percentage of opioid receptors in the superficial layers (I and II) of the dorsal horn of the spinal cord.
Species:  Rat
Technique:  Radioligand binding.
References:  9
CNS: telencephalon, diencephalon > mesencephalon, metencephalon.
Species:  Rat
Technique:  Radioligand binding.
References:  78
CNS: nucleus accumbens, pyramidal and molecular layers of the hippocampus, granular cell layer of the dentate gyrus, midline nuclei of the thalamus, hindbrain regions > striatum.
Species:  Rat
Technique:  Radioligand binding.
References:  113
Tissue Distribution Comments
κ opioid receptors show a fairly widespread distribution although quantitatively they represent only a small percentage of the total opioid receptors in the brain. This contrasts with the guinea-pig brain, where κ opioid receptor expression is far more abundant. In all species, the early receptor autoradiography was carried out with low selectivity ligands such as [3H]ethylketocycazocine and [3H]bremazocine and their cross labelling of μ and δ receptors was supressed by the use of excess cold ligands to displace their binding to μ and δ opioid sites. Since the late 1980s highly selective κ opioid receptor ligands such as [3H]U69,593 and [3H]CI-977 have been used and the distribution is more restrictive when these ligands are employed.

For a review of κ opioid receptor expression in the rat see [63].
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays Click here for help
Measurement of Ca2+ conductance, using a whole cell voltage clamp, in PC-12 cells transfected with the mouse κ receptor.
Species:  Mouse
Tissue:  PC-12 cells.
Response measured:  Increase in K+ conductance and decrease in Ca2+ conductance.
References:  111
Measurement of musculature contraction of sections of mouse vas deferens following stimulation of the intramural nerves.
Species:  Mouse
Tissue:  Vas deferens.
Response measured:  Inhibition of electrically-evoked contractions.
References:  18
Measurement of K+ conductance, using a 2 electrode voltage clamp, in Xenopus oocytes transfected with the rat κ receptor and Kir3 channel.
Species:  Rat
Tissue:  Xenopus oocytes.
Response measured:  Increase in K+ conductance.
References:  34
Measurement of cAMP levels in R1.1 murine thymoma cells endogenously expressing the κ receptor.
Species:  Mouse
Tissue:  R1.1 murine thymoma cells.
Response measured:  Inhibition of cAMP accumulation.
References:  53
Measurement of cAMP levels in CHO cells transfected with the rat κ receptor.
Species:  Rat
Tissue:  CHO cells.
Response measured:  Inhibition of cAMP accumulation.
References:  7
Measurement of cAMP levels in PC-12 cells transfected with the mouse κ receptor.
Species:  Mouse
Tissue:  PC-12 cells.
Response measured:  Inhibition of cAMP accumulation.
References:  111
Measurement of cAMP levels in COS-7 cells transfected with the rat κ receptor.
Species:  Rat
Tissue:  COS-7 cells.
Response measured:  Inhibition of cAMP accumulation.
References:  16
Measurement of cAMP levels in CHO cells transfected with the human κ receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Inhibition of cAMP accumulation.
References:  137
Measurement of [35S]GTPγS binding in CHO cells transfected with the human κ receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  [35S]GTPγS binding.
References:  136
Physiological Functions Click here for help
Sedative and sensorimotor effects in rats.
Species:  Rat
Tissue:  In vivo.
References:  118,123
Water diuresis, potentially by modulation of vasopressin.
Species:  Human
Tissue:  In vivo.
References:  79,84,91
Water diuresis, potentially by modulation of vasopressin.
Species:  Rat
Tissue:  In vivo.
References:  57,106,123
Water diuresis, potentially by modulation of vasopressin.
Species:  Mouse
Tissue:  In vivo.
References:  123
Neuroendocrine effects: stimulation of prolactin release, probably by modulation of the tuberoinfundibular dopamine system.
Species:  Human
Tissue:  In vivo.
References:  48,83
Neuroendocrine effects: stimulation of prolactin release, probably by modulation of the tuberoinfundibular dopamine system.
Species:  Rat
Tissue:  In vivo.
References:  23,49
Sedative and sensorimotor effects in mice.
Species:  Mouse
Tissue:  In vivo.
References:  118,123
Sedative and interoceptive effects in humans (such as psychotomimetic, dysphoric and potentially hallucinogenic).
Species:  Human
Tissue:  In vivo.
References:  92
Modulation of dopaminergic function.
Species:  Human
Tissue:  In vivo.
References:  130
Modulation of dopaminergic function. This may be related to the κ agonist effects on hedonic states (such as causing place aversion in rodents), as well as the blockade of the reinforcing, locomotor stimulant and neurobiological effects of psychostimulants such as cocaine.
Species:  Rat
Tissue:  In vivo.
References:  22,28,62,102,107
Modulation of dopaminergic function. This may be related to the κ agonist effects on hedonic states (such as causing place aversion in rodents), as well as the blockade of the reinforcing, locomotor stimulant and neurobiological effects of psychostimulants such as cocaine.
Species:  Mouse
Tissue:  In vivo.
References:  132
Immune changes have been observed in immune cells in peripheral tissues.
Species:  Mouse
Tissue:  lymphoid cells.
References:  101,112
Immune changes have been observed in immune cells in central tissues.
Species:  Human
Tissue:  Microglial cells.
References:  13,66
Enhancement of food intake.
Species:  Rat
Tissue:  In vivo.
References:  70
Blockade of pruritus.
Species:  Mouse
Tissue:  In vivo.
References:  115
Blockade of pruritus.
Species:  Rat
Tissue:  In vivo.
References:  29
Body temperature regulation:
κ receptor activation induces hypothermia, blocked by selective κ receptor antagonists. The effect is centrally mediated, involving both oxidative metabolism and heat exchange.
Species:  Rat
Tissue:  In vivo.
References:  1,33
Antinociception: systemic administration.
Species:  Rat
Tissue:  In vivo.
References:  97,123
Antinociception: systemic administration.
Species:  Mouse
Tissue:  In vivo.
References:  73,123
Antinociception: systemic administration.
Species:  Human
Tissue:  In vivo.
References:  80
Peripheral antinociception.
Species:  Rat
Tissue:  In vivo.
References:  2,109
Attenuation of contractions induced by intestinal distension in the gastrointestinal tract.
Species:  Rat
Tissue:  In vivo.
References:  100
Stimulation of relief from abdominal pain and bloating.
Species:  Human
Tissue:  In vivo.
References:  19
Physiological Consequences of Altering Gene Expression Click here for help
κ receptor knockout mice exhibit increased in humoral responses to antigen challenge.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  26
κ opioid receptor knockout mice exhibit enhanced sensitivity to chemical visceral pain, abolished hypolocomotor, analgesic and aversive actions of the prototypic κ receptor agonist U50488H and attenuation of morphine withdrawl.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  105
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Oprk1tm1Jep Oprk1tm1Jep/Oprk1tm1Jep
involves: C57BL/6
MGI:97439  MP:0001462 abnormal avoidance learning behavior PMID: 19864633 
Oprk1tm1Kff Oprk1tm1Kff/Oprk1tm1Kff
involves: 129S2/SvPas * C57BL/6
MGI:97439  MP:0001392 abnormal locomotor activity PMID: 9463367 
Oprk1tm1Kff Oprk1tm1Kff/Oprk1tm1Kff
involves: 129S2/SvPas * C57BL/6
MGI:97439  MP:0001970 abnormal pain threshold PMID: 9463367 
Oprk1tm1Jep Oprk1tm1Jep/Oprk1tm1Jep
involves: 129S/SvEv * 129S6/SvEvTac * C57BL/6
MGI:97439  MP:0001982 decreased chemically-elicited antinociception PMID: 16672569 
Oprk1tm1Kff Oprk1tm1Kff/Oprk1tm1Kff
involves: 129S2/SvPas * C57BL/6
MGI:97439  MP:0000623 decreased salivation PMID: 9463367 
Oprk1tm1Jep Oprk1tm1Jep/Oprk1tm1Jep
Not Specified
MGI:97439  MP:0009778 impaired behavioral response to anesthetic PMID: 11032994 
Oprk1tm1Kff Oprk1tm1Kff/Oprk1tm1Kff
involves: 129S2/SvPas * C57BL/6
MGI:97439  MP:0009757 impaired behavioral response to morphine PMID: 9463367 
Oprk1tm1Kff Oprk1tm1Kff/Oprk1tm1Kff
involves: 129S2/SvPas * C57BL/6
MGI:97439  MP:0001934 increased litter size PMID: 9463367 
Oprk1+|Oprk1tm1Kff Oprk1tm1Kff/Oprk1+
involves: 129S2/SvPas * C57BL/6
MGI:97439  MP:0001934 increased litter size PMID: 9463367 
Biologically Significant Variant Comments
κ1 and κ2 receptor subtypes have been proposed based on in vivo pharmacology showing lack of cross-tolerance between U69,593 and bremazocine and differential antagonism by quadazocine and (-)UPHIT [36-38]. Receptor binding studies have led to suggestions of κ1, κ2 and κ3 subtypes [20,95]. However, only one κ receptor cDNA clone has been reported and no κ receptor variants have been characterised. Interaction between κ and δ receptors in transfected cells has been reported and suggested to result in κ2 subtype pharmacology [43]. Multiple active conformations of the κ receptor are likely to exist. κ receptor subtypes are likely due to interaction of receptor with other proteins or receptors at the level of neuronal circuitry, but not mRNA variants.

References

Show »

1. Adler MW, Geller EB. (1987) Hypothermia and poikilothermia induced by a kappa-agonist opioid and a neuroleptic. Eur J Pharmacol, 140 (2): 233-7. [PMID:2889606]

2. Andreev N, Urban L, Dray A. (1994) Opioids suppress spontaneous activity of polymodal nociceptors in rat paw skin induced by ultraviolet irradiation. Neuroscience, 58 (4): 793-8. [PMID:8190256]

3. Ann DK, Hasegawa J, Ko JL, Chen ST, Lee NM, Loh HH. (1992) Specific reduction of delta-opioid receptor binding in transfected NG108-15 cells. J Biol Chem, 267 (11): 7921-6. [PMID:1313812]

4. Arora S, Keenan SM, Peng Y, Welsh W, Zhang Q. (2006) Opioid receptor subtype-selective agents. Patent number: WO2006124687 A1. Assignee: Arora S, Keenan SM, Peng Y, Welsh W, Zhang Q.. Priority date: 12/05/2005. Publication date: 23/11/2006.

5. Arvidsson U, Riedl M, Chakrabarti S, Vulchanova L, Lee JH, Nakano AH, Lin X, Loh HH, Law PY, Wessendorf MW et al.. (1995) The kappa-opioid receptor is primarily postsynaptic: combined immunohistochemical localization of the receptor and endogenous opioids. Proc Natl Acad Sci USA, 92 (11): 5062-6. [PMID:7539141]

6. Attali B, Vogel Z. (1986) Inhibition of adenylate cyclase and induction of heterologous desensitization by kappa agonists in rat spinal cord. NIDA Res Monogr, 75: 141-4. [PMID:2828959]

7. Avidor-Reiss T, Zippel R, Levy R, Saya D, Ezra V, Barg J, Matus-Leibovitch N, Vogel Z. (1995) kappa-Opioid receptor-transfected cell lines: modulation of adenylyl cyclase activity following acute and chronic opioid treatments. FEBS Lett, 361 (1): 70-4. [PMID:7890042]

8. Belkowski SM, Zhu J, Liu-Chen LY, Eisenstein TK, Adler MW, Rogers TJ. (1995) Sequence of kappa-opioid receptor cDNA in the R1.1 thymoma cell line. J Neuroimmunol, 62 (1): 113-7. [PMID:7499487]

9. Besse D, Lombard MC, Besson JM. (1991) Autoradiographic distribution of mu, delta and kappa opioid binding sites in the superficial dorsal horn, over the rostrocaudal axis of the rat spinal cord. Brain Res, 548 (1-2): 287-91. [PMID:1651143]

10. Bohn LM, Belcheva MM, Coscia CJ. (2000) Mitogenic signaling via endogenous kappa-opioid receptors in C6 glioma cells: evidence for the involvement of protein kinase C and the mitogen-activated protein kinase signaling cascade. J Neurochem, 74 (2): 564-73. [PMID:10646507]

11. Béguin C, Richards MR, Wang Y, Chen Y, Liu-Chen LY, Ma Z, Lee DY, Carlezon Jr WA, Cohen BM. (2005) Synthesis and in vitro pharmacological evaluation of salvinorin A analogues modified at C(2). Bioorg Med Chem Lett, 15 (11): 2761-5. [PMID:15869877]

12. Chang KJ, Rigdon GC, Howard JL, McNutt RW. (1993) A novel, potent and selective nonpeptidic delta opioid receptor agonist BW373U86. J Pharmacol Exp Ther, 267 (2): 852-7. [PMID:8246159]

13. Chao CC, Gekker G, Hu S, Sheng WS, Shark KB, Bu DF, Archer S, Bidlack JM, Peterson PK. (1996) kappa opioid receptors in human microglia downregulate human immunodeficiency virus 1 expression. Proc Natl Acad Sci USA, 93 (15): 8051-6. [PMID:8755601]

14. Chavkin C, Sud S, Jin W, Stewart J, Zjawiony JK, Siebert DJ, Toth BA, Hufeisen SJ, Roth BL. (2004) Salvinorin A, an active component of the hallucinogenic sage salvia divinorum is a highly efficacious kappa-opioid receptor agonist: structural and functional considerations. J Pharmacol Exp Ther, 308 (3): 1197-203. [PMID:14718611]

15. Che T, Majumdar S, Zaidi SA, Ondachi P, McCorvy JD, Wang S, Mosier PD, Uprety R, Vardy E, Krumm BE et al.. (2018) Structure of the Nanobody-Stabilized Active State of the Kappa Opioid Receptor. Cell, 172 (1-2): 55-67.e15. [PMID:29307491]

16. Chen Y, Mestek A, Liu J, Yu L. (1993) Molecular cloning of a rat kappa opioid receptor reveals sequence similarities to the mu and delta opioid receptors. Biochem J, 295 ( Pt 3): 625-8. [PMID:8240267]

17. Cometta-Morini C, Maguire PA, Loew GH. (1992) Molecular determinants of mu receptor recognition for the fentanyl class of compounds. Mol Pharmacol, 41 (1): 185-96. [PMID:1310142]

18. Cox BM, Chavkin C. (1983) Comparison of dynorphin-selective Kappa receptors in mouse vas deferens and guinea pig ileum. Spare receptor fraction as a determinant of potency. Mol Pharmacol, 23 (1): 36-43. [PMID:6135144]

19. Dapoigny M, Abitbol JL, Fraitag B. (1995) Efficacy of peripheral kappa agonist fedotozine versus placebo in treatment of irritable bowel syndrome. A multicenter dose-response study. Dig Dis Sci, 40 (10): 2244-9. [PMID:7587797]

20. de Costa BR, Rothman RB, Bykov V, Jacobson AE, Rice KC. (1989) Selective and enantiospecific acylation of kappa opioid receptors by (1S,2S)-trans-2-isothiocyanato-N-methyl-N-[2-(1-pyrrolidinyl) cyclohexy l] benzeneacetamide. Demonstration of kappa receptor heterogeneity. J Med Chem, 32 (2): 281-3. [PMID:2536435]

21. Dekan Z, Sianati S, Yousuf A, Sutcliffe KJ, Gillis A, Mallet C, Singh P, Jin AH, Wang AM, Mohammadi SA et al.. (2019) A tetrapeptide class of biased analgesics from an Australian fungus targets the µ-opioid receptor. Proc Natl Acad Sci USA, 116 (44): 22353-22358. [PMID:31611414]

22. Di Chiara G, Imperato A. (1988) Opposite effects of mu and kappa opiate agonists on dopamine release in the nucleus accumbens and in the dorsal caudate of freely moving rats. J Pharmacol Exp Ther, 244 (3): 1067-80. [PMID:2855239]

23. Durham RA, Johnson JD, Moore KE, Lookingland KJ. (1996) Evidence that D2 receptor-mediated activation of hypothalamic tuberoinfundibular dopaminergic neurons in the male rat occurs via inhibition of tonically active afferent dynorphinergic neurons. Brain Res, 732 (1-2): 113-20. [PMID:8891275]

24. Fulton BS, Knapp BI, Bidlack JM, Neumeyer JL. (2008) Synthesis and pharmacological evaluation of hydrophobic esters and ethers of butorphanol at opioid receptors. Bioorg Med Chem Lett, 18 (16): 4474-6. [PMID:18674902]

25. Gavériaux C, Peluso J, Simonin F, Laforet J, Kieffer B. (1995) Identification of kappa- and delta-opioid receptor transcripts in immune cells. FEBS Lett, 369 (2-3): 272-6. [PMID:7649271]

26. Gavériaux-Ruff C, Simonin F, Filliol D, Kieffer BL. (2003) Enhanced humoral response in kappa-opioid receptor knockout mice. J Neuroimmunol, 134 (1-2): 72-81. [PMID:12507774]

27. George SR, Zastawny RL, Briones-Urbina R, Cheng R, Nguyen T, Heiber M, Kouvelas A, Chan AS, O'Dowd BF. (1994) Distinct distributions of mu, delta and kappa opioid receptor mRNA in rat brain. Biochem Biophys Res Commun, 205 (2): 1438-44. [PMID:7802680]

28. Glick SD, Maisonneuve IM, Raucci J, Archer S. (1995) Kappa opioid inhibition of morphine and cocaine self-administration in rats. Brain Res, 681 (1-2): 147-52. [PMID:7552272]

29. Gmerek DE, Cowan A. (1988) Role of opioid receptors in bombesin-induced grooming. Ann N Y Acad Sci, 525: 291-300. [PMID:2839069]

30. Gottschlich R, Ackermann KA, Barber A, Bartoszyk GD, Greiner HE. (1994) EMD 61 753 as a favourable representative of structurally novel arylacetamido-type K opiate receptor agonists. Bioorg Med Chem Lett, 4 (4): 677–682.

31. Grudt TJ, Williams JT. (1993) kappa-Opioid receptors also increase potassium conductance. Proc Natl Acad Sci USA, 90 (23): 11429-32. [PMID:7902584]

32. Guerrero M, Urbano M, Kim EK, Gamo AM, Riley S, Abgaryan L, Leaf N, Van Orden LJ, Brown SJ, Xie JY et al.. (2019) Design and Synthesis of a Novel and Selective Kappa Opioid Receptor (KOR) Antagonist (BTRX-335140). J Med Chem, 62 (4): 1761-1780. [PMID:30707578]

33. Handler CM, Geller EB, Adler MW. (1992) Effect of mu-, kappa-, and delta-selective opioid agonists on thermoregulation in the rat. Pharmacol Biochem Behav, 43 (4): 1209-16. [PMID:1361992]

34. Henry DJ, Grandy DK, Lester HA, Davidson N, Chavkin C. (1995) Kappa-opioid receptors couple to inwardly rectifying potassium channels when coexpressed by Xenopus oocytes. Mol Pharmacol, 47 (3): 551-7. [PMID:7700253]

35. Hjorth SA, Thirstrup K, Schwartz TW. (1996) Radioligand-dependent discrepancy in agonist affinities enhanced by mutations in the kappa-opioid receptor. Mol Pharmacol, 50 (4): 977-84. [PMID:8863844]

36. Horan P, de Costa BR, Rice KC, Porreca F. (1991) Differential antagonism of U69,593- and bremazocine-induced antinociception by (-)-UPHIT: evidence of kappa opioid receptor multiplicity in mice. J Pharmacol Exp Ther, 257 (3): 1154-61. [PMID:1646325]

37. Horan PJ, de Costa BR, Rice K, Haaseth RC, Hruby VJ, Porreca F. (1993) Differential antagonism of bremazocine- and U69,593-induced antinociception by quadazocine: further functional evidence of opioid kappa receptor multiplicity in the mouse. J Pharmacol Exp Ther, 266 (2): 926-33. [PMID:8394923]

38. Horan PJ, Porreca F. (1993) Lack of cross-tolerance between U69,593 and bremazocine suggests kappa-opioid receptor multiplicity in mice. Eur J Pharmacol, 239 (1-3): 93-8. [PMID:8223918]

39. Huang P, Steplock D, Weinman EJ, Hall RA, Ding Z, Li J, Wang Y, Liu-Chen LY. (2004) kappa Opioid receptor interacts with Na(+)/H(+)-exchanger regulatory factor-1/Ezrin-radixin-moesin-binding phosphoprotein-50 (NHERF-1/EBP50) to stimulate Na(+)/H(+) exchange independent of G(i)/G(o) proteins. J Biol Chem, 279 (24): 25002-9. [PMID:15070904]

40. Hunter JC, Leighton GE, Meecham KG, Boyle SJ, Horwell DC, Rees DC, Hughes J. (1990) CI-977, a novel and selective agonist for the kappa-opioid receptor. Br J Pharmacol, 101 (1): 183-9. [PMID:2178014]

41. Jones RM, Portoghese PS. (2000) 5'-Guanidinonaltrindole, a highly selective and potent kappa-opioid receptor antagonist. Eur J Pharmacol, 396 (1): 49-52. [PMID:10822054]

42. Jongkamonwiwat N, Phansuwan-Pujito P, Sarapoke P, Chetsawang B, Casalotti SO, Forge A, Dodson H, Govitrapong P. (2003) The presence of opioid receptors in rat inner ear. Hear Res, 181 (1-2): 85-93. [PMID:12855366]

43. Jordan BA, Devi LA. (1999) G-protein-coupled receptor heterodimerization modulates receptor function. Nature, 399 (6737): 697-700. [PMID:10385123]

44. Khroyan TV, Polgar WE, Cami-Kobeci G, Husbands SM, Zaveri NT, Toll L. (2011) The first universal opioid ligand, (2S)-2-[(5R,6R,7R,14S)-N-cyclopropylmethyl-4,5-epoxy-6,14-ethano-3-hydroxy-6-methoxymorphinan-7-yl]-3,3-dimethylpentan-2-ol (BU08028): characterization of the in vitro profile and in vivo behavioral effects in mouse models of acute pain and cocaine-induced reward. J Pharmacol Exp Ther, 336 (3): 952-61. [PMID:21177476]

45. Kitchen I, Slowe SJ, Matthes HW, Kieffer B. (1997) Quantitative autoradiographic mapping of mu-, delta- and kappa-opioid receptors in knockout mice lacking the mu-opioid receptor gene. Brain Res, 778 (1): 73-88. [PMID:9462879]

46. Konkoy CS, Childers SR. (1993) Relationship between kappa 1 opioid receptor binding and inhibition of adenylyl cyclase in guinea pig brain membranes. Biochem Pharmacol, 45 (1): 207-16. [PMID:8381004]

47. Kozak CA, Filie J, Adamson MC, Chen Y, Yu L. (1994) Murine chromosomal location of the mu and kappa opioid receptor genes. Genomics, 21 (3): 659-61. [PMID:7959748]

48. Kreek MJ, Schluger J, Borg L, Gunduz M, Ho A. (1999) Dynorphin A1-13 causes elevation of serum levels of prolactin through an opioid receptor mechanism in humans: gender differences and implications for modulation of dopaminergic tone in the treatment of addictions. J Pharmacol Exp Ther, 288 (1): 260-9. [PMID:9862779]

49. Krulich L, Koenig JI, Conway S, McCann SM, Mayfield MA. (1986) Opioid kappa receptors and the secretion of prolactin (PRL) and growth hormone (GH) in the rat. II. GH and PRL release-inhibiting effects of the opioid kappa receptor agonists bremazocine and U-50,488. Neuroendocrinology, 42: 82-87. [PMID:3001566]

50. Kumar V, Guo D, Daubert JD, Cassel JA, DeHaven RN, Mansson E, DeHaven-Hudkins DL, Maycock AL. (2005) Amino acid conjugates as kappa opioid receptor agonists. Bioorg Med Chem Lett, 15 (5): 1279-82. [PMID:15713370]

51. Lahti RA, Mickelson MM, McCall JM, Von Voigtlander PF. (1985) [3H]U-69593 a highly selective ligand for the opioid kappa receptor. Eur J Pharmacol, 109 (2): 281-4. [PMID:2986999]

52. Lai HW, Minami M, Satoh M, Wong YH. (1995) Gz coupling to the rat kappa-opioid receptor. FEBS Lett, 360 (1): 97-9. [PMID:7875310]

53. Lawrence DM, Bidlack JM. (1993) The kappa opioid receptor expressed on the mouse R1.1 thymoma cell line is coupled to adenylyl cyclase through a pertussis toxin-sensitive guanine nucleotide-binding regulatory protein. J Pharmacol Exp Ther, 266 (3): 1678-83. [PMID:8103800]

54. Le Bourdonnec B, Barker WM, Belanger S, Wiant DD, Conway-James NC, Cassel JA, O'Neill TJ, Little PJ, DeHaven RN, DeHaven-Hudkins DL et al.. (2008) Novel trans-3,4-dimethyl-4-(3-hydroxyphenyl)piperidines as mu opioid receptor antagonists with improved opioid receptor selectivity profiles. Bioorg Med Chem Lett, 18 (6): 2006-12. [PMID:18313920]

55. Le Bourdonnec B, Windh RT, Ajello CW, Leister LK, Gu M, Chu GH, Tuthill PA, Barker WM, Koblish M, Wiant DD et al.. (2008) Potent, orally bioavailable delta opioid receptor agonists for the treatment of pain: discovery of N,N-diethyl-4-(5-hydroxyspiro[chromene-2,4'-piperidine]-4-yl)benzamide (ADL5859). J Med Chem, 51 (19): 5893-6. [PMID:18788723]

56. Le Bourdonnec B, Windh RT, Leister LK, Zhou QJ, Ajello CW, Gu M, Chu GH, Tuthill PA, Barker WM, Koblish M et al.. (2009) Spirocyclic delta opioid receptor agonists for the treatment of pain: discovery of N,N-diethyl-3-hydroxy-4-(spiro[chromene-2,4'-piperidine]-4-yl) benzamide (ADL5747). J Med Chem, 52 (18): 5685-702. [PMID:19694468]

57. Leander JD. (1984) Kappa opioid agonists and antagonists: effects on drinking and urinary output. Appetite, 5 (1): 7-14. [PMID:6091543]

58. Lee JW, Joshi S, Chan JS, Wong YH. (1998) Differential coupling of mu-, delta-, and kappa-opioid receptors to G alpha16-mediated stimulation of phospholipase C. J Neurochem, 70 (5): 2203-11. [PMID:9572309]

59. Li S, Zhu J, Chen C, Chen YW, Deriel JK, Ashby B, Liu-Chen LY. (1993) Molecular cloning and expression of a rat kappa opioid receptor. Biochem J, 295 ( Pt 3): 629-33. [PMID:8240268]

60. Linz K, Christoph T, Tzschentke TM, Koch T, Schiene K, Gautrois M, Schröder W, Kögel BY, Beier H, Englberger W et al.. (2014) Cebranopadol: a novel potent analgesic nociceptin/orphanin FQ peptide and opioid receptor agonist. J Pharmacol Exp Ther, 349 (3): 535-48. [PMID:24713140]

61. Liu HC, Lu S, Augustin LB, Felsheim RF, Chen HC, Loh HH, Wei LN. (1995) Cloning and promoter mapping of mouse kappa opioid receptor gene. Biochem Biophys Res Commun, 209: 639-647. [PMID:7733933]

62. Maisonneuve IM, Archer S, Glick SD. (1994) U50,488, a kappa opioid receptor agonist, attenuates cocaine-induced increases in extracellular dopamine in the nucleus accumbens of rats. Neurosci Lett, 181: 57-60. [PMID:7898771]

63. Mansour A, Fox CA, Akil H, Watson SJ. (1995) Opioid-receptor mRNA expression in the rat CNS: anatomical and functional implications. Trends Neurosci, 18: 22-29. [PMID:7535487]

64. Mansour A, Khachaturian H, Lewis ME, Akil H, Watson SJ. (1987) Autoradiographic differentiation of mu, delta, and kappa opioid receptors in the rat forebrain and midbrain. J Neurosci, 7 (8): 2445-64. [PMID:3039080]

65. Mansson E, Bare L, Yang D. (1994) Isolation of a human kappa opioid receptor cDNA from placenta. Biochem Biophys Res Commun, 202 (3): 1431-7. [PMID:8060324]

66. McCarthy L, Wetzel M, Sliker JK, Eisenstein TK, Rogers TJ. (2001) Opioids, opioid receptors, and the immune response. Drug Alcohol Depend, 62 (2): 111-23. [PMID:11245967]

67. Meng F, Xie GX, Thompson RC, Mansour A, Goldstein A, Watson SJ, Akil H. (1993) Cloning and pharmacological characterization of a rat kappa opioid receptor. Proc Natl Acad Sci USA, 90 (21): 9954-8. [PMID:8234341]

68. Minami M, Toya T, Katao Y, Maekawa K, Nakamura S, Onogi T, Kaneko S, Satoh M. (1993) Cloning and expression of a cDNA for the rat kappa-opioid receptor. FEBS Lett, 329 (3): 291-5. [PMID:8103466]

69. Moises HC, Rusin KI, Macdonald RL. (1994) Mu- and kappa-opioid receptors selectively reduce the same transient components of high-threshold calcium current in rat dorsal root ganglion sensory neurons. J Neurosci, 14 (10): 5903-16. [PMID:7931552]

70. Morley JE, Levine AS, Kneip J, Grace M, Zeugner H, Shearman GT. (1985) The kappa opioid receptor and food intake. Eur J Pharmacol, 112 (1): 17-25. [PMID:2990965]

71. Munro TA, Huang XP, Inglese C, Perrone MG, Van't Veer A, Carroll FI, Béguin C, Carlezon Jr WA, Colabufo NA, Cohen BM et al.. (2013) Selective κ opioid antagonists nor-BNI, GNTI and JDTic have low affinities for non-opioid receptors and transporters. PLoS ONE, 8 (8): e70701. [PMID:23976952]

72. Murthy KS, Makhlouf GM. (1996) Opioid mu, delta, and kappa receptor-induced activation of phospholipase C-beta 3 and inhibition of adenylyl cyclase is mediated by Gi2 and G(o) in smooth muscle. Mol Pharmacol, 50 (4): 870-7. [PMID:8863832]

73. Nakazawa T, Furuya Y, Kaneko T, Yamatsu K. (1991) Spinal kappa receptor-mediated analgesia of E-2078, a systemically active dynorphin analog, in mice. J Pharmacol Exp Ther, 256 (1): 76-81. [PMID:1671100]

74. Neumeyer JL, Zhang A, Xiong W, Gu XH, Hilbert JE, Knapp BI, Negus SS, Mello NK, Bidlack JM. (2003) Design and synthesis of novel dimeric morphinan ligands for kappa and micro opioid receptors. J Med Chem, 46 (24): 5162-70. [PMID:14613319]

75. Neumeyer JL, Zhang B, Zhang T, Sromek AW, Knapp BI, Cohen DJ, Bidlack JM. (2012) Synthesis, binding affinity, and functional in vitro activity of 3-benzylaminomorphinan and 3-benzylaminomorphine ligands at opioid receptors. J Med Chem, 55 (8): 3878-90. [PMID:22439881]

76. Nishi M, Takeshima H, Fukuda K, Kato S, Mori K. (1993) cDNA cloning and pharmacological characterization of an opioid receptor with high affinities for kappa-subtype-selective ligands. FEBS Lett, 330 (1): 77-80. [PMID:8396539]

77. Nishi M, Takeshima H, Mori M, Nakagawara K, Takeuchi T. (1994) Structure and chromosomal mapping of genes for the mouse kappa-opioid receptor and an opioid receptor homologue (MOR-C). Biochem Biophys Res Commun, 205 (2): 1353-7. [PMID:7802669]

78. Nock B, Rajpara A, O'Connor LH, Cicero TJ. (1988) Autoradiography of [3H]U-69593 binding sites in rat brain: evidence for kappa opioid receptor subtypes. Eur J Pharmacol, 154 (1): 27-34. [PMID:2846324]

79. Ohnishi A, Mihara M, Yasuda S, Tomono Y, Hasegawa J, Tanaka T. (1994) Aquaretic effect of the stable dynorphin-A analog E2078 in the human. J Pharmacol Exp Ther, 270 (1): 342-7. [PMID:7913498]

80. Pande AC, Pyke RE, Greiner M, Wideman GL, Benjamin R, Pierce MW. (1996) Analgesic efficacy of enadoline versus placebo or morphine in postsurgical pain. Clin Neuropharmacol, 19 (5): 451-6. [PMID:8889289]

81. Patkar KA, Yan X, Murray TF, Aldrich JV. (2005) [Nalpha-benzylTyr1,cyclo(D-Asp5,Dap8)]- dynorphin A-(1-11)NH2 cyclized in the "address" domain is a novel kappa-opioid receptor antagonist. J Med Chem, 48 (14): 4500-3. [PMID:15999987]

82. Payza K. (2003) Binding and activity of opioid ligands at the cloned human delta, mu and kappa receptors. In The Delta Receptor. Edited by Chang KJ (CRC Press) 261-275. [ISBN:0824740319]

83. Pfeiffer A, Braun S, Mann K, Meyer HD, Brantl V. (1986) Anterior pituitary hormone responses to a kappa-opioid agonist in man. J Clin Endocrinol Metab, 62: 181-185. [PMID:3079599]

84. Pfeiffer A, Knepel W, Braun S, Meyer HD, Lohmann H, Brantl V. (1986) Effects of a kappa-opioid agonist on adrenocorticotropic and diuretic function in man. Horm Metab Res, 18 (12): 842-8. [PMID:3028922]

85. Pol O, Palacio JR, Puig MM. (2003) The expression of delta- and kappa-opioid receptor is enhanced during intestinal inflammation in mice. J Pharmacol Exp Ther, 306 (2): 455-62. [PMID:12724348]

86. Portoghese PS, Larson DL, Ronsisvalle G, Schiller PW, Nguyen TM, Lemieux C, Takemori AE. (1987) Hybrid bivalent ligands with opiate and enkephalin pharmacophores. J Med Chem, 30 (11): 1991-4. [PMID:2444704]

87. Poulain R, Horvath D, Bonnet B, Eckhoff C, Chapelain B, Bodinier MC, Déprez B. (2001) From hit to lead. Combining two complementary methods for focused library design. Application to mu opiate ligands. J Med Chem, 44 (21): 3378-90. [PMID:11585443]

88. Prchalová E, Hin N, Thomas AG, Veeravalli V, Ng J, Alt J, Rais R, Rojas C, Li Z, Hihara H et al.. (2019) Discovery of Benzamidine- and 1-Aminoisoquinoline-Based Human MAS-Related G-Protein-Coupled Receptor X1 (MRGPRX1) Agonists. J Med Chem, 62 (18): 8631-8641. [PMID:31498617]

89. Ravert HT, Scheffel U, Mathews WB, Musachio JL, Dannals RF. (2002) [(11)C]-GR89696, a potent kappa opiate receptor radioligand; in vivo binding of the R and S enantiomers. Nucl Med Biol, 29 (1): 47-53. [PMID:11786275]

90. Remmers AE, Clark MJ, Mansour A, Akil H, Woods JH, Medzihradsky F. (1999) Opioid efficacy in a C6 glioma cell line stably expressing the human kappa opioid receptor. J Pharmacol Exp Ther, 288 (2): 827-33. [PMID:9918595]

91. Rimoy GH, Bhaskar NK, Wright DM, Rubin PC. (1991) Mechanism of diuretic action of spiradoline (U-62066E)--a kappa opioid receptor agonist in the human. Br J Clin Pharmacol, 32 (5): 611-5. [PMID:1659438]

92. Rimoy GH, Wright DM, Bhaskar NK, Rubin PC. (1994) The cardiovascular and central nervous system effects in the human of U-62066E. A selective opioid receptor agonist. Eur J Clin Pharmacol, 46 (3): 203-7. [PMID:8070500]

93. Rorick-Kehn LM, Witkin JM, Statnick MA, Eberle EL, McKinzie JH, Kahl SD, Forster BM, Wong CJ, Li X, Crile RS et al.. (2014) LY2456302 is a novel, potent, orally-bioavailable small molecule kappa-selective antagonist with activity in animal models predictive of efficacy in mood and addictive disorders. Neuropharmacology, 77: 131-44. [PMID:24071566]

94. Roth BL, Baner K, Westkaemper R, Siebert D, Rice KC, Steinberg S, Ernsberger P, Rothman RB. (2002) Salvinorin A: a potent naturally occurring nonnitrogenous kappa opioid selective agonist. Proc Natl Acad Sci USA, 99 (18): 11934-9. [PMID:12192085]

95. Rothman RB, France CP, Bykov V, De Costa BR, Jacobson AE, Woods JH, Rice KC. (1989) Pharmacological activities of optically pure enantiomers of the kappa opioid agonist, U50,488, and its cis diastereomer: evidence for three kappa receptor subtypes. Eur J Pharmacol, 167 (3): 345-53. [PMID:2553442]

96. Salemi S, Aeschlimann A, Reisch N, Jüngel A, Gay RE, Heppner FL, Michel BA, Gay S, Sprott H. (2005) Detection of kappa and delta opioid receptors in skin--outside the nervous system. Biochem Biophys Res Commun, 338 (2): 1012-7. [PMID:16263089]

97. Schmauss C, Yaksh TL. (1984) In vivo studies on spinal opiate receptor systems mediating antinociception. II. Pharmacological profiles suggesting a differential association of mu, delta and kappa receptors with visceral chemical and cutaneous thermal stimuli in the rat. J Pharmacol Exp Ther, 228 (1): 1-12. [PMID:6319664]

98. Schoffelmeer AN, Rice KC, Jacobson AE, Van Gelderen JG, Hogenboom F, Heijna MH, Mulder AH. (1988) Mu-, delta- and kappa-opioid receptor-mediated inhibition of neurotransmitter release and adenylate cyclase activity in rat brain slices: studies with fentanyl isothiocyanate. Eur J Pharmacol, 154: 169-178. [PMID:2906610]

99. Schteingart CD, Menzaghi F, Jiang G, Alexander RV, Sueiras-Diaz J, Spencer RH, Chalmers DT, Luo Z. (2008) Synthetic peptide amides. Patent number: US7402564 B1. Assignee: Cara Therapeutics, Inc.. Priority date: 10/11/2006. Publication date: 22/07/2008.

100. Sengupta JN, Su X, Gebhart GF. (1996) Kappa, but not mu or delta, opioids attenuate responses to distention of afferent fibers innervating the rat colon. Gastroenterology, 111 (4): 968-80. [PMID:8831591]

101. Sharp BM, Roy S, Bidlack JM. (1998) Evidence for opioid receptors on cells involved in host defense and the immune system. J Neuroimmunol, 83 (1-2): 45-56. [PMID:9610672]

102. Shippenberg TS, Herz A. (1987) Place preference conditioning reveals the involvement of D1-dopamine receptors in the motivational properties of mu- and kappa-opioid agonists. Brain Res, 436 (1): 169-72. [PMID:2961413]

103. Simonin F, Gavériaux-Ruff C, Befort K, Matthes H, Lannes B, Micheletti G, Mattéi MG, Charron G, Bloch B, Kieffer B. (1995) kappa-Opioid receptor in humans: cDNA and genomic cloning, chromosomal assignment, functional expression, pharmacology, and expression pattern in the central nervous system. Proc Natl Acad Sci USA, 92 (15): 7006-10. [PMID:7624359]

104. Simonin F, Slowe S, Becker JA, Matthes HW, Filliol D, Chluba J, Kitchen I, Kieffer BL. (2001) Analysis of [3H]bremazocine binding in single and combinatorial opioid receptor knockout mice. Eur J Pharmacol, 414 (2-3): 189-95. [PMID:11239918]

105. Simonin F, Valverde O, Smadja C, Slowe S, Kitchen I, Dierich A, Le Meur M, Roques BP, Maldonado R, Kieffer BL. (1998) Disruption of the kappa-opioid receptor gene in mice enhances sensitivity to chemical visceral pain, impairs pharmacological actions of the selective kappa-agonist U-50,488H and attenuates morphine withdrawal. EMBO J, 17 (4): 886-97. [PMID:9463367]

106. Slizgi GR, Ludens JH. (1982) Studies on the nature and mechanism of the diuretic activity of the opioid analgesic ethylketocyclazocine. J Pharmacol Exp Ther, 220 (3): 585-91. [PMID:6121047]

107. Spanagel R, Herz A, Shippenberg TS. (1990) The effects of opioid peptides on dopamine release in the nucleus accumbens: an in vivo microdialysis study. J Neurochem, 55 (5): 1734-40. [PMID:1976759]

108. Spetea M, Berzetei-Gurske IP, Guerrieri E, Schmidhammer H. (2012) Discovery and pharmacological evaluation of a diphenethylamine derivative (HS665), a highly potent and selective κ opioid receptor agonist. J Med Chem, 55 (22): 10302-6. [PMID:23134120]

109. Stein C, Millan MJ, Shippenberg TS, Peter K, Herz A. (1989) Peripheral opioid receptors mediating antinociception in inflammation. Evidence for involvement of mu, delta and kappa receptors. J Pharmacol Exp Ther, 248 (3): 1269-75. [PMID:2539460]

110. Stevens WC, Jones RM, Subramanian G, Metzger TG, Ferguson DM, Portoghese PS. (2000) Potent and selective indolomorphinan antagonists of the kappa-opioid receptor. J Med Chem, 43 (14): 2759-69. [PMID:10893314]

111. Tallent M, Dichter MA, Bell GI, Reisine T. (1994) The cloned kappa opioid receptor couples to an N-type calcium current in undifferentiated PC-12 cells. Neuroscience, 63 (4): 1033-40. [PMID:7700508]

112. Taub DD, Eisenstein TK, Geller EB, Adler MW, Rogers TJ. (1991) Immunomodulatory activity of mu- and kappa-selective opioid agonists. Proc Natl Acad Sci USA, 88 (2): 360-4. [PMID:1846441]

113. Tempel A, Zukin RS. (1987) Neuroanatomical patterns of the mu, delta, and kappa opioid receptors of rat brain as determined by quantitative in vitro autoradiography. Proc Natl Acad Sci USA, 84 (12): 4308-12. [PMID:3035579]

114. Thomas JB, Atkinson RN, Rothman RB, Fix SE, Mascarella SW, Vinson NA, Xu H, Dersch CM, Lu Y, Cantrell BE et al.. (2001) Identification of the first trans-(3R,4R)- dimethyl-4-(3-hydroxyphenyl)piperidine derivative to possess highly potent and selective opioid kappa receptor antagonist activity. J Med Chem, 44 (17): 2687-90. [PMID:11495579]

115. Togashi Y, Umeuchi H, Okano K, Ando N, Yoshizawa Y, Honda T, Kawamura K, Endoh T, Utsumi J, Kamei J et al.. (2002) Antipruritic activity of the kappa-opioid receptor agonist, TRK-820. Eur J Pharmacol, 435 (2-3): 259-64. [PMID:11821035]

116. Toll L, Berzetei-Gurske IP, Polgar WE, Brandt SR, Adapa ID, Rodriguez L, Schwartz RW, Haggart D, O'Brien A, White A et al.. (1998) Standard binding and functional assays related to medications development division testing for potential cocaine and opiate narcotic treatment medications. NIDA Res Monogr, 178: 440-66. [PMID:9686407]

117. Toll L, Khroyan TV, Polgar WE, Jiang F, Olsen C, Zaveri NT. (2009) Comparison of the antinociceptive and antirewarding profiles of novel bifunctional nociceptin receptor/mu-opioid receptor ligands: implications for therapeutic applications. J Pharmacol Exp Ther, 331 (3): 954-64. [PMID:19773529]

118. Tyers MB. (1980) A classification of opiate receptors that mediate antinociception in animals. Br J Pharmacol, 69 (3): 503-12. [PMID:6249436]

119. Ueda H, Miyamae T, Fukushima N, Takeshima H, Fukuda K, Sasaki Y, Misu Y. (1995) Opioid mu- and kappa-receptor mediate phospholipase C activation through Gi1 in Xenopus oocytes. Brain Res Mol Brain Res, 32 (1): 166-70. [PMID:7494457]

120. Unterwald EM, Knapp C, Zukin RS. (1991) Neuroanatomical localization of kappa 1 and kappa 2 opioid receptors in rat and guinea pig brain. Brain Res, 562 (1): 57-65. [PMID:1666016]

121. Varty GB, Lu SX, Morgan CA, Cohen-Williams ME, Hodgson RA, Smith-Torhan A, Zhang H, Fawzi AB, Graziano MP, Ho GD et al.. (2008) The anxiolytic-like effects of the novel, orally active nociceptin opioid receptor agonist 8-[bis(2-methylphenyl)methyl]-3-phenyl-8-azabicyclo[3.2.1]octan-3-ol (SCH 221510). J Pharmacol Exp Ther, 326 (2): 672-82. [PMID:18492950]

122. Vergura R, Balboni G, Spagnolo B, Gavioli E, Lambert DG, McDonald J, Trapella C, Lazarus LH, Regoli D, Guerrini R et al.. (2008) Anxiolytic- and antidepressant-like activities of H-Dmt-Tic-NH-CH(CH2-COOH)-Bid (UFP-512), a novel selective delta opioid receptor agonist. Peptides, 29 (1): 93-103. [PMID:18069089]

123. Vonvoigtlander PF, Lahti RA, Ludens JH. (1983) U-50,488: a selective and structurally novel non-Mu (kappa) opioid agonist. J Pharmacol Exp Ther, 224 (1): 7-12. [PMID:6129321]

124. Wang Y, Tang K, Inan S, Siebert D, Holzgrabe U, Lee DY, Huang P, Li JG, Cowan A, Liu-Chen LY. (2005) Comparison of pharmacological activities of three distinct kappa ligands (Salvinorin A, TRK-820 and 3FLB) on kappa opioid receptors in vitro and their antipruritic and antinociceptive activities in vivo. J Pharmacol Exp Ther, 312 (1): 220-30. [PMID:15383632]

125. Wentland MP, Lou R, Lu Q, Bu Y, Denhardt C, Jin J, Ganorkar R, VanAlstine MA, Guo C, Cohen DJ et al.. (2009) Syntheses of novel high affinity ligands for opioid receptors. Bioorg Med Chem Lett, 19 (8): 2289-94. [PMID:19282177]

126. Wentland MP, Lu Q, Lou R, Bu Y, Knapp BI, Bidlack JM. (2005) Synthesis and opioid receptor binding properties of a highly potent 4-hydroxy analogue of naltrexone. Bioorg Med Chem Lett, 15 (8): 2107-10. [PMID:15808478]

127. Wu H, Wacker D, Mileni M, Katritch V, Han GW, Vardy E, Liu W, Thompson AA, Huang XP, Carroll FI et al.. (2012) Structure of the human κ-opioid receptor in complex with JDTic. Nature, 485 (7398): 327-32. [PMID:22437504]

128. Yasuda K, Raynor K, Kong H, Breder CD, Takeda J, Reisine T, Bell GI. (1993) Cloning and functional comparison of kappa and delta opioid receptors from mouse brain. Proc Natl Acad Sci USA, 90 (14): 6736-40. [PMID:8393575]

129. Yoshino H, Nakazawa T, Arakawa Y, Kaneko T, Tsuchiya Y, Matsunaga M, Araki S, Ikeda M, Yamatsu K, Tachibana S. (1990) Synthesis and structure-activity relationships of dynorphin A-(1-8) amide analogues. J Med Chem, 33 (1): 206-12. [PMID:1967312]

130. Yuferov V, Fussell D, LaForge KS, Nielsen DA, Gordon D, Ho A, Leal SM, Ott J, Kreek MJ. (2004) Redefinition of the human kappa opioid receptor gene (OPRK1) structure and association of haplotypes with opiate addiction. Pharmacogenetics, 14 (12): 793-804. [PMID:15608558]

131. Zaveri NT, Journigan VB, Polgar WE. (2015) Discovery of the first small-molecule opioid pan antagonist with nanomolar affinity at mu, delta, kappa, and nociceptin opioid receptors. ACS Chem Neurosci, 6 (4): 646-57. [PMID:25635572]

132. Zhang Y, Butelman ER, Schlussman SD, Ho A, Kreek MJ. (2004) Effect of the endogenous kappa opioid agonist dynorphin A(1-17) on cocaine-evoked increases in striatal dopamine levels and cocaine-induced place preference in C57BL/6J mice. Psychopharmacology (Berl.), 172 (4): 422-9. [PMID:14712335]

133. Zheng Y, Obeng S, Wang H, Jali AM, Peddibhotla B, Williams DA, Zou C, Stevens DL, Dewey WL, Akbarali HI et al.. (2019) Design, Synthesis, and Biological Evaluation of the Third Generation 17-Cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6β-[(4'-pyridyl)carboxamido]morphinan (NAP) Derivatives as μ/κ Opioid Receptor Dual Selective Ligands. J Med Chem, 62 (2): 561-574. [PMID:30608693]

134. Zhou L, Lovell KM, Frankowski KJ, Slauson SR, Phillips AM, Streicher JM, Stahl E, Schmid CL, Hodder P, Madoux F et al.. (2013) Development of functionally selective, small molecule agonists at kappa opioid receptors. J Biol Chem, 288 (51): 36703-16. [PMID:24187130]

135. Zhu J, Chen C, Xue JC, Kunapuli S, DeRiel JK, Liu-Chen LY. (1995) Cloning of a human kappa opioid receptor from the brain. Life Sci, 56: PL201-PL207. [PMID:7869844]

136. Zhu J, Luo LY, Li JG, Chen C, Liu-Chen LY. (1997) Activation of the cloned human kappa opioid receptor by agonists enhances [35S]GTPgammaS binding to membranes: determination of potencies and efficacies of ligands. J Pharmacol Exp Ther, 282 (2): 676-84. [PMID:9262330]

137. Zhu J, Luo LY, Mao GF, Ashby B, Liu-Chen LY. (1998) Agonist-induced desensitization and down-regulation of the human kappa opioid receptor expressed in Chinese hamster ovary cells. J Pharmacol Exp Ther, 285 (1): 28-36. [PMID:9535991]

138. Zhu Y, Pintar JE. (1998) Expression of opioid receptors and ligands in pregnant mouse uterus and placenta. Biol Reprod, 59 (4): 925-32. [PMID:9746745]

Contributors

Show »

How to cite this page