Top ▲

β2-adrenoceptor

Click here for help

Immunopharmacology Ligand  Target has curated data in GtoImmuPdb

Target id: 29

Nomenclature: β2-adrenoceptor

Family: Adrenoceptors

Gene and Protein Information Click here for help
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 413 5q32 ADRB2 adrenoceptor beta 2 90
Mouse 7 418 18 35.1 cM Adrb2 adrenergic receptor, beta 2 4
Rat 7 418 18q12.1 Adrb2 adrenoceptor beta 2 59
Previous and Unofficial Names Click here for help
ADRB2R | ADRBR | B2AR | beta-2 adrenergic receptor | beta-2 adrenoreceptor | Adrb-2 | beta 2-AR | Gpcr7 | adrenoceptor beta 2, surface | adrenergic receptor
Database Links Click here for help
Specialist databases
GPCRdb adrb2_human (Hs), adrb2_mouse (Mm), adrb2_rat (Rn)
Other databases
Alphafold
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
SynPHARM
UniProtKB
Wikipedia
Selected 3D Structures Click here for help
Image of receptor 3D structure from RCSB PDB
Description:  Crystal structure of the human β2-adrenergic receptor in complex with the inverse agonist ICI 118,551
PDB Id:  3NY8
Ligand:  ICI 118551
Resolution:  2.84Å
Species:  Human
References:  155
Image of receptor 3D structure from RCSB PDB
Description:  Crystal structure of the β2 adrenergic receptor-Gs protein complex
PDB Id:  3SN6
Resolution:  3.2Å
Species:  None
References:  126
Image of receptor 3D structure from RCSB PDB
Description:  Cholesterol bound form of human β2-adrenergic receptor
PDB Id:  3D4S
Ligand:  cholesterol
Resolution:  2.8Å
Species:  Human
References:  66
Image of receptor 3D structure from RCSB PDB
Description:  Crystal structure of the human β2-adrenergic receptor in complex with the neutral antagonist alprenolol
PDB Id:  3NYA
Ligand:  alprenolol
Resolution:  3.16Å
Species:  Human
References:  155
Image of receptor 3D structure from RCSB PDB
Description:  Crystal structure of the human β2-adrenoceptor
PDB Id:  2R4S
Resolution:  3.4Å
Species:  Human
References:  125
Image of receptor 3D structure from RCSB PDB
Description:  Crystal structure of a methylated β2-Adrenergic Receptor-Fab complex
PDB Id:  3KJ6
Resolution:  3.4Å
Species:  Human
References:  27
Image of receptor 3D structure from RCSB PDB
Description:  Crystal structure of the human β2-adrenoceptor
PDB Id:  2R4R
Resolution:  3.4Å
Species:  Human
References:  125
Image of receptor 3D structure from RCSB PDB
Description:  High resolution crystal structure of human β2-adrenergic G protein-coupled receptor. N.B. the representation of carazolol on PBD shows the S isomer, which our ligand entry specifies the racemate.
PDB Id:  2RH1
Ligand:  carazolol
Resolution:  2.4Å
Species:  Human
References:  39
Image of receptor 3D structure from RCSB PDB
Description:  Irreversible agonist-β2-adrenoceptor complex. N.B. agonist utilised was a procaterol derivative containing a covalent crosslinker.
PDB Id:  3PDS
Resolution:  3.5Å
Species:  Human
References:  129
Image of receptor 3D structure from RCSB PDB
Description:  Structure of β2-adrenoceptor bound to carazolol and an intracellular allosteric antagonist.
PDB Id:  5X7D
Ligand:  carazolol
Resolution:  2.7Å
Species:  Human
References:  103
Image of receptor 3D structure from RCSB PDB
Description:  Crystal structure of human β2 adrenergic receptor bound to salmeterol and Nb71.
PDB Id:  6MXT
Ligand:  salmeterol
Resolution:  2.96Å
Species:  Human
References:  108
Image of receptor 3D structure from RCSB PDB
Description:  Structure of β2 adrenoceptor bound to BI167107 and an engineered nanobody
PDB Id:  4LDE
Ligand:  BI-167107
Resolution:  2.79Å
Species:  Human
References:  127
Image of receptor 3D structure from RCSB PDB
Description:  Structure of β2-adrenoceptor bound to a covalent agonist and an engineered nanobody.
PDB Id:  4QKX
Resolution:  3.3Å
Species:  Human
References:  156
Associated Proteins Click here for help
Interacting Proteins
Name Effect References
β2-adrenoceptor 6,29,68,92,113
β1-adrenoceptor 95-96,113,165
β3-adrenoceptor 29
α1D-adrenoceptor 151
α2A-adrenoceptor 92
5-HT4 receptor 24
δ receptor 87,112
κ receptor 87
μ receptor 92
EP1 receptor 111
B2 receptor 63
CXCR4 94
CB1 receptor 78,92
mouse 71 (M71) Olfactory receptor 64
D1 receptor 92
OT receptor 162-163
epidermal growth factor receptor 109
GluA1 86
AT1 receptor 18,85
A1 receptor 38
Insulin receptor 141
Natural/Endogenous Ligands Click here for help
(-)-adrenaline
(-)-noradrenaline
Zn2+
Comments: Adrenaline exhibits greater potency than noradrenaline
Potency order of endogenous ligands (Human)
(-)-adrenaline > (-)-noradrenaline

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
CHF-6366 Small molecule or natural product Click here for species-specific activity table Hs Agonist 11.4 pKd 37
pKd 11.4 (Kd 4x10-12 M) [37]
Description: Binding to human cloned β2 receptor using 125I-cyanopindolol as tracer
[3H]CGP12177 Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Partial agonist 9.8 pKd 14
pKd 9.8 (Kd 1.44x10-10 M) [14]
Description: Binding to human &beta2-adrenoceptor expressed in CHO-K1 cells, in a whole cell binding assay.
orciprenaline Small molecule or natural product Approved drug Primary target of this compound Hs Agonist 5.3 pKd 138
pKd 5.3 (Kd 4.81x10-6 M) [138]
pindolol Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Partial agonist 9.4 pKi 91
pKi 9.4 (Ki 4x10-10 M) [91]
salmeterol Small molecule or natural product Approved drug Primary target of this compound Immunopharmacology Ligand Hs Partial agonist 6.8 – 9.3 pKi 13,17,45
pKi 6.8 – 9.3 [13,17,45]
zinterol Small molecule or natural product Hs Agonist 8.0 pKi 13
pKi 8.0 [13]
clenbuterol Small molecule or natural product Click here for species-specific activity table Hs Full agonist 7.4 – 7.9 pKi 13,17,89
pKi 7.4 – 7.9 [13,17,89]
indacaterol Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Immunopharmacology Ligand Hs Agonist 7.4 – 7.8 pKi 20-21
pKi 7.4 – 7.8 [20-21]
BRL35135 Small molecule or natural product Hs Partial agonist 7.4 pKi 13
pKi 7.4 [13]
procaterol Small molecule or natural product Approved drug Immunopharmacology Ligand Hs Agonist 7.1 pKi 13
pKi 7.1 [13]
ractopamine Small molecule or natural product Hs Partial agonist 6.6 – 6.9 pKi 13,45,81
pKi 6.6 – 6.9 [13,45,81]
Description: Inhibitory constant determined from a standard radioligand displacement assay using human β2-adrenoceptors expressed in Sf-9 cells and [3H]CGP1217 as tracer.
isoprenaline Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Full agonist 6.4 – 6.6 pKi 13-14,133
pKi 6.4 – 6.6 [13-14,133]
BRL 37344 Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 6.5 pKi 13
pKi 6.5 [13]
fenoterol Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Agonist 5.5 – 7.0 pKi 9,13,17,45
pKi 5.5 – 7.0 [9,13,17,45]
(-)-adrenaline Small molecule or natural product Approved drug Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Immunopharmacology Ligand Hs Full agonist 6.0 – 6.2 pKi 13,53,73,83
pKi 6.0 – 6.2 [13,53,73,83]
salbutamol Small molecule or natural product Approved drug Primary target of this compound Immunopharmacology Ligand Hs Partial agonist 5.3 – 6.1 pKi 12-13,17,45,81,137
pKi 5.3 – 6.1 [12-13,17,45,81,137]
ephedrine Small molecule or natural product Approved drug Primary target of this compound Hs Partial agonist 5.6 pKi 83
pKi 5.6 [83]
terbutaline Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Partial agonist 5.5 – 5.6 pKi 12-13
pKi 5.5 – 5.6 [12-13]
noradrenaline Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Hs Full agonist 5.4 pKi 100
pKi 5.4 [100]
(-)-noradrenaline Small molecule or natural product Approved drug Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Hs Agonist 4.6 – 5.4 pKi 13,53,73
pKi 4.6 – 5.4 [13,53,73]
olodaterol Small molecule or natural product Approved drug Primary target of this compound Ligand has a PDB structure Immunopharmacology Ligand Hs Agonist 10.0 pEC50 28
pEC50 10.0 (IC50 1x10-10 M) [28]
BI-167107 Small molecule or natural product Click here for species-specific activity table Hs Agonist 10.0 pEC50 72
pEC50 10.0 (EC50 1x10-10 M) [72]
Description: Determined in an intracellular cAMP accumulation assay in CHO-K1 cells expressing hβ2-AR
salmeterol Small molecule or natural product Approved drug Immunopharmacology Ligand Hs Partial agonist 9.2 – 9.9 pEC50 13,20
pEC50 9.2 – 9.9 [13,20]
zinterol Small molecule or natural product Hs Agonist 9.5 pEC50 13
pEC50 9.5 [13]
vilanterol Small molecule or natural product Approved drug Primary target of this compound Immunopharmacology Ligand Hs Agonist 9.4 pEC50 122
pEC50 9.4 (EC50 3.98x10-10 M) [122]
clenbuterol Small molecule or natural product Click here for species-specific activity table Hs Agonist 9.2 pEC50 13
pEC50 9.2 [13]
formoterol Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Immunopharmacology Ligand Hs Agonist 7.8 – 10.1 pEC50 3,13,17,20,102
pEC50 7.8 – 10.1 [3,13,17,20,102]
BRL35135 Small molecule or natural product Hs Partial agonist 8.7 pEC50 13
pEC50 8.7 [13]
procaterol Small molecule or natural product Approved drug Primary target of this compound Immunopharmacology Ligand Hs Agonist 8.4 pEC50 13
pEC50 8.4 [13]
isoprenaline Small molecule or natural product Approved drug Click here for species-specific activity table Hs Full agonist 8.2 pEC50 13-14
pEC50 8.2 [13-14]
indacaterol Small molecule or natural product Approved drug Click here for species-specific activity table Immunopharmacology Ligand Hs Agonist 8.1 pEC50 20
pEC50 8.1 [20]
(-)-adrenaline Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Immunopharmacology Ligand Hs Full agonist 7.9 pEC50 13
pEC50 7.9 [13]
ractopamine Small molecule or natural product Hs Partial agonist 7.6 – 7.8 pEC50 13,45
pEC50 7.6 – 7.8 [13,45]
fenoterol Small molecule or natural product Approved drug Click here for species-specific activity table Hs Agonist 6.1 – 8.9 pEC50 13,45
pEC50 6.1 – 8.9 [13,45]
terbutaline Small molecule or natural product Approved drug Click here for species-specific activity table Hs Partial agonist 7.3 pEC50 13
pEC50 7.3 [13]
salbutamol Small molecule or natural product Approved drug Immunopharmacology Ligand Hs Partial agonist 6.3 – 7.7 pEC50 13,45
pEC50 6.3 – 7.7 [13,45]
BRL 37344 Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 6.9 pEC50 13
pEC50 6.9 [13]
(-)-noradrenaline Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Agonist 6.4 pEC50 13
pEC50 6.4 [13]
solabegron Small molecule or natural product Click here for species-specific activity table Hs Agonist 5.9 pEC50 152
pEC50 5.9 [152]
mirabegron Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Agonist <5.0 – 5.2 pEC50 46,145
pEC50 5.0 – 5.2 [46,145]
pEC50 <5.0 (EC50 >1x10-5 M) [145]
mirabegron Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Rn Agonist 5.0 pEC50 46
pEC50 5.0 [46]
abediterol Small molecule or natural product Primary target of this compound Click here for species-specific activity table Immunopharmacology Ligand Hs Full agonist 9.2 pIC50 7
pIC50 9.2 (IC50 6x10-10 M) [7]
Description: Membrane radioligand displacement assay using [3H]CGP12177 as tracer.
cimaterol Small molecule or natural product Click here for species-specific activity table Hs Agonist - - 13
[13]
View species-specific agonist tables
Agonist Comments
Although [137] states that salbutamol was tested, in fact R-(-)salbutamol (levosalbutamol) was tested. pKi values are from binding studies and pEC50 from functional studies (usually cAMP generation) which give a better idea of relative experimental or clinical potency. Salbutamol, terbutaline and fenoterol are examples of short acting β agonists (SABAs), salmeterol and formoterol are long acting β agonists (LABAs) and indacaterol, olodaterol abediterol and vilanterol are ultra long acting β agonists (ultra-LABAs) [25]. BRL37344 and BRL35135 are classified as β3-AR selective agonists (rodent selective) but have significant actions at β2-AR [117]. Clenbuterol is included on the World Anti-Doping Authority's list of banned substances due to its popularity as a drug used by bodybuilders and for weight loss.
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
butoxamine Small molecule or natural product Rn Antagonist 6.4 pKB 71
pKB 6.4 (KB 3.55x10-7 M) [71]
butoxamine Small molecule or natural product Hs Antagonist 6.2 – 6.5 pKB 13,31,148
pKB 6.2 – 6.5 [13,31,148]
[125I]ICYP Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Antagonist 11.1 – 11.4 pKd 107,133,144
pKd 11.1 – 11.4 (Kd 7.9x10-12 M) It is necessary to use an excess of a β1-adrenoceptor-selective ligand such as CGP20712A in combination with this radioligand in order to allow visualisation of β2-adrenoceptor binding in native tissues. [107,133,144]
7-methylcyanopindolol Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Inverse agonist 10.4 pKd 132
pKd 10.4 [132]
[3H]dihydroalprenolol Small molecule or natural product Ligand is labelled Ligand is radioactive Hs Antagonist 10.1 pKd 144
pKd 10.1 [144]
[3H]CGP12177 Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Partial agonist 9.8 pKd 14
pKd 9.8 [14]
carazolol Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 9.9 – 10.5 pKi 13,130
pKi 9.9 – 10.5 [13,130]
timolol Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 9.7 pKi 12
pKi 9.7 [12]
carvedilol Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 9.4 – 9.9 pKi 12,35
pKi 9.4 – 9.9 [12,35]
pindolol Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 9.4 pKi 91
pKi 9.4 [91]
CGP 12177 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 9.4 pKi 12,14,107
pKi 9.4 [12,14,107]
ICI 118551 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Inverse agonist 9.2 – 9.5 pKi 12,16,107
pKi 9.2 – 9.5 [12,16,107]
propranolol Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 9.1 – 9.5 pKi 12,16,81,107
pKi 9.1 – 9.5 [12,16,81,107]
bunolol Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 9.3 pKi 10
pKi 9.3 (Ki 5.5x10-10 M) [10]
bupranolol Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 8.3 – 9.9 pKi 12,35,107
pKi 8.3 – 9.9 [12,35,107]
alprenolol Small molecule or natural product Approved drug Primary target of this compound Hs Partial agonist 9.0 pKi 12
pKi 9.0 [12]
SR59230A Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.5 – 9.3 pKi 12,35
pKi 8.5 – 9.3 [12,35]
labetalol Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Partial agonist 8.0 pKi 10,12
pKi 8.0 (Ki 1.1x10-8 M) [10,12]
nebivolol Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 7.9 – 8.0 pKi 13,51
pKi 7.9 – 8.0 [13,51]
Description: Radioligand binding
nadolol Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 7.0 – 8.6 pKi 12,35
pKi 7.0 – 8.6 [12,35]
betaxolol Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 7.2 – 8.2 pKi 13,107,135
pKi 7.2 – 8.2 [13,107,135]
NIP Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.5 pKi 107
pKi 7.5 [107]
propafenone Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 7.4 pKi 10
pKi 7.4 (Ki 3.6x10-8 M) [10]
sotalol Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 6.5 – 6.9 pKi 10,12
pKi 6.5 – 6.9 [10,12]
metoprolol Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 6.3 – 6.9 pKi 12,107
pKi 6.3 – 6.9 [12,107]
butoxamine Small molecule or natural product Rn Antagonist 6.3 – 6.5 pKi 31,148
pKi 6.3 – 6.5 (Ki 4.68x10-7 – 3.09x10-7 M) [31,148]
cicloprolol Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.2 pKi 107
pKi 6.2 [107]
NIHP Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.0 pKi 107
pKi 6.0 [107]
atenolol Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 5.6 – 6.0 pKi 12,107
pKi 5.6 – 6.0 [12,107]
LK 204-545 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 5.2 pKi 107
pKi 5.2 [107]
View species-specific antagonist tables
Antagonist Comments
The approved drug propranolol is categorised as a non-selective β-adrenoceptor antagonist but is slightly selective for β2-AR and has very low affinity for β3-AR. Propranolol also behaves as a biased agonist in several studies- an inverse agonist decreasing cAMP whilst stimulating β-arrestin and gene transcription [15]. Carvedilol is a non-selective β-AR and α1-AR antagonist used to treat cardiac failure. Carvedilol has been suggested to be a β-arrestin biased agonist [160] but this characteristic has been challenged [22] with evidence supporting low efficacy activation of Gs coupled β2-adrenoceptors as the explanation. Several 'cardioselective' or β1-AR selective antagonists such as atenolol and metoprolol have appreciable affinity for β2-AR. Several antagonists may display partial agonist activity at β2-AR including pindolol, carazolol, bucindolol and nebivolol [13] in assays where there is significant receptor reserve or receptor over-expression. ICI118551 is the most selective β2-AR antagonist currently available but is only used in in vitro studies where it displays ~300 fold selectivity vs. the other 8 adrenoceptor subtypes. Although often described as a β3-AR selective antagonist, SR59230A has little selectivity and is a high affinity antagonist at β2-AR [114]. The main action of propafenone is to block voltage gated Na+ channels (see the Voltage-gated sodium channels family in the Ion Channels section of this website for further details) but is also a weak β-adrenoceptor antagonist. Some cell systems (e.g. HEK cells) commonly used to study the pharmacology of β-AR subtypes express functionally active β2-AR populations.
Allosteric Modulators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
Zn2+ Click here for species-specific activity table Ligand is endogenous in the given species Hs Positive 5.3 pKi 142-143
pKi 5.3 [142-143]
Zn2+ Click here for species-specific activity table Ligand is endogenous in the given species Hs Negative 3.3 pKi 142-143
pKi 3.3 [142-143]
AS408 Small molecule or natural product Ligand has a PDB structure N/A - - - 104
[104]
compound 6 [PMID: 29769246] Small molecule or natural product Hs Positive - - 120
cooperativity [120]
View species-specific allosteric modulator tables
Allosteric Modulator Comments
Zn2+ appears to have both positive and negative effects on agonist affinity. At low concentrations it appears to enhance agonist affinity and agonist-stimulated cAMP accumulation. At high concentrations Zn2+ inhibits agonist binding but slows antagonist dissociation [142-143]. Cmpd-6 is a positive allosteric modulator of the pharmacological activity of carvedilol at the β2-AR [120].
Immunopharmacology Comments
β2-ARs are expressed on innate and adaptive immune cells of humans and rodents, and are reported to have an immuno-modulating effect [47].
There is a large literature on the role of autoantibodies to β2-AR associated with a variety of disease processes [30,36,74,77,159].
Cell Type Associations
Immuno Cell Type:  B cells
Cell Ontology Term:   B cell (CL:0000236)
Comment:  B cells from patients with rheumatoid arthritis express lower levels of β2-ARs compared with healthy subjects.
References:  11
Immuno Cell Type:  Dendritic cells
Cell Ontology Term:   dendritic cell (CL:0000451)
Comment:  β2-AR agonist-exposed mature dendritic cells have a reduced ability to cross-present protein antigens while retaining exogenous peptide presentation capability. This effect is mediated through a Gi/o inhibitory pathway.
References:  69
Immuno Cell Type:  T cells
Cell Ontology Term:   CD8-positive, alpha-beta T cell (CL:0000625)
regulatory T cell (CL:0000815)
Comment:  Activation of β2-ARs enhances retention-promoting signals through CCR7 and CXCR4 and inhibits lymphocyte (T cells and other lymphocyte lineages) egress from lymph nodes. In models of T cell-mediated inflammatory diseases, β2-AR-mediated signals inhibit lymph node egress of antigen-primed T cells and reduce their recruitment into peripheral tissues [118].CD8+ T cells (CL:0000625): CD8+ T cells from patients with rheumatoid arthritis express lower levels of β2-ARs compared with healthy subjects [11].
Treg cells (CL:0000815): β2-AR agonist increases Treg-cell suppressive function associated with decreased IL-2 mRNA levels in responder CD4+ T cells and improved Treg-cell-induced conversion of CD4+ Foxp3- cells into Foxp3+ induced Treg cells [61].
References:  11,61
Immuno Cell Type:  Mast cells
Cell Ontology Term:   mast cell (CL:0000097)
Comment:  Mast cell histamine release was increased in coculture with human airways smooth muscle cells and this was enhanced by β2-AR agonists. Inhibition of mast cell mediator release by β2-AR-agonists was reduced in coculture. β2-AR agonists did not prevent smooth muscle cell contraction when mast cells were present, but this was reversed by corticosteroids.
References:  98
Immuno Cell Type:  Macrophages & monocytes
Cell Ontology Term:   macrophage (CL:0000235)
monocyte (CL:0000576)
Comment:  Monocytes (CL:0000576): Monocytes from patients with rheumatoid arthritis express lower levels of β2-ARs compared with healthy subjects [11]. Monocytes from high-fat diet-induced obese mice presented higher expression levels of pro-inflammatory cytokines and a higher % of monocytes with a pro-inflammatory phenotype than those from lean animals. β2-AR stimulation induced a shift towards an anti-inflammatory activity profile and phenotype in obese mice, whereas it induced a shift towards a pro-inflammatory activity profile and phenotype in lean mice [54]. Treatment of monocytes with the β2-AR agonist clenbuterol inhibits differentiation into dendritic cells, reduces the % of CD1a+ immature DCs, while increasing the frequency of monocytes retaining CD14 surface expression [58].
Macrophages (CL:0000235): Immune cell β2-ARs are important for proinflammatory macrophage infiltration to the heart in a chronic isoprenaline administration model of heart failure. Mice lacking immune cell β2-AR have decreased proinflammatory macrophage infiltration to the heart, decreased cardiac injury and cardiomyocyte death, decreased interstitial fibrosis and hypertrophy and improved function [146].
References:  11,54,58,146
Immuno Process Associations
Immuno Process:  Antigen presentation
Immuno Process:  Immune regulation
Immuno Process:  Cellular signalling
Immuno Process:  Inflammation
Primary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gs family
Comments:  Stimulation of adenylate cyclase (AC) causes the conversion of ATP into cAMP. This activates protein kinase A, which in turn phosphorylates several substrates, for example L-type Ca2+ channels. In skeletal muscle cAMP signalling is associated with mTORC2 activation that promotes GLUT4 translocation and increased glucose uptake.
References:  99,134,139,158
Secondary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gi/Go family Guanylate cyclase stimulation
Comments:  Adenylyl cyclase inhibition reduces the conversion of ATP to cAMP. Stimulation of guanylyl cyclase (GC) causes an increase in cGMP levels, and subsequent activation of protein kinase G.
References:  99,161
Tissue Distribution Click here for help
55 organs and tissues.
Species:  Human
Technique:  RNA expression.
References:  19
Heart: right atrial appendage, left atrial free wall, left ventricular papillary muscle and pericardium, atrioventricular node, bundle of His, interatrial and interventricular septa, right atrium, left ventricular free wall, right ventricular free wall, right atrium from an area near the atrioventricular node and cardiac nerves. Intimal surface of coronary arteries.
Species:  Human
Technique:  Autoradiography
References:  33,48,140
Lung >> spleen > kidney > heart > brain > skeletal muscle > liver.
Species:  Mouse
Technique:  Radioligand binding.
References:  5
Brain: medial prefrontal cortex.
Species:  Mouse
Technique:  Immunohistochemistry in GABAergic interneurons in medial prefrontal cortex, including parvalbumin (PV)-, calretinin (CR)-, calbindin D-28k (CB)-, somatostatin (SST)- and reelin-immunoreactive (ir) interneurons. β2-AR most likely in SSTR-ir neurons.
References:  105
Lung >> skeletal muscle > spleen > kidney > heart > brain > liver.
Species:  Mouse
Technique:  in situ hybridisation.
References:  5
Lung > heart.
Species:  Rat
Technique:  Radioligand binding.
References:  115
Subcellular distribution in ventricular myocytes.
Species:  Rat
Technique:  Ventricular myocytes and detubulated myocytes: Ca2+ transients and cell shortening: β2-AR at surface sarcolemma.
References:  43
Diabetic heart.
Species:  Rat
Technique:  Radioligand binding, western blot, mRNA.
References:  49,65
Brain: Caudate, cortex, cerebellum, hippocampus, diencephalon.
Species:  Rat
Technique:  Radioligand binding.
References:  115
Internal anal sphincter (IAS) smooth muscle.
Species:  Rat
Technique:  Western blotting.
References:  99
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays Click here for help
GTPase activity.
Species:  Human
Tissue:  HEK293 cells.
Response measured:  GTP hydrolysis using chemiluminescence-based GTPase-Glo Assay (Promega)
References:  2
Measurement of cAMP levels in CHO-K1 cells expressing the human β2 receptor.
Species:  Human
Tissue:  CHO-K1 cells.
Response measured:  cAMP accumulation.
References:  133
Measurement of cAMP levels in rat heart and lung tissue.
Species:  Rat
Tissue:  Heart and lung.
Response measured:  cAMP accumulation.
References:  115
Measurement of cAMP levels in human lung epithelial cell lines.
Species:  Human
Tissue:  Calu-3 and 16HBE14o- cell lines.
Response measured:  cAMP accumulation.
References:  1
Measurement of cAMP levels in a human macrophage cell line.
Species:  Human
Tissue:  U937 cells.
Response measured:  cAMP accumulation.
References:  82
Measurement of cAMP levels in Sf9 insect cells transfected with the human β2-adrenoceptor.
Species:  Human
Tissue:  Sf9 cells.
Response measured:  cAMP accumulation.
References:  134
The trachea of an anesthetized mouse is intubated and airway resistance is measured in response to intravenously injected agonists.
Species:  Mouse
Tissue:  Lung.
Response measured:  Decrease in airway resistance.
References:  34
Measurement of cAMP and Ca2+ levels in CHW fibroblast cells endogenously expressing Gs, AC and PKA and transfected with both the β2-adrenoceptor and the L-type Ca2+ channel.
Species:  Human
Tissue:  CHW-1102 fibroblast cells.
Response measured:  PTX-insensitive cAMP and Ca2+ accumulation.
References:  164
Measurement of LPS-induced cytokine release (TNFα and Il-10) from human U937 macrophage cells when treated with a β2-adrenoceptor agonist.
Species:  Human
Tissue:  U937 cells.
Response measured:  Inhibition of TNFα release, stimulation of Il-10 release.
References:  82
β-arrestin recruitment.
Species:  Human
Tissue:  HEK293 cells.
Response measured:  Interaction monitored using BRET between β-arrestin2-GFP10 and β2-AR-RlucII.
References:  80
cAMP production in skeletal muscle.
Species:  Rat
Tissue:  L6 skeletal muscle cells.
Response measured:  cAMP accumulation using antibody-based flashplate assay.
References:  119
Measurement of cAMP levels in rat heart and lung tissue.
Species:  Rat
Tissue:  Heart and lung.
Response measured:  cAMP accumulation.
References:  115
Measurement of cAMP levels in CHO-K1 cells expressing the human β2 receptor.
Species:  Human
Tissue:  CHO-K1 cells.
Response measured:  Whole cell binding using [3H]CGP12177, cAMP accumulation.
References:  13
β2-adrenoceptor agonist profiling reveals biased signalling phenotypes for the β2-adrenoceptor with possible implications for the treatment of asthma.
Species:  Human
Tissue:  Glo-sensor cAMP accumulation, pathhunter β-arrestin recruitment, BRET G protein recruitment, ERK1/2 phosphorylation, receptor internalization and endosomal localisation.
Response measured:  HEK293 cells expressing human β2-AR.
References:  45
Measurement of cAMP levels in HEK-293 cell lines expressing the Glosensor (Promega) cAMP reporter, the ICUE2 cAMP reporter and the human β2-AR .
Species:  Human
Tissue:  HEK293 cells.
Response measured:  cAMP accumulation measured using chemiluminescence-based cAMP biosensor.
References:  2
β-arrestin recruitment and endocytosis.
Species:  Human
Tissue:  HEK293 cells.
Response measured:  Recruitment monitored using PathHunter, a chemiluminescence-based enzyme fragment complementation assay: endocytosis measured by active endocytosis assay (DiscoverX).
References:  2
Intracellular Ca2+ mobilisation involving PLC and IP3 but not cAMP, Gαs or Gαi.
Species:  Human
Tissue:  HEK293 cells endogenously expressing β2-AR.
Response measured:  Fluorescence-based Ca2+ flux assays
References:  55
Receptor heteromer formation.
Species:  Human
Tissue:  HEK293 cells.
Response measured:  Interaction between GPCRs monitored using BRET.
References:  85
Measurement of cAMP levels in HEK-293 cells using a FRET based biosensor.
Species:  Human
Tissue:  HEK293 cells.
Response measured:  cAMP accumulation measured using FRET-based cAMP biosensor.
References:  154
Glucose uptake in skeletal muscle.
Species:  Rat
Tissue:  L6 skeletal muscle cells.
Response measured:  Glucose uptake measured using [3H]2-deoxyglucose.
References:  131
Physiological Functions Click here for help
Stimulation of aqueous humor formation and outflow.
Species:  Human
Tissue:  Eye.
References:  121
Hypotension, lowering of blood pressure.
Species:  Mouse
Tissue:  Blood vessels.
References:  40
Presynaptic facilitation of noradrenlaine release from sympathetic nerves.
Species:  Rat
Tissue:  Isolated perfused kidney.
References:  93
Bronchodilation.
Species:  Mouse
Tissue:  Lung.
References:  34
Uterine relaxation.
Species:  Human
Tissue:  Myometrial muscle.
References:  106
Inhibition of apoptosis via a PTX-sensitive G-protein.
Apoptosis via Gs and adenylyl cyclase.
Species:  Rat
Tissue:  Ventricular cardiomyocytes.
References:  124
Synaptic plasticity and memory.
Species:  Mouse
Tissue:  Brain.
References:  44,56,67,84
Coronary vasodilation.
Species:  Human
Tissue:  Coronary blood vessels.
References:  123,153
Positive inotropic, chronotropic and lusitropic effects in atria.
Species:  Human
Tissue:  Right atrial appendage.
References:  116
All the β-adrenoceptors mediate relaxation of the internal anal sphincter (IAS) smooth muscle, the β2 subtype achieving this via both the Gs/cAMP pathway and the Gi/o/cGMP pathway.
Species:  Rat
Tissue:  Internal anal sphincter (IAS) smooth muscle.
References:  99
Cardioprotective effects.
Species:  Mouse
Tissue:  Cardiomyocytes from mice with chemically induced cardiotoxicity.
References:  23,136
Glucose release from liver.
Species:  Human
Tissue:  Liver.
References:  32,62
Modulation of kidney function in humans and other animals.
Species:  Human
Tissue:  Kidney.
References:  88
Bronchodilation in human and other animals.
Species:  Human
Tissue:  Lung.
References:  157
Glucose uptake in skeletal muscle.
Species:  Rat
Tissue:  L6 skeletal muscle cells.
References:  131
Physiological Consequences of Altering Gene Expression Click here for help
Studies involving mice overexpressing the β2-adrenoceptor show alterations in heart beat and contractile response.
Species:  Human
Tissue: 
Technique:  Transgenesis.
References:  70
Studies involving β2-adrenoceptor knockouts have only shown obvious physiological changes when under cardiovascular stress conditions. This subtype is thought not to be involved in postnatal development but does mediate peripheral vascular resistance and energy metabolism.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  40
Transgenic (TG) mice overexpressing the β2-adrenoceptor in airway smooth muscle exhibit enhanced β2 signalling and an increase in basal cAMP levels. Tracheal rings from the TG mice showed increased relaxation to a β-agonist, and in vivo studies showed resistance to methacholine-induced bronchoconstriction.
Overall, a decrease in bronchial hyperresponsiveness was seen in the TG mice: an anti-asthmatic state.
Species:  Mouse
Tissue: 
Technique:  Transgenesis.
References:  110
β1- and β2-adrenoceptor double knockout mice appear to have unaltered basal heart rate, blood pressure and metabolic rate. Stimulation of these receptors by agonists or exercise reveals they exhibit a normal exercise capacity but at a submaximal heart rate.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  128
β2-AR knockout mice show limited T cell autoimmunity in EAE through a mechanism mediated by the suppression of IL-2, IFN-γ, and GM-CSF production via inducible cAMP early repressor (ICER).
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  8
β1-/β2-AR knockout mice show an enhanced inflammatory response to injury, that delayed early muscle regeneration, but enhanced myoblast proliferation later during regeneration to produce a similar functional recovery to controls by 14 days post-injury.
Species:  Mouse
Tissue:  Skeletal muscle.
Technique:  Gene targeting in embryonic stem cells.
References:  41
β2-AR knockout mice do not develop muscle LIM protein cardiomyopathy due to positive modulation of Ca2+ due to removal of inhibitory Gisignaling and increased phosphorylation of troponin I and phospholamban.
Species:  Mouse
Tissue:  Heart.
Technique: 
References:  41
β2-AR knockout mice show preserved cold- and diet-induced adaptive thermogenesis but disrupted glucose homeostasis possibly by accelerating hepatic glucose production and insulin secretion.
Species:  Mouse
Tissue:  Metabolism.
Technique:  Gene targeting in embryonic stem cells.
References:  50
Immune cell-expressed β2-AR play an essential role in regulating the early inflammatory repair response to acute myocardial injury by facilitating cardiac leukocyte infiltration.
Species:  Mouse
Tissue:  Heart.
Technique:  Gene targeting in embryonic stem cells.
References:  60
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Adrb1tm1Bkk|Adrb2tm1Bkk|Adrb3tm1Lowl Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk,Adrb3tm1Lowl/Adrb3tm1Lowl
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MGI:87939  MP:0001777 abnormal body temperature regulation PMID: 12161655 
Adrb2tm1Bkk Adrb2tm1Bkk/Adrb2tm1Bkk
involves: 129S1/Sv * 129X1/SvJ
MGI:87938  MP:0004945 abnormal bone resorption PMID: 15724149 
Adrb2+|Adrb2tm1Bkk Adrb2tm1Bkk/Adrb2+
involves: 129S1/Sv * 129X1/SvJ
MGI:87938  MP:0004945 abnormal bone resorption PMID: 15724149 
Adrb1tm1Bkk|Adrb2tm1Bkk|Adrb3tm1Lowl Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk,Adrb3tm1Lowl/Adrb3tm1Lowl
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MGI:87939  MP:0002971 abnormal brown adipose tissue morphology PMID: 12161655 
Adrb1tm1Bkk|Adrb2tm1Bkk Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MP:0001544 abnormal cardiovascular system physiology PMID: 10358009 
Adrb2tm1Bkk Adrb2tm1Bkk/Adrb2tm1Bkk
FVB.129-Adrb2
MGI:87938  MP:0006319 abnormal epididymal fat pad morphology PMID: 10358008 
Adrb2tm1Bkk Adrb2tm1Bkk/Adrb2tm1Bkk
FVB.129-Adrb2
MGI:87938  MP:0002332 abnormal exercise endurance PMID: 10358008 
Adrb2tm1Bkk Adrb2tm1Bkk/Adrb2tm1Bkk
FVB.129-Adrb2
MGI:87938  MP:0001629 abnormal heart rate PMID: 10358008 
Adrb2tm1Kry|Tg(Col1a1-cre)1Kry Adrb2tm1Kry/Adrb2tm1Kry,Tg(Col1a1-cre)1Kry/0
involves: FVB
MGI:3041865  MGI:87938  MP:0003564 abnormal insulin secretion PMID: 19103808 
Adrb2tm1Bkk Adrb2tm1Bkk/Adrb2tm1Bkk
involves: 129S1/Sv * 129X1/SvJ
MGI:87938  MP:0005006 abnormal osteoblast physiology PMID: 15724149 
Adrb2tm1Bkk Adrb2tm1Bkk/Adrb2tm1Bkk
involves: 129S1/Sv * 129X1/SvJ
MGI:87938  MP:0008396 abnormal osteoclast differentiation PMID: 15724149 
Adrb2+|Adrb2tm1Bkk Adrb2tm1Bkk/Adrb2+
involves: 129S1/Sv * 129X1/SvJ
MGI:87938  MP:0008396 abnormal osteoclast differentiation PMID: 15724149 
Adrb2tm1Bkk Adrb2tm1Bkk/Adrb2tm1Bkk
involves: 129S1/Sv * 129X1/SvJ
MGI:87938  MP:0004982 abnormal osteoclast morphology PMID: 15724149 
Adrb2tm1Bkk Adrb2tm1Bkk/Adrb2tm1Bkk
involves: 129S1/Sv * 129X1/SvJ
MGI:87938  MP:0001541 abnormal osteoclast physiology PMID: 15724149 
Adrb1tm1Bkk|Adrb2tm1Bkk Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MP:0008872 abnormal physiological response to xenobiotic PMID: 10358009 
Adrb1tm1Bkk|Adrb2tm1Bkk Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MP:0003638 abnormal response/metabolism to endogenous compounds PMID: 10358009 
Adrb2tm1Bkk Adrb2tm1Bkk/Adrb2tm1Bkk
FVB.129-Adrb2
MGI:87938  MP:0001262 decreased body weight PMID: 10358008 
Adrb2tm1Bkk Adrb2tm1Bkk/Adrb2tm1Bkk
involves: 129S1/Sv * 129X1/SvJ
MGI:87938  MP:0004993 decreased bone resorption PMID: 15724149 
Adrb2+|Adrb2tm1Bkk Adrb2tm1Bkk/Adrb2+
involves: 129S1/Sv * 129X1/SvJ
MGI:87938  MP:0004993 decreased bone resorption PMID: 15724149 
Adrb1tm1Bkk|Adrb2tm1Bkk Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MP:0005140 decreased cardiac muscle contractility PMID: 10358009 
Adrb2tm1Kry|Tg(Col1a1-cre)1Kry Adrb2tm1Kry/Adrb2tm1Kry,Tg(Col1a1-cre)1Kry/0
involves: FVB
MGI:3041865  MGI:87938  MP:0005560 decreased circulating glucose level PMID: 19103808 
Adrb2+|Adrb2tm1Kry|Lep+|Lepob|Tg(Col1a1-cre)1Kry Adrb2tm1Kry/Adrb2+,Lepob/Lep+,Tg(Col1a1-cre)1Kry/0
involves: C57BL/6 * FVB * STOCK Mlph a Tgfa Cdh23 Ednrb
MGI:104663  MGI:3041865  MGI:87938  MP:0005560 decreased circulating glucose level PMID: 19103808 
Adrb1tm1Bkk|Adrb2tm1Bkk Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MP:0005333 decreased heart rate PMID: 10358009 
Adrb2tm1Bkk Adrb2tm1Bkk/Adrb2tm1Bkk
FVB.129-Adrb2
MGI:87938  MP:0004876 decreased mean systemic arterial blood pressure PMID: 10358008 
Adrb1tm1Bkk|Adrb2tm1Bkk Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MP:0005290 decreased oxygen consumption PMID: 10358009 
Adrb1tm1Bkk|Adrb2tm1Bkk|Adrb3tm1Lowl Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk,Adrb3tm1Lowl/Adrb3tm1Lowl
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MGI:87939  MP:0005290 decreased oxygen consumption PMID: 12161655 
Adrb2tm1Bkk Adrb2tm1Bkk/Adrb2tm1Bkk
FVB.129-Adrb2
MGI:87938  MP:0010379 decreased respiratory quotient PMID: 10358008 
Adrb1tm1Bkk|Adrb2tm1Bkk|Adrb3tm1Lowl Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk,Adrb3tm1Lowl/Adrb3tm1Lowl
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MGI:87939  MP:0001260 increased body weight PMID: 12161655 
Adrb2tm1Bkk Adrb2tm1Bkk/Adrb2tm1Bkk
involves: 129S1/Sv * 129X1/SvJ
MGI:87938  MP:0005605 increased bone mass PMID: 15724149 
Adrb2+|Adrb2tm1Bkk Adrb2tm1Bkk/Adrb2+
involves: 129S1/Sv * 129X1/SvJ
MGI:87938  MP:0005605 increased bone mass PMID: 15724149 
Adrb1tm1Bkk|Adrb2tm1Bkk|Adrb3tm1Lowl Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk,Adrb3tm1Lowl/Adrb3tm1Lowl
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MGI:87939  MP:0009119 increased brown fat cell size PMID: 12161655 
Adrb2tm1Kry|Tg(Col1a1-cre)1Kry Adrb2tm1Kry/Adrb2tm1Kry,Tg(Col1a1-cre)1Kry/0
involves: FVB
MGI:3041865  MGI:87938  MP:0002079 increased circulating insulin level PMID: 19103808 
Adrb2+|Adrb2tm1Kry|Lep+|Lepob|Tg(Col1a1-cre)1Kry Adrb2tm1Kry/Adrb2+,Lepob/Lep+,Tg(Col1a1-cre)1Kry/0
involves: C57BL/6 * FVB * STOCK Mlph a Tgfa Cdh23 Ednrb
MGI:104663  MGI:3041865  MGI:87938  MP:0002079 increased circulating insulin level PMID: 19103808 
Adrb1tm1Bkk|Adrb2tm1Bkk|Adrb3tm1Lowl Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk,Adrb3tm1Lowl/Adrb3tm1Lowl
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MGI:87939  MP:0005669 increased circulating leptin level PMID: 12161655 
Adrb1tm1Bkk|Adrb2tm1Bkk|Adrb3tm1Lowl Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk,Adrb3tm1Lowl/Adrb3tm1Lowl
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MGI:87939  MP:0009294 increased interscapular fat pad weight PMID: 12161655 
Adrb2tm1Bkk Adrb2tm1Bkk/Adrb2tm1Bkk
FVB.129-Adrb2
MGI:87938  MP:0002842 increased systemic arterial blood pressure PMID: 10358008 
Adrb1tm1Bkk|Adrb2tm1Bkk|Adrb3tm1Lowl Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk,Adrb3tm1Lowl/Adrb3tm1Lowl
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MGI:87939  MP:0010024 increased total body fat amount PMID: 12161655 
Adrb1tm1Bkk|Adrb2tm1Bkk|Adrb3tm1Lowl Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk,Adrb3tm1Lowl/Adrb3tm1Lowl
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MGI:87939  MP:0001261 obese PMID: 12161655 
Clinically-Relevant Mutations and Pathophysiology Click here for help
Disease:  Asthma, susceptibility to
Disease Ontology: DOID:2841
OMIM: 600807
Comments: 
Disease:  Obesity
Disease Ontology: DOID:9970
OMIM: 601665
Role: 
Biologically Significant Variants Click here for help
Type:  Single nucleotide polymorphism
Species:  Mouse
Description:  A Thr164 -> Ile polymorphism has been identified in humans. To understand the physiological consequences of this variant, a study has been undertaken where the Thr164 -> Ile polymorphism is mimicked in transgenic mice. Results showed impaired receptor coupling to adenylyl cyclase in myocardial membranes in vitro and impaired receptor-mediated cardiac function in vivo.
References:  149
Type:  Single nucleotide polymorphism
Species:  Human
Description:  An Arg16 -> Gly polymorphism has been identified in humans, shown to depress receptor function due to increased receptor downregulation. Studies have suggested this variant may influence vasodilator responses through differences in nitric oxide generation. In two populations of non-nocturnal and nocturnal asthmatic patients, the presence of the Arg16 > Gly polymorphism was statistically significantly increased in the nocturnal asthmatic population. This patient population also appeared to be more susceptible to desensitization of the airways to β2-adrenoceptor agonists.
References:  57,75,101,150
Type:  Single nucleotide polymorphism
Species:  Human
Description:  The Arg16 > Gly polymorphism and the Thr164 > Ile polymorphism are associated with an increased risk of severe exacerbations in patients with chronic obstructive pulmonary disease.
References:  79,147
Type:  Single nucleotide polymorphism
Species:  Human
Description:  β2-AR polymorphisms are associated with changes in body composition and obesity. The Gln27> Glu polymorphism is associated with obesity and the Arg16> Gly polymorphism with lean mass in men and the development of obesity.
References:  76
Type:  Single nucleotide polymorphism
Species:  Human
Description:  The Arg16 > Gly polymorphism is associated with an increased risk of severe adverse events in children treated with long acting β2-AR agonists.
References:  26,166
Type:  Single nucleotide polymorphism
Species:  Human
Description:  A Gln27 -> Glu polymorphism has been identified in humans and found to cause increased isoprenaline-induced vasodilation, suggesting a role in determining vascular reactivity.
References:  42,52
General Comments
For a review on the β-adrenoceptor polymorphisms see reference [97].

References

Show »

1. Abraham G, Kneuer C, Ehrhardt C, Honscha W, Ungemach FR. (2004) Expression of functional beta2-adrenergic receptors in the lung epithelial cell lines 16HBE14o(-), Calu-3 and A549. Biochim Biophys Acta, 1691 (2-3): 169-79. [PMID:15110997]

2. Ahn S, Kahsai AW, Pani B, Wang QT, Zhao S, Wall AL, Strachan RT, Staus DP, Wingler LM, Sun LD et al.. (2017) Allosteric "beta-blocker" isolated from a DNA-encoded small molecule library. Proc Natl Acad Sci U S A, 114 (7): 1708-1713. [PMID:28130548]

3. Alikhani V, Beer D, Bentley D, Bruce I, Cuenoud BM, Fairhurst RA, Gedeck P, Haberthuer S, Hayden C, Janus D et al.. (2004) Long-chain formoterol analogues: an investigation into the effect of increasing amino-substituent chain length on the beta2-adrenoceptor activity. Bioorg Med Chem Lett, 14 (18): 4705-10. [PMID:15324892]

4. Allen JM, Baetge EE, Abrass IB, Palmiter RD. (1988) Isoproterenol response following transfection of the mouse beta 2-adrenergic receptor gene into Y1 cells. EMBO J, 7 (1): 133-8. [PMID:2834198]

5. André C, Erraji L, Gaston J, Grimber G, Briand P, Guillet JG. (1996) Transgenic mice carrying the human beta 2-adrenergic receptor gene with its own promoter overexpress beta 2-adrenergic receptors in liver. Eur J Biochem, 241 (2): 417-24. [PMID:8917438]

6. Angers S, Salahpour A, Joly E, Hilairet S, Chelsky D, Dennis M, Bouvier M. (2000) Detection of beta 2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proc Natl Acad Sci USA, 97 (7): 3684-9. [PMID:10725388]

7. Aparici M, Gómez-Angelats M, Vilella D, Otal R, Carcasona C, Viñals M, Ramos I, Gavaldà A, De Alba J, Gras J et al.. (2012) Pharmacological characterization of abediterol, a novel inhaled β(2)-adrenoceptor agonist with long duration of action and a favorable safety profile in preclinical models. J Pharmacol Exp Ther, 342 (2): 497-509. [PMID:22588259]

8. Araujo LP, Maricato JT, Guereschi MG, Takenaka MC, Nascimento VM, de Melo FM, Quintana FJ, Brum PC, Basso AS. (2019) The Sympathetic Nervous System Mitigates CNS Autoimmunity via β2-Adrenergic Receptor Signaling in Immune Cells. Cell Rep, 28 (12): 3120-3130.e5. [PMID:31533035]

9. Aristotelous T, Ahn S, Shukla AK, Gawron S, Sassano MF, Kahsai AW, Wingler LM, Zhu X, Tripathi-Shukla P, Huang XP et al.. (2013) Discovery of β2 Adrenergic Receptor Ligands Using Biosensor Fragment Screening of Tagged Wild-Type Receptor. ACS Med Chem Lett, 4 (10): 1005-1010. [PMID:24454993]

10. Auerbach SS, DrugMatrix® and ToxFX® Coordinator National Toxicology Program. National Toxicology Program: Dept of Health and Human Services. Accessed on 02/05/2014. Modified on 02/05/2014. DrugMatrix, https://ntp.niehs.nih.gov/drugmatrix/index.html

11. Baerwald C, Graefe C, Muhl C, Von Wichert P, Krause A. (1992) Beta 2-adrenergic receptors on peripheral blood mononuclear cells in patients with rheumatic diseases. Eur J Clin Invest, 22 Suppl 1: 42-6. [PMID:1333966]

12. Baker JG. (2005) The selectivity of beta-adrenoceptor antagonists at the human beta1, beta2 and beta3 adrenoceptors. Br J Pharmacol, 144 (3): 317-22. [PMID:15655528]

13. Baker JG. (2010) The selectivity of beta-adrenoceptor agonists at human beta1-, beta2- and beta3-adrenoceptors. Br J Pharmacol, 160 (5): 1048-61. [PMID:20590599]

14. Baker JG, Hall IP, Hill SJ. (2002) Pharmacological characterization of CGP 12177 at the human beta(2)-adrenoceptor. Br J Pharmacol, 137 (3): 400-8. [PMID:12237261]

15. Baker JG, Hall IP, Hill SJ. (2003) Agonist and inverse agonist actions of beta-blockers at the human beta 2-adrenoceptor provide evidence for agonist-directed signaling. Mol Pharmacol, 64 (6): 1357-69. [PMID:14645666]

16. Baker JG, Hall IP, Hill SJ. (2003) Influence of agonist efficacy and receptor phosphorylation on antagonist affinity measurements: differences between second messenger and reporter gene responses. Mol Pharmacol, 64 (3): 679-88. [PMID:12920204]

17. Baker JG, Proudman RG, Hill SJ. (2015) Salmeterol's extreme β2 selectivity is due to residues in both extracellular loops and transmembrane domains. Mol Pharmacol, 87 (1): 103-20. [PMID:25324048]

18. Barki-Harrington L, Luttrell LM, Rockman HA. (2003) Dual inhibition of beta-adrenergic and angiotensin II receptors by a single antagonist: a functional role for receptor-receptor interaction in vivo. Circulation, 108 (13): 1611-8. [PMID:12963634]

19. Basarrate S, Monzel AS, Smith JLM, Marsland AL, Trumpff C, Picard M. (2024) Glucocorticoid and Adrenergic Receptor Distribution Across Human Organs and Tissues: A Map for Stress Transduction. Psychosom Med, 86 (2): 89-98. [PMID:38193786]

20. Battram C, Charlton SJ, Cuenoud B, Dowling MR, Fairhurst RA, Farr D, Fozard JR, Leighton-Davies JR, Lewis CA, McEvoy L et al.. (2006) In vitro and in vivo pharmacological characterization of 5-[(R)-2-(5,6-diethyl-indan-2-ylamino)-1-hydroxy-ethyl]-8-hydroxy-1H-quinolin-2-one (indacaterol), a novel inhaled beta(2) adrenoceptor agonist with a 24-h duration of action. J Pharmacol Exp Ther, 317 (2): 762-70. [PMID:16434564]

21. Beattie D, Beer D, Bradley ME, Bruce I, Charlton SJ, Cuenoud BM, Fairhurst RA, Farr D, Fozard JR, Janus D et al.. (2012) An investigation into the structure-activity relationships associated with the systematic modification of the β(2)-adrenoceptor agonist indacaterol. Bioorg Med Chem Lett, 22 (19): 6280-5. [PMID:22932315]

22. Benkel T, Zimmermann M, Zeiner J, Bravo S, Merten N, Lim VJY, Matthees ESF, Drube J, Miess-Tanneberg E, Malan D et al.. (2022) How Carvedilol activates β2-adrenoceptors. Nat Commun, 13 (1): 7109. [PMID:36402762]

23. Bernstein D, Fajardo G, Zhao M, Urashima T, Powers J, Berry G, Kobilka BK. (2005) Differential cardioprotective/cardiotoxic effects mediated by beta-adrenergic receptor subtypes. Am J Physiol Heart Circ Physiol, 289 (6): H2441-9. [PMID:16040722]

24. Berthouze M, Ayoub M, Russo O, Rivail L, Sicsic S, Fischmeister R, Berque-Bestel I, Jockers R, Lezoualc'h F. (2005) Constitutive dimerization of human serotonin 5-HT4 receptors in living cells. FEBS Lett, 579 (14): 2973-80. [PMID:15896782]

25. Billington CK, Penn RB, Hall IP. (2017) β2 Agonists. Handb Exp Pharmacol, 237: 23-40. [PMID:27878470]

26. Blake K, Lima J. (2015) Pharmacogenomics of long-acting β2-agonists. Expert Opin Drug Metab Toxicol, 11 (11): 1733-51. [PMID:26235677]

27. Bokoch MP, Zou Y, Rasmussen SG, Liu CW, Nygaard R, Rosenbaum DM, Fung JJ, Choi HJ, Thian FS, Kobilka TS et al.. (2010) Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor. Nature, 463 (7277): 108-12. [PMID:20054398]

28. Bouyssou T, Casarosa P, Naline E, Pestel S, Konetzki I, Devillier P, Schnapp A. (2010) Pharmacological characterization of olodaterol, a novel inhaled beta2-adrenoceptor agonist exerting a 24-hour-long duration of action in preclinical models. J Pharmacol Exp Ther, 334 (1): 53-62. [PMID:20371707]

29. Breit A, Lagacé M, Bouvier M. (2004) Hetero-oligomerization between beta2- and beta3-adrenergic receptors generates a beta-adrenergic signaling unit with distinct functional properties. J Biol Chem, 279 (27): 28756-65. [PMID:15123695]

30. Brisinda D, Sorbo AR, Venuti A, Ruggieri MP, Manna R, Fenici P, Wallukat G, Hoebeke J, Frustaci A, Fenici R. (2012) Anti-β-adrenoceptors autoimmunity causing 'idiopathic' arrhythmias and cardiomyopathy. Circ J, 76 (6): 1345-53. [PMID:22447021]

31. Brown DA, Dunn PM. (1983) Depolarization of rat isolated superior cervical ganglia mediated by beta 2-adrenoceptors. Br J Pharmacol, 79 (2): 429-39. [PMID:6140042]

32. Burgess C, Ayson M, Rajasingham S, Crane J, Della Cioppa G, Till MD. (1998) The extrapulmonary effects of increasing doses of formoterol in patients with asthma. Eur J Clin Pharmacol, 54 (2): 141-7. [PMID:9626918]

33. Buxton BF, Jones CR, Molenaar P, Summers RJ. (1987) Characterization and autoradiographic localization of beta-adrenoceptor subtypes in human cardiac tissues. Br J Pharmacol, 92 (2): 299-310. [PMID:2823947]

34. Callaerts-Vegh Z, Evans KL, Dudekula N, Cuba D, Knoll BJ, Callaerts PF, Giles H, Shardonofsky FR, Bond RA. (2004) Effects of acute and chronic administration of beta-adrenoceptor ligands on airway function in a murine model of asthma. Proc Natl Acad Sci USA, 101 (14): 4948-53. [PMID:15069206]

35. Candelore MR, Deng L, Tota L, Guan XM, Amend A, Liu Y, Newbold R, Cascieri MA, Weber AE. (1999) Potent and selective human beta(3)-adrenergic receptor antagonists. J Pharmacol Exp Ther, 290 (2): 649-55. [PMID:10411574]

36. Cao N, Chen H, Bai Y, Yang X, Xu W, Hao W, Zhou Y, Chai J, Wu Y, Wang Z et al.. (2018) β2-adrenergic receptor autoantibodies alleviated myocardial damage induced by β1-adrenergic receptor autoantibodies in heart failure. Cardiovasc Res, 114 (11): 1487-1498. [PMID:29746700]

37. Carzaniga L, Linney ID, Rizzi A, Delcanale M, Schmidt W, Knight CK, Pastore F, Miglietta D, Carnini C, Cesari N et al.. (2022) Discovery of Clinical Candidate CHF-6366: A Novel Super-soft Dual Pharmacology Muscarinic Antagonist and β2 Agonist (MABA) for the Inhaled Treatment of Respiratory Diseases. J Med Chem, 65 (15): 10233-10250. [PMID:35901125]

38. Chandrasekera PC, Wan TC, Gizewski ET, Auchampach JA, Lasley RD. (2013) Adenosine A1 receptors heterodimerize with β1- and β2-adrenergic receptors creating novel receptor complexes with altered G protein coupling and signaling. Cell Signal, 25 (4): 736-42. [PMID:23291003]

39. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK et al.. (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science, 318 (5854): 1258-65. [PMID:17962520]

40. Chruscinski AJ, Rohrer DK, Schauble E, Desai KH, Bernstein D, Kobilka BK. (1999) Targeted disruption of the beta2 adrenergic receptor gene. J Biol Chem, 274 (24): 16694-700. [PMID:10358008]

41. Church JE, Trieu J, Sheorey R, Chee AY, Naim T, Baum DM, Ryall JG, Gregorevic P, Lynch GS. (2014) Functional β-adrenoceptors are important for early muscle regeneration in mice through effects on myoblast proliferation and differentiation. PLoS One, 9 (7): e101379. [PMID:25000590]

42. Cockcroft JR, Gazis AG, Cross DJ, Wheatley A, Dewar J, Hall IP, Noon JP. (2000) Beta(2)-adrenoceptor polymorphism determines vascular reactivity in humans. Hypertension, 36 (3): 371-5. [PMID:10988267]

43. Cros C, Brette F. (2013) Functional subcellular distribution of β1- and β2-adrenergic receptors in rat ventricular cardiac myocytes. Physiol Rep, 1 (3): e00038. [PMID:24303124]

44. Dang V, Medina B, Das D, Moghadam S, Martin KJ, Lin B, Naik P, Patel D, Nosheny R, Wesson Ashford J et al.. (2014) Formoterol, a long-acting β2 adrenergic agonist, improves cognitive function and promotes dendritic complexity in a mouse model of Down syndrome. Biol Psychiatry, 75 (3): 179-88. [PMID:23827853]

45. De Pascali F, Ippolito M, Wolfe E, Komolov KE, Hopfinger N, Lemenze D, Kim N, Armen RS, An SS, Scott CP et al.. (2022) β2 -Adrenoceptor agonist profiling reveals biased signalling phenotypes for the β2 -adrenoceptor with possible implications for the treatment of asthma. Br J Pharmacol, 179 (19): 4692-4708. [PMID:35732075]

46. Dehvari N, Sato M, Bokhari MH, Kalinovich A, Ham S, Gao J, Nguyen HTM, Whiting L, Mukaida S, Merlin J et al.. (2020) The metabolic effects of mirabegron are mediated primarily by β3 -adrenoceptors. Pharmacol Res Perspect, 8 (5): e00643. [PMID:32813332]

47. Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES. (2000) The sympathetic nerve--an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev, 52 (4): 595-638. [PMID:11121511]

48. Elnatan J, Molenaar P, Rosenfeldt FL, Summers RJ. (1994) Autoradiographic localization and quantitation of beta 1- and beta 2-adrenoceptors in the human atrioventricular conducting system: a comparison of patients with idiopathic dilated cardiomyopathy and ischemic heart disease. J Mol Cell Cardiol, 26 (3): 313-23. [PMID:7913135]

49. Erdogan BR, Michel MC, Arioglu-Inan E. (2020) Expression and Signaling of β-Adrenoceptor Subtypes in the Diabetic Heart. Cells, 9 (12). [PMID:33256212]

50. Fernandes GW, Ueta CB, Fonseca TL, Gouveia CH, Lancellotti CL, Brum PC, Christoffolete MA, Bianco AC, Ribeiro MO. (2014) Inactivation of the adrenergic receptor β2 disrupts glucose homeostasis in mice. J Endocrinol, 221 (3): 381-90. [PMID:24868110]

51. Frazier EP, Michel-Reher MB, van Loenen P, Sand C, Schneider T, Peters SL, Michel MC. (2011) Lack of evidence that nebivolol is a β₃-adrenoceptor agonist. Eur J Pharmacol, 654 (1): 86-91. [PMID:21172342]

52. Frey UH, Karlik J, Herbstreit F, Peters J. (2014) β2-Adrenoceptor gene variants affect vasopressor requirements in patients after thoracic epidural anaesthesia. Br J Anaesth, 112 (3): 477-84. [PMID:24366725]

53. Frielle T, Daniel KW, Caron MG, Lefkowitz RJ. (1988) Structural basis of beta-adrenergic receptor subtype specificity studied with chimeric beta 1/beta 2-adrenergic receptors. Proc Natl Acad Sci USA, 85 (24): 9494-8. [PMID:2849109]

54. Gálvez I, Martín-Cordero L, Hinchado MD, Álvarez-Barrientos A, Ortega E. (2019) Anti-inflammatory effect of β2 adrenergic stimulation on circulating monocytes with a pro-inflammatory state in high-fat diet-induced obesity. Brain Behav Immun, 80: 564-572. [PMID:31055173]

55. Galaz-Montoya M, Wright SJ, Rodriguez GJ, Lichtarge O, Wensel TG. (2017) β2-Adrenergic receptor activation mobilizes intracellular calcium via a non-canonical cAMP-independent signaling pathway. J Biol Chem, 292 (24): 9967-9974. [PMID:28442571]

56. Gao V, Suzuki A, Magistretti PJ, Lengacher S, Pollonini G, Steinman MQ, Alberini CM. (2016) Astrocytic β2-adrenergic receptors mediate hippocampal long-term memory consolidation. Proc Natl Acad Sci U S A, 113 (30): 8526-31. [PMID:27402767]

57. Garovic VD, Joyner MJ, Dietz NM, Boerwinkle E, Turner ST. (2003) Beta(2)-adrenergic receptor polymorphism and nitric oxide-dependent forearm blood flow responses to isoproterenol in humans. J Physiol (Lond.), 546 (Pt 2): 583-9. [PMID:12527744]

58. Giordani L, Cuzziol N, Del Pinto T, Sanchez M, Maccari S, Massimi A, Pietraforte D, Viora M. (2015) β2-Agonist clenbuterol hinders human monocyte differentiation into dendritic cells. Exp Cell Res, 339 (2): 163-73. [PMID:26524508]

59. Gocayne J, Robinson DA, FitzGerald MG, Chung FZ, Kerlavage AR, Lentes KU, Lai J, Wang CD, Fraser CM, Venter JC. (1987) Primary structure of rat cardiac beta-adrenergic and muscarinic cholinergic receptors obtained by automated DNA sequence analysis: further evidence for a multigene family. Proc Natl Acad Sci USA, 84 (23): 8296-300. [PMID:2825184]

60. Grisanti LA, Gumpert AM, Traynham CJ, Gorsky JE, Repas AA, Gao E, Carter RL, Yu D, Calvert JW, García AP et al.. (2016) Leukocyte-Expressed β2-Adrenergic Receptors Are Essential for Survival After Acute Myocardial Injury. Circulation, 134 (2): 153-67. [PMID:27364164]

61. Guereschi MG, Araujo LP, Maricato JT, Takenaka MC, Nascimento VM, Vivanco BC, Reis VO, Keller AC, Brum PC, Basso AS. (2013) Beta2-adrenergic receptor signaling in CD4+ Foxp3+ regulatory T cells enhances their suppressive function in a PKA-dependent manner. Eur J Immunol, 43 (4): 1001-12. [PMID:23436577]

62. Guhan AR, Cooper S, Oborne J, Lewis S, Bennett J, Tattersfield AE. (2000) Systemic effects of formoterol and salmeterol: a dose-response comparison in healthy subjects. Thorax, 55 (8): 650-6. [PMID:10899240]

63. Haack KK, Tougas MR, Jones KT, El-Dahr SS, Radhakrishna H, McCarty NA. (2010) A novel bioassay for detecting GPCR heterodimerization: transactivation of beta 2 adrenergic receptor by bradykinin receptor. J Biomol Screen, 15 (3): 251-60. [PMID:20150590]

64. Hague C, Uberti MA, Chen Z, Bush CF, Jones SV, Ressler KJ, Hall RA, Minneman KP. (2004) Olfactory receptor surface expression is driven by association with the beta2-adrenergic receptor. Proc Natl Acad Sci USA, 101 (37): 13672-6. [PMID:15347813]

65. Haley JM, Thackeray JT, Thorn SL, DaSilva JN. (2015) Cardiac β-Adrenoceptor Expression Is Reduced in Zucker Diabetic Fatty Rats as Type-2 Diabetes Progresses. PLoS One, 10 (5): e0127581. [PMID:25996498]

66. Hanson MA, Cherezov V, Griffith MT, Roth CB, Jaakola VP, Chien EY, Velasquez J, Kuhn P, Stevens RC. (2008) A specific cholesterol binding site is established by the 2.8 A structure of the human beta2-adrenergic receptor. Structure, 16 (6): 897-905. [PMID:18547522]

67. Havekes R, Canton DA, Park AJ, Huang T, Nie T, Day JP, Guercio LA, Grimes Q, Luczak V, Gelman IH et al.. (2012) Gravin orchestrates protein kinase A and β2-adrenergic receptor signaling critical for synaptic plasticity and memory. J Neurosci, 32 (50): 18137-49. [PMID:23238728]

68. Hebert TE, Moffett S, Morello JP, Loisel TP, Bichet DG, Barret C, Bouvier M. (1996) A peptide derived from a beta2-adrenergic receptor transmembrane domain inhibits both receptor dimerization and activation. J Biol Chem, 271 (27): 16384-92. [PMID:8663163]

69. Hervé J, Dubreil L, Tardif V, Terme M, Pogu S, Anegon I, Rozec B, Gauthier C, Bach JM, Blancou P. (2013) β2-Adrenoreceptor agonist inhibits antigen cross-presentation by dendritic cells. J Immunol, 190 (7): 3163-71. [PMID:23420884]

70. Heubach JF, Trebess I, Wettwer E, Himmel HM, Michel MC, Kaumann AJ, Koch WJ, Harding SE, Ravens U. (1999) L-type calcium current and contractility in ventricular myocytes from mice overexpressing the cardiac beta 2-adrenoceptor. Cardiovasc Res, 42 (1): 173-82. [PMID:10435008]

71. Hillman KL, Doze VA, Porter JE. (2005) Functional characterization of the beta-adrenergic receptor subtypes expressed by CA1 pyramidal cells in the rat hippocampus. J Pharmacol Exp Ther, 314 (2): 561-7. [PMID:15908513]

72. Hoenke C, Bouyssou T, Tautermann CS, Rudolf K, Schnapp A, Konetzki I. (2009) Use of 5-hydroxy-4H-benzo[1,4]oxazin-3-ones as beta2-adrenoceptor agonists. Bioorg Med Chem Lett, 19 (23): 6640-4. [PMID:19875286]

73. Hoffmann C, Leitz MR, Oberdorf-Maass S, Lohse MJ, Klotz KN. (2004) Comparative pharmacology of human beta-adrenergic receptor subtypes--characterization of stably transfected receptors in CHO cells. Naunyn Schmiedebergs Arch Pharmacol, 369 (2): 151-9. [PMID:14730417]

74. Hohberger B, Kunze R, Wallukat G, Kara K, Mardin CY, Lämmer R, Schlötzer-Schrehardt U, Hosari S, Horn F, Munoz L et al.. (2019) Autoantibodies Activating the β2-Adrenergic Receptor Characterize Patients With Primary and Secondary Glaucoma. Front Immunol, 10: 2112. [PMID:31632387]

75. Hoit BD, Suresh DP, Craft L, Walsh RA, Liggett SB. (2000) beta2-adrenergic receptor polymorphisms at amino acid 16 differentially influence agonist-stimulated blood pressure and peripheral blood flow in normal individuals. Am Heart J, 139 (3): 537-42. [PMID:10689270]

76. Hostrup M, Onslev J. (2022) The beta2 -adrenergic receptor - a re-emerging target to combat obesity and induce leanness?. J Physiol, 600 (5): 1209-1227. [PMID:34676534]

77. Hou DY, Xu L, Zhang ZY, Xu XR, Wang X, Zhang J, Liu JM, Wang H, Chen J, Zhang L. (2020) Clinical value of detecting autoantibodies against β1-, β2,- and α1-adrenergic receptors in carvedilol treatment of patients with heart failure. J Geriatr Cardiol, 17 (6): 305-312. [PMID:32670360]

78. Hudson BD, Hébert TE, Kelly ME. (2010) Physical and functional interaction between CB1 cannabinoid receptors and beta2-adrenoceptors. Br J Pharmacol, 160 (3): 627-42. [PMID:20590567]

79. Ingebrigtsen TS, Vestbo J, Rode L, Marott JL, Lange P, Nordestgaard BG. (2019) β2-Adrenergic genotypes and risk of severe exacerbations in COPD: a prospective cohort study. Thorax, 74 (10): 934-940. [PMID:31481635]

80. Ippolito M, De Pascali F, Inoue A, Benovic JL. (2022) Phenylalanine 193 in Extracellular Loop 2 of the β 2-Adrenergic Receptor Coordinates β-Arrestin Interaction. Mol Pharmacol, 101 (2): 87-94. [PMID:34853152]

81. Isogaya M, Sugimoto Y, Tanimura R, Tanaka R, Kikkawa H, Nagao T, Kurose H. (1999) Binding pockets of the beta(1)- and beta(2)-adrenergic receptors for subtype-selective agonists. Mol Pharmacol, 56 (5): 875-85. [PMID:10531390]

82. Izeboud CA, Vermeulen RM, Zwart A, Voss HP, van Miert AS, Witkamp RF. (2000) Stereoselectivity at the beta2-adrenoceptor on macrophages is a major determinant of the anti-inflammatory effects of beta2-agonists. Naunyn Schmiedebergs Arch Pharmacol, 362 (2): 184-9. [PMID:10961382]

83. January B, Seibold A, Whaley B, Hipkin RW, Lin D, Schonbrunn A, Barber R, Clark RB. (1997) beta2-adrenergic receptor desensitization, internalization, and phosphorylation in response to full and partial agonists. J Biol Chem, 272 (38): 23871-9. [PMID:9295336]

84. Jensen CJ, Demol F, Bauwens R, Kooijman R, Massie A, Villers A, Ris L, De Keyser J. (2016) Astrocytic β2 Adrenergic Receptor Gene Deletion Affects Memory in Aged Mice. PLoS One, 11 (10): e0164721. [PMID:27776147]

85. Johnstone EKM, See HB, Abhayawardana RS, Song A, Rosengren KJ, Hill SJ, Pfleger KDG. (2021) Investigation of Receptor Heteromers Using NanoBRET Ligand Binding. Int J Mol Sci, 22 (3). [PMID:33499147]

86. Joiner ML, Lisé MF, Yuen EY, Kam AY, Zhang M, Hall DD, Malik ZA, Qian H, Chen Y, Ulrich JD et al.. (2010) Assembly of a beta2-adrenergic receptor--GluR1 signalling complex for localized cAMP signalling. EMBO J, 29 (2): 482-95. [PMID:19942860]

87. Jordan BA, Trapaidze N, Gomes I, Nivarthi R, Devi LA. (2001) Oligomerization of opioid receptors with beta 2-adrenergic receptors: a role in trafficking and mitogen-activated protein kinase activation. Proc Natl Acad Sci USA, 98 (1): 343-8. [PMID:11134510]

88. Kamiar A, Yousefi K, Dunkley JC, Webster KA, Shehadeh LA. (2021) β2-Adrenergic receptor agonism as a therapeutic strategy for kidney disease. Am J Physiol Regul Integr Comp Physiol, 320 (5): R575-R587. [PMID:33565369]

89. Kern C, Meyer T, Droux S, Schollmeyer D, Miculka C. (2009) Synthesis and pharmacological characterization of beta2-adrenergic agonist enantiomers: zilpaterol. J Med Chem, 52 (6): 1773-7. [PMID:19245211]

90. Kobilka BK, Dixon RA, Frielle T, Dohlman HG, Bolanowski MA, Sigal IS, Yang-Feng TL, Francke U, Caron MG, Lefkowitz RJ. (1987) cDNA for the human beta 2-adrenergic receptor: a protein with multiple membrane-spanning domains and encoded by a gene whose chromosomal location is shared with that of the receptor for platelet-derived growth factor. Proc Natl Acad Sci USA, 84 (1): 46-50. [PMID:3025863]

91. Krushinski Jr JH, Schaus JM, Thompson DC, Calligaro DO, Nelson DL, Luecke SH, Wainscott DB, Wong DT. (2007) Indoloxypropanolamine analogues as 5-HT(1A) receptor antagonists. Bioorg Med Chem Lett, 17 (20): 5600-4. [PMID:17804228]

92. Kuravi S, Lan TH, Barik A, Lambert NA. (2010) Third-party bioluminescence resonance energy transfer indicates constitutive association of membrane proteins: application to class a g-protein-coupled receptors and g-proteins. Biophys J, 98 (10): 2391-9. [PMID:20483349]

93. Lakhlani PP, Amenta F, Napoleone P, Felici L, Eikenburg DC. (1994) Pharmacological characterization and anatomical localization of prejunctional beta-adrenoceptors in the rat kidney. Br J Pharmacol, 111: 1296-1308. [PMID:8032617]

94. LaRocca TJ, Schwarzkopf M, Altman P, Zhang S, Gupta A, Gomes I, Alvin Z, Champion HC, Haddad G, Hajjar RJ et al.. (2010) β2-Adrenergic receptor signaling in the cardiac myocyte is modulated by interactions with CXCR4. J Cardiovasc Pharmacol, 56 (5): 548-59. [PMID:20729750]

95. Lavoie C, Hébert TE. (2003) Pharmacological characterization of putative beta1-beta2-adrenergic receptor heterodimers. Can J Physiol Pharmacol, 81 (2): 186-95. [PMID:12710533]

96. Lavoie C, Mercier JF, Salahpour A, Umapathy D, Breit A, Villeneuve LR, Zhu WZ, Xiao RP, Lakatta EG, Bouvier M et al.. (2002) Beta 1/beta 2-adrenergic receptor heterodimerization regulates beta 2-adrenergic receptor internalization and ERK signaling efficacy. J Biol Chem, 277 (38): 35402-10. [PMID:12140284]

97. Leineweber K, Büscher R, Bruck H, Brodde OE. (2004) Beta-adrenoceptor polymorphisms. Naunyn Schmiedebergs Arch Pharmacol, 369 (1): 1-22. [PMID:14647973]

98. Lewis RJ, Chachi L, Newby C, Amrani Y, Bradding P. (2016) Bidirectional Counterregulation of Human Lung Mast Cell and Airway Smooth Muscle β2 Adrenoceptors. J Immunol, 196 (1): 55-63. [PMID:26608913]

99. Li F, De Godoy M, Rattan S. (2004) Role of adenylate and guanylate cyclases in beta1-, beta2-, and beta3-adrenoceptor-mediated relaxation of internal anal sphincter smooth muscle. J Pharmacol Exp Ther, 308 (3): 1111-20. [PMID:14711933]

100. Liapakis G, Chan WC, Papadokostaki M, Javitch JA. (2004) Synergistic contributions of the functional groups of epinephrine to its affinity and efficacy at the beta2 adrenergic receptor. Mol Pharmacol, 65 (5): 1181-90. [PMID:15102946]

101. Lima JJ. (2014) Do genetic polymorphisms alter patient response to inhaled bronchodilators?. Expert Opin Drug Metab Toxicol, 10 (9): 1231-40. [PMID:25102170]

102. Littmann T, Göttle M, Reinartz MT, Kälble S, Wainer IW, Ozawa T, Seifert R. (2015) Recruitment of β-arrestin 1 and 2 to the β2-adrenoceptor: analysis of 65 ligands. J Pharmacol Exp Ther, 355 (2): 183-90. [PMID:26306764]

103. Liu X, Ahn S, Kahsai AW, Meng KC, Latorraca NR, Pani B, Venkatakrishnan AJ, Masoudi A, Weis WI, Dror RO et al.. (2017) Mechanism of intracellular allosteric β2AR antagonist revealed by X-ray crystal structure. Nature, 548 (7668): 480-484. [PMID:28813418]

104. Liu X, Kaindl J, Korczynska M, Stößel A, Dengler D, Stanek M, Hübner H, Clark MJ, Mahoney J, Matt RA et al.. (2020) An allosteric modulator binds to a conformational hub in the β2 adrenergic receptor. Nat Chem Biol, 16 (7): 749-755. [PMID:32483378]

105. Liu Y, Liang X, Ren WW, Li BM. (2014) Expression of β1- and β2-adrenoceptors in different subtypes of interneurons in the medial prefrontal cortex of mice. Neuroscience, 257: 149-57. [PMID:24215978]

106. Liu YL, Nwosu UC, Rice PJ. (1998) Relaxation of isolated human myometrial muscle by beta2-adrenergic receptors but not beta1-adrenergic receptors. Am J Obstet Gynecol, 179 (4): 895-8. [PMID:9790366]

107. Louis SN, Nero TL, Iakovidis D, Jackman GP, Louis WJ. (1999) LK 204-545, a highly selective beta1-adrenoceptor antagonist at human beta-adrenoceptors. Eur J Pharmacol, 367 (2-3): 431-5. [PMID:10079020]

108. Masureel M, Zou Y, Picard LP, van der Westhuizen E, Mahoney JP, Rodrigues JPGLM, Mildorf TJ, Dror RO, Shaw DE, Bouvier M et al.. (2018) Structural insights into binding specificity, efficacy and bias of a β2AR partial agonist. Nat Chem Biol, 14 (11): 1059-1066. [PMID:30327561]

109. Maudsley S, Pierce KL, Zamah AM, Miller WE, Ahn S, Daaka Y, Lefkowitz RJ, Luttrell LM. (2000) The beta(2)-adrenergic receptor mediates extracellular signal-regulated kinase activation via assembly of a multi-receptor complex with the epidermal growth factor receptor. J Biol Chem, 275 (13): 9572-80. [PMID:10734107]

110. McGraw DW, Forbes SL, Kramer LA, Witte DP, Fortner CN, Paul RJ, Liggett SB. (1999) Transgenic overexpression of beta(2)-adrenergic receptors in airway smooth muscle alters myocyte function and ablates bronchial hyperreactivity. J Biol Chem, 274 (45): 32241-7. [PMID:10542262]

111. McGraw DW, Mihlbachler KA, Schwarb MR, Rahman FF, Small KM, Almoosa KF, Liggett SB. (2006) Airway smooth muscle prostaglandin-EP1 receptors directly modulate beta2-adrenergic receptors within a unique heterodimeric complex. J Clin Invest, 116 (5): 1400-9. [PMID:16670773]

112. McVey M, Ramsay D, Kellett E, Rees S, Wilson S, Pope AJ, Milligan G. (2001) Monitoring receptor oligomerization using time-resolved fluorescence resonance energy transfer and bioluminescence resonance energy transfer. The human delta -opioid receptor displays constitutive oligomerization at the cell surface, which is not regulated by receptor occupancy. J Biol Chem, 276 (17): 14092-9. [PMID:11278447]

113. Mercier JF, Salahpour A, Angers S, Breit A, Bouvier M. (2002) Quantitative assessment of beta 1- and beta 2-adrenergic receptor homo- and heterodimerization by bioluminescence resonance energy transfer. J Biol Chem, 277 (47): 44925-31. [PMID:12244098]

114. Michel MC, Seifert R. (2015) Selectivity of pharmacological tools: implications for use in cell physiology. A review in the theme: Cell signaling: proteins, pathways and mechanisms. Am J Physiol, Cell Physiol, 308 (7): C505-20. [PMID:25631871]

115. Minneman KP, Hegstrand LR, Molinoff PB. (1979) The pharmacological specificity of beta-1 and beta-2 adrenergic receptors in rat heart and lung in vitro. Mol Pharmacol, 16 (1): 21-33. [PMID:39243]

116. Molenaar P, Savarimuthu SM, Sarsero D, Chen L, Semmler AB, Carle A, Yang I, Bartel S, Vetter D, Beyerdörfer I et al.. (2007) (-)-Adrenaline elicits positive inotropic, lusitropic, and biochemical effects through beta2 -adrenoceptors in human atrial myocardium from nonfailing and failing hearts, consistent with Gs coupling but not with Gi coupling. Naunyn Schmiedebergs Arch Pharmacol, 375 (1): 11-28. [PMID:17295024]

117. Mukaida S, Sato M, Öberg AI, Dehvari N, Olsen JM, Kocan M, Halls ML, Merlin J, Sandström AL, Csikasz RI et al.. (2019) BRL37344 stimulates GLUT4 translocation and glucose uptake in skeletal muscle via β2-adrenoceptors without causing classical receptor desensitization. Am J Physiol Regul Integr Comp Physiol, 316 (5): R666-R677. [PMID:30892909]

118. Nakai A, Hayano Y, Furuta F, Noda M, Suzuki K. (2014) Control of lymphocyte egress from lymph nodes through β2-adrenergic receptors. J Exp Med, 211 (13): 2583-98. [PMID:25422496]

119. Nevzorova J, Evans BA, Bengtsson T, Summers RJ. (2006) Multiple signalling pathways involved in beta2-adrenoceptor-mediated glucose uptake in rat skeletal muscle cells. Br J Pharmacol, 147 (4): 446-54. [PMID:16415914]

120. Pani B, Ahn S, Rambarat PK, Vege S, Kahsai AW, Liu A, Valan BN, Staus DP, Costa T, Lefkowitz RJ. (2021) Unique Positive Cooperativity Between the β-Arrestin-Biased β-Blocker Carvedilol and a Small Molecule Positive Allosteric Modulator of the β2-Adrenergic Receptor. Mol Pharmacol, 100 (5): 513-525. [PMID:34580163]

121. Potter DE. (1981) Adrenergic pharmacology of aqueous humor dynamics. Pharmacol Rev, 33 (3): 133-53. [PMID:7323134]

122. Procopiou PA, Barrett VJ, Bevan NJ, Biggadike K, Box PC, Butchers PR, Coe DM, Conroy R, Emmons A, Ford AJ et al.. (2010) Synthesis and structure-activity relationships of long-acting beta2 adrenergic receptor agonists incorporating metabolic inactivation: an antedrug approach. J Med Chem, 53 (11): 4522-30. [PMID:20462258]

123. Puri R, Liew GY, Nicholls SJ, Nelson AJ, Leong DP, Carbone A, Copus B, Wong DT, Beltrame JF, Worthley SG et al.. (2012) Coronary β2-adrenoreceptors mediate endothelium-dependent vasoreactivity in humans: novel insights from an in vivo intravascular ultrasound study. Eur Heart J, 33 (4): 495-504. [PMID:21951627]

124. Pönicke K, Heinroth-Hoffmann I, Brodde OE. (2003) Role of beta 1- and beta 2-adrenoceptors in hypertrophic and apoptotic effects of noradrenaline and adrenaline in adult rat ventricular cardiomyocytes. Naunyn Schmiedebergs Arch Pharmacol, 367 (6): 592-9. [PMID:12750877]

125. Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VR, Sanishvili R, Fischetti RF et al.. (2007) Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature, 450 (7168): 383-7. [PMID:17952055]

126. Rasmussen SG, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D et al.. (2011) Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature, 477 (7366): 549-55. [PMID:21772288]

127. Ring AM, Manglik A, Kruse AC, Enos MD, Weis WI, Garcia KC, Kobilka BK. (2013) Adrenaline-activated structure of β2-adrenoceptor stabilized by an engineered nanobody. Nature, 502 (7472): 575-579. [PMID:24056936]

128. Rohrer DK, Chruscinski A, Schauble EH, Bernstein D, Kobilka BK. (1999) Cardiovascular and metabolic alterations in mice lacking both beta1- and beta2-adrenergic receptors. J Biol Chem, 274 (24): 16701-8. [PMID:10358009]

129. Rosenbaum DM, Zhang C, Lyons JA, Holl R, Aragao D, Arlow DH, Rasmussen SG, Choi HJ, Devree BT, Sunahara RK et al.. (2011) Structure and function of an irreversible agonist-β(2) adrenoceptor complex. Nature, 469 (7329): 236-40. [PMID:21228876]

130. Sabio M, Jones K, Topiol S. (2008) Use of the X-ray structure of the beta2-adrenergic receptor for drug discovery. Part 2: Identification of active compounds. Bioorg Med Chem Lett, 18 (20): 5391-5. [PMID:18829308]

131. Sato M, Dehvari N, Oberg AI, Dallner OS, Sandström AL, Olsen JM, Csikasz RI, Summers RJ, Hutchinson DS, Bengtsson T. (2014) Improving type 2 diabetes through a distinct adrenergic signaling pathway involving mTORC2 that mediates glucose uptake in skeletal muscle. Diabetes, 63 (12): 4115-29. [PMID:25008179]

132. Sato T, Baker J, Warne T, Brown GA, Leslie AG, Congreve M, Tate CG. (2015) Pharmacological Analysis and Structure Determination of 7-Methylcyanopindolol-Bound β1-Adrenergic Receptor. Mol Pharmacol, 88 (6): 1024-34. [PMID:26385885]

133. Sato Y, Kurose H, Isogaya M, Nagao T. (1996) Molecular characterization of pharmacological properties of T-0509 for beta-adrenoceptors. Eur J Pharmacol, 315 (3): 363-7. [PMID:8982677]

134. Seifert R, Lee TW, Lam VT, Kobilka BK. (1998) Reconstitution of beta2-adrenoceptor-GTP-binding-protein interaction in Sf9 cells--high coupling efficiency in a beta2-adrenoceptor-G(s alpha) fusion protein. Eur J Biochem, 255 (2): 369-82. [PMID:9716378]

135. Sharif NA, Xu SX, Crider JY, McLaughlin M, Davis TL. (2001) Levobetaxolol (Betaxon) and other beta-adrenergic antagonists: preclinical pharmacology, IOP-lowering activity and sites of action in human eyes. J Ocul Pharmacol Ther, 17 (4): 305-17. [PMID:11572462]

136. Song Y, Xu C, Liu J, Li Y, Wang H, Shan D, Wainer IW, Hu X, Zhang Y, Woo AY et al.. (2021) Heterodimerization With 5-HT2BR Is Indispensable for β2AR-Mediated Cardioprotection. Circ Res, 128 (2): 262-277. [PMID:33208036]

137. Soriano-Ursúa MA, McNaught-Flores DA, Nieto-Alamilla G, Segura-Cabrera A, Correa-Basurto J, Arias-Montaño JA, Trujillo-Ferrara JG. (2012) Cell-based and in-silico studies on the high intrinsic activity of two boron-containing salbutamol derivatives at the human β₂-adrenoceptor. Bioorg Med Chem, 20 (2): 933-41. [PMID:22182578]

138. Soriano-Ursúa MA, Valencia-Hernández I, Arellano-Mendoza MG, Correa-Basurto J, Trujillo-Ferrara JG. (2009) Synthesis, pharmacological and in silico evaluation of 1-(4-di-hydroxy-3,5-dioxa-4-borabicyclo[4.4.0]deca-7,9,11-trien-9-yl)-2-(tert-butylamino)ethanol, a compound designed to act as a beta2 adrenoceptor agonist. Eur J Med Chem, 44 (7): 2840-6. [PMID:19168263]

139. Stiles GL, Caron MG, Lefkowitz RJ. (1984) Beta-adrenergic receptors: biochemical mechanisms of physiological regulation. Physiol Rev, 64 (2): 661-743. [PMID:6143332]

140. Summers RJ, Molnaar P, Russell F, Elnatan J, Jones CR, Buxton BF, Chang V, Hambley J. (1989) Coexistence and localization of beta 1- and beta 2-adrenoceptors in the human heart. Eur Heart J, 10 Suppl B: 11-21. [PMID:2553407]

141. Susec M, Sencanski M, Glisic S, Veljkovic N, Pedersen C, Drinovec L, Stojan J, Nøhr J, Vrecl M. (2019) Functional characterization of β2-adrenergic and insulin receptor heteromers. Neuropharmacology, 152: 78-89. [PMID:30707913]

142. Swaminath G, Lee TW, Kobilka B. (2003) Identification of an allosteric binding site for Zn2+ on the beta2 adrenergic receptor. J Biol Chem, 278 (1): 352-6. [PMID:12409304]

143. Swaminath G, Steenhuis J, Kobilka B, Lee TW. (2002) Allosteric modulation of beta2-adrenergic receptor by Zn(2+). Mol Pharmacol, 61 (1): 65-72. [PMID:11752207]

144. Sykes DA, Charlton SJ. (2012) Slow receptor dissociation is not a key factor in the duration of action of inhaled long-acting β2-adrenoceptor agonists. Br J Pharmacol, 165 (8): 2672-83. [PMID:21883146]

145. Takasu T, Ukai M, Sato S, Matsui T, Nagase I, Maruyama T, Sasamata M, Miyata K, Uchida H, Yamaguchi O. (2007) Effect of (R)-2-(2-aminothiazol-4-yl)-4'-{2-[(2-hydroxy-2-phenylethyl)amino]ethyl} acetanilide (YM178), a novel selective beta3-adrenoceptor agonist, on bladder function. J Pharmacol Exp Ther, 321 (2): 642-7. [PMID:17293563]

146. Tanner MA, Maitz CA, Grisanti LA. (2021) Immune cell β2-adrenergic receptors contribute to the development of heart failure. Am J Physiol Heart Circ Physiol, 321 (4): H633-H649. [PMID:34415184]

147. Thomsen M, Nordestgaard BG, Sethi AA, Tybjærg-Hansen A, Dahl M. (2012) β2-adrenergic receptor polymorphisms, asthma and COPD: two large population-based studies. Eur Respir J, 39 (3): 558-66. [PMID:22075484]

148. Tsuchihashi H, Nakashima Y, Kinami J, Nagatomo T. (1990) Characteristics of 125I-iodocyanopindolol binding to beta-adrenergic and serotonin-1B receptors of rat brain: selectivity of beta-adrenergic agents. Jpn J Pharmacol, 52 (2): 195-200. [PMID:1968985]

149. Turki J, Lorenz JN, Green SA, Donnelly ET, Jacinto M, Liggett SB. (1996) Myocardial signaling defects and impaired cardiac function of a human beta 2-adrenergic receptor polymorphism expressed in transgenic mice. Proc Natl Acad Sci USA, 93 (19): 10483-8. [PMID:8816827]

150. Turki J, Pak J, Green SA, Martin RJ, Liggett SB. (1995) Genetic polymorphisms of the beta 2-adrenergic receptor in nocturnal and nonnocturnal asthma. Evidence that Gly16 correlates with the nocturnal phenotype. J Clin Invest, 95 (4): 1635-41. [PMID:7706471]

151. Uberti MA, Hague C, Oller H, Minneman KP, Hall RA. (2005) Heterodimerization with beta2-adrenergic receptors promotes surface expression and functional activity of alpha1D-adrenergic receptors. J Pharmacol Exp Ther, 313 (1): 16-23. [PMID:15615865]

152. Uehling DE, Shearer BG, Donaldson KH, Chao EY, Deaton DN, Adkison KK, Brown KK, Cariello NF, Faison WL, Lancaster ME et al.. (2006) Biarylaniline phenethanolamines as potent and selective beta3 adrenergic receptor agonists. J Med Chem, 49 (9): 2758-71. [PMID:16640337]

153. Vargas Pelaez AF, Gao Z, Ahmad TA, Leuenberger UA, Proctor DN, Maman SR, Muller MD. (2016) Effect of adrenergic agonists on coronary blood flow: a laboratory study in healthy volunteers. Physiol Rep, 4 (10). [PMID:27225628]

154. Vedel L, Bräuner-Osborne H, Mathiesen JM. (2015) A cAMP Biosensor-Based High-Throughput Screening Assay for Identification of Gs-Coupled GPCR Ligands and Phosphodiesterase Inhibitors. J Biomol Screen, 20 (7): 849-57. [PMID:25851033]

155. Wacker D, Fenalti G, Brown MA, Katritch V, Abagyan R, Cherezov V, Stevens RC. (2010) Conserved binding mode of human beta2 adrenergic receptor inverse agonists and antagonist revealed by X-ray crystallography. J Am Chem Soc, 132 (33): 11443-5. [PMID:20669948]

156. Weichert D, Kruse AC, Manglik A, Hiller C, Zhang C, Hübner H, Kobilka BK, Gmeiner P. (2014) Covalent agonists for studying G protein-coupled receptor activation. Proc Natl Acad Sci U S A, 111 (29): 10744-8. [PMID:25006259]

157. Wendell SG, Fan H, Zhang C. (2020) G Protein-Coupled Receptors in Asthma Therapy: Pharmacology and Drug Action. Pharmacol Rev, 72 (1): 1-49. [PMID:31767622]

158. Wenzel-Seifert K, Liu HY, Seifert R. (2002) Similarities and differences in the coupling of human beta1- and beta2-adrenoceptors to Gs(alpha) splice variants. Biochem Pharmacol, 64 (1): 9-20. [PMID:12106601]

159. Werner C, Müller N, Müller UA. (2019) Agonistic autoantibodies against B2-adrenergic receptors correlating with macrovascular disease in longstanding diabetes type 2. Acta Diabetol, 56 (6): 659-665. [PMID:30770998]

160. Wisler JW, DeWire SM, Whalen EJ, Violin JD, Drake MT, Ahn S, Shenoy SK, Lefkowitz RJ. (2007) A unique mechanism of beta-blocker action: carvedilol stimulates beta-arrestin signaling. Proc Natl Acad Sci U S A, 104 (42): 16657-62. [PMID:17925438]

161. Woo AY, Song Y, Xiao RP, Zhu W. (2015) Biased β2-adrenoceptor signalling in heart failure: pathophysiology and drug discovery. Br J Pharmacol, 172 (23): 5444-56. [PMID:25298054]

162. Wrzal PK, Devost D, Pétrin D, Goupil E, Iorio-Morin C, Laporte SA, Zingg HH, Hébert TE. (2012) Allosteric interactions between the oxytocin receptor and the β2-adrenergic receptor in the modulation of ERK1/2 activation are mediated by heterodimerization. Cell Signal, 24 (1): 342-50. [PMID:21963428]

163. Wrzal PK, Goupil E, Laporte SA, Hébert TE, Zingg HH. (2012) Functional interactions between the oxytocin receptor and the β2-adrenergic receptor: implications for ERK1/2 activation in human myometrial cells. Cell Signal, 24 (1): 333-41. [PMID:21964067]

164. Yatani A, Tajima Y, Green SA. (1999) Coupling of beta-adrenergic receptors to cardiac L-type Ca2+ channels: preferential coupling of the beta1 versus beta2 receptor subtype and evidence for PKA-independent activation of the channel. Cell Signal, 11 (5): 337-42. [PMID:10376806]

165. Zhu WZ, Chakir K, Zhang S, Yang D, Lavoie C, Bouvier M, Hébert TE, Lakatta EG, Cheng H, Xiao RP. (2005) Heterodimerization of beta1- and beta2-adrenergic receptor subtypes optimizes beta-adrenergic modulation of cardiac contractility. Circ Res, 97 (3): 244-51. [PMID:16002745]

166. Zuurhout MJ, Vijverberg SJ, Raaijmakers JA, Koenderman L, Postma DS, Koppelman GH, Maitland-van der Zee AH. (2013) Arg16 ADRB2 genotype increases the risk of asthma exacerbation in children with a reported use of long-acting β2-agonists: results of the PACMAN cohort. Pharmacogenomics, 14 (16): 1965-71. [PMID:24279851]

Contributors

Show »

How to cite this page