Top ▲

α2A-adrenoceptor

Click here for help

Target not currently curated in GtoImmuPdb

Target id: 25

Nomenclature: α2A-adrenoceptor

Family: Adrenoceptors

Gene and Protein Information Click here for help
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 465 10q25.2 ADRA2A adrenoceptor alpha 2A 38
Mouse 7 465 19 49.04 cM Adra2a adrenergic receptor, alpha 2a 44
Rat 7 465 1q55 Adra2a adrenoceptor alpha 2A 40
Previous and Unofficial Names Click here for help
α2D | ADRA2 | ADRA2R | Adrenergic alpha 2A receptor | Adra-2 | Adra-2a | alpha2A | alpha2A-adrenergic receptor | alpha2A-AR | adrenergic receptor
Database Links Click here for help
Specialist databases
GPCRdb ada2a_human (Hs), ada2a_mouse (Mm), ada2a_rat (Rn)
Other databases
Alphafold
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Selected 3D Structures Click here for help
Image of receptor 3D structure from RCSB PDB
Description:  Crystal structures of the alpha2A adrenergic receptor in complex with an antagonist RSC.
PDB Id:  6KUX
Ligand:  RS79948
Resolution:  2.7Å
Species:  Human
References:  11
Natural/Endogenous Ligands Click here for help
(-)-adrenaline
(-)-noradrenaline
Comments: Adrenaline exhibits similar potency, affinity and efficacy to noradrenaline.

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[3H]brimonidine (UK14304) Small molecule or natural product Ligand is labelled Ligand is radioactive Ligand has a PDB structure Hs Agonist 9.1 pKd 53
pKd 9.1 [53]
[3H]clonidine Small molecule or natural product Ligand is labelled Ligand is radioactive Ligand has a PDB structure Rn Partial agonist 8.8 pKd 70
pKd 8.8 [70]
[125I]p-iodoclonidine Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Partial agonist 8.8 pKd 60
pKd 8.8 [60]
[3H]clonidine Small molecule or natural product Ligand is labelled Ligand is radioactive Ligand has a PDB structure Hs Partial agonist 7.6 pKd 68
pKd 7.6 [68]
dexmedetomidine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Partial agonist 7.6 – 9.6 pKi 33,45,57,59,62
pKi 7.6 – 9.6 [33,45,57,59,62]
apraclonidine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Agonist 8.5 pKi 52
pKi 8.5 (Ki 2.9x10-9 M) [52]
lofexidine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Agonist 8.4 pKi 15
pKi 8.4 (Ki 4.36x10-9 M) [15]
Description: Calculated from [3H]RS-79948-197 radioligand competition binding to membrane preparations from CHO cells expressing human α2A-AR.
oxymetazoline Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Partial agonist 7.3 – 8.6 pKi 33,45,62,73
pKi 7.3 – 8.6 [33,45,62,73]
clonidine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Agonist 6.7 – 9.2 pKi 33,57,59,62
pKi 6.7 – 9.2 [33,57,59,62]
xylometazoline Small molecule or natural product Approved drug Click here for species-specific activity table Hs Partial agonist 7.6 pKi 62
pKi 7.6 [62]
brimonidine (UK14304) Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Immunopharmacology Ligand Hs Full agonist 6.4 – 8.7 pKi 33,45,57,59,62
pKi 6.4 – 8.7 [33,45,57,59,62]
guanabenz Small molecule or natural product Approved drug Click here for species-specific activity table Hs Agonist 7.0 – 7.7 pKi 33,62
pKi 7.0 – 7.7 [33,62]
pergolide Small molecule or natural product Approved drug Click here for species-specific activity table Hs Partial agonist 7.3 pKi 49
pKi 7.3 [49]
naphazoline Small molecule or natural product Approved drug Click here for species-specific activity table Hs Partial agonist 7.0 pKi 62
pKi 7.0 [62]
guanfacine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Partial agonist 6.6 – 7.3 pKi 33,46,62
pKi 6.6 – 7.3 [33,46,62]
apomorphine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Partial agonist 6.9 pKi 49
pKi 6.9 [49]
tizanidine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Agonist 6.0 pKi 62
pKi 6.0 [62]
(-)-adrenaline Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Immunopharmacology Ligand Hs Full agonist 3.7 – 7.4 pKi 33,59,62
pKi 3.7 – 7.4 [33,59,62]
(-)-noradrenaline Small molecule or natural product Approved drug Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Hs Full agonist 3.6 – 7.4 pKi 33,59,62
pKi 3.6 – 7.4 [33,59,62]
xylazine Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 4.9 – 5.7 pKi 33,62
pKi 4.9 – 5.7 [33,62]
moxonidine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Agonist 5.0 pKi 62
pKi 5.0 [62]
brimonidine (UK14304) Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Immunopharmacology Ligand Hs Agonist 9.1 pEC50 62
pEC50 9.1 [62]
Description: increased ERK1/2 phosphorylation
guanabenz Small molecule or natural product Approved drug Click here for species-specific activity table Hs Agonist 8.3 – 9.1 pEC50 33,62
pEC50 9.1 [62]
Description: increased ERK1/2 phosphorylation
pEC50 8.3 [33]
Description: GTPγs binding
dexmedetomidine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Agonist 7.6 – 9.5 pEC50 33,62
pEC50 9.5 [62]
Description: increased ERK1/2 phosphorylation
pEC50 8.5 [33]
pEC50 7.6 [62]
Description: increased cAMP generation
guanfacine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Agonist 6.5 – 9.0 pEC50 33,62
pEC50 9.0 [62]
Description: increased ERK1/2 phosphorylation
pEC50 7.3 [33]
Description: GTPγs binding
pEC50 6.5 [62]
Description: increased cAMP generation
clonidine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Agonist 6.4 – 9.0 pEC50 33,62
pEC50 9.0 [62]
Description: increased ERK1/2 phosphorylation
pEC50 7.6 [33]
Description: GTPγs binding
pEC50 6.4 [62]
Description: increased cAMP generation
moxonidine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Agonist 5.8 – 8.5 pEC50 62
pEC50 8.5 [62]
Description: increased ERK1/2 phosphorylation
pEC50 5.8 [62]
Description: increased cAMP generation
phentolamine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Agonist 7.1 pEC50 62
pEC50 7.1 [62]
Description: increased cAMP generation
tizanidine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Agonist 5.8 – 8.4 pEC50 62
pEC50 8.4 [62]
Description: increased ERK1/2 phosphorylation
pEC50 5.8 [62]
Description: increased cAMP generation
(-)-adrenaline Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Immunopharmacology Ligand Hs Full agonist 5.5 – 8.0 pEC50 33,62
pEC50 8.0 [62]
Description: increased ERK1/2 phosphorylation
pEC50 6.8 [33]
Description: GTPγs binding
pEC50 5.5 [62]
Description: increased cAMP generation
(-)-noradrenaline Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 5.3 – 7.7 pEC50 33,62
pEC50 7.7 [62]
Description: increased ERK1/2 phosphorylation
pEC50 6.7 [33]
Description: GTPγs binding
pEC50 5.3 [62]
Description: increased cAMP generation
xylazine Small molecule or natural product Click here for species-specific activity table Hs Agonist 5.1 – 7.5 pEC50 33,62
pEC50 7.5 [62]
Description: increased ERK1/2 phosphorylation
pEC50 5.7 [33]
Description: GTPγs binding
pEC50 5.1 [62]
Description: increased cAMP generation
dexmedetomidine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Agonist 9.3 pIC50 62
pIC50 9.3 [62]
Description: inhibition of forskolin stimulated cAMP generation
brimonidine (UK14304) Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Immunopharmacology Ligand Hs Agonist 8.9 pIC50 62
pIC50 8.9 [62]
Description: inhibition of forskolin stimulated cAMP generation
oxymetazoline Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Partial agonist 8.4 pIC50 62
pIC50 8.4 [62]
Description: inhibition of forskolin stimulated cAMP generation
clonidine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Agonist 8.2 pIC50 62
pIC50 8.2 [62]
Description: inhibition of forskolin stimulated cAMP generation
xylometazoline Small molecule or natural product Approved drug Click here for species-specific activity table Hs Partial agonist 8.1 pIC50 62
pIC50 8.1 [62]
Description: inhibition of forskolin stimulated cAMP generation
guanfacine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Agonist 8.0 pIC50 62
pIC50 8.0 [62]
Description: inhibition of forskolin stimulated cAMP generation
guanabenz Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Agonist 7.4 – 8.4 pIC50 4,62
pIC50 7.4 – 8.4 [4,62]
Description: inhibition of forskolin stimulated cAMP generation
pIC50 7.4 (IC50 4.1x10-8 M) [4,62]
naphazoline Small molecule or natural product Approved drug Click here for species-specific activity table Hs Partial agonist 7.8 pIC50 62
pIC50 7.8 [62]
Description: inhibition of forskolin stimulated cAMP generation
tizanidine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Agonist 7.6 pIC50 62
pIC50 7.6 [62]
Description: inhibition of forskolin stimulated cAMP generation
moxonidine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Agonist 7.5 pIC50 62
pIC50 7.5 [62]
Description: inhibition of forskolin stimulated cAMP generation
(-)-noradrenaline Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 6.6 pIC50 62
pIC50 6.6 [62]
Description: inhibition of forskolin stimulated cAMP generation
(-)-adrenaline Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Immunopharmacology Ligand Hs Full agonist 6.5 pIC50 62
pIC50 6.5 [62]
Description: inhibition of forskolin stimulated cAMP generation
xylazine Small molecule or natural product Click here for species-specific activity table Hs Agonist 6.5 pIC50 62
pIC50 6.5 [62]
Description: inhibition of forskolin stimulated cAMP generation
View species-specific agonist tables
Agonist Comments
[3H]UK4,304 binds to the α2A receptor of human platelet membranes with high affinity (pKd 9.1) [53]. [125I]p-iodoclonidine binds to the human α2A receptor with a pKd of 8.8 [60]. The species ortholog of the human α2A ARs (α2D) found in the rat, mouse and cow has significantly different antagonist pharmacology, but the agonist pharmacology appears to be similar. Many of the compounds listed as agonists will behave as full or partial agonists depending on the system in which they are studied and will tend towards full agonism in recombinant systems with high receptor expression. Moxonidine is marketed as a selective imidazoline I1 receptor agonist but also has significant activity at α2-AR. Clonidine is used to treat high blood pressure, guanfacine for ADHD and tizanidine to relieve muscle spasticity. Apraclonidine [52] and bromonidine are used in eye drops to relieve glaucoma. A number of anti-Parkinsonian drugs such as lisuride, roxindole and terguride have high potency competing for α2-AR binding [49]. Dexmedetomidine (stereoisomer of medetomidine) and xylazine are used for their hypnotic, anxiolytic and analgesic properties as pre-operatives prior to surgery but they may also be used to control agitation associated with schizophrenia or bipolar disorder. Xylazine has recently emerged in the North American illegal drug markets as a common admixture with synthetic opioids particularly fentanyl and is associated with a marked increase in the number of fatalities associated with drug overdose. While opioid antagonists such as naloxone can rapidly reverse the effects of fentanyl, they do not counteract the sedation, bradycardia and hypotension due to xylazine. Although the α2-AR antagonist atipamezole is widely used to reverse the effects of xylazine in veterinary medicine this role has yet to be established in the clinic. The approved drug oxymetazoline has been mapped to the primary targets α1A and α2A ARs as these have comparably the highest affinity interaction with the drug. This does not preclude clinically relevant activity at other adrenoceptors. Guanabenz order of affinity is α2A-AR>α2B-AR>α2C-AR [4].
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[3H]rauwolscine Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Antagonist 8.6 – 9.5 pKd 7,13,61
pKd 8.6 – 9.5 [7,13,61]
[3H]MK-912 Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Antagonist 8.9 pKd 73
pKd 8.9 (Kd 1.25x10-9 M) [73]
[3H]RX821002 Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Antagonist 8.3 – 9.5 pKd 13-14,61
pKd 8.3 – 9.5 [13-14,61]
lisuride Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 9.0 – 10.3 pKi 49,61
pKi 9.0 – 10.3 [49,61]
terguride Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 9.5 pKi 49
pKi 9.5 [49]
RS79948 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 8.9 pKi 61
pKi 8.9 [61]
yohimbine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 8.4 – 9.2 pKi 7,14,61,73
pKi 8.4 – 9.2 [7,14,61,73]
MK-912 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.7 pKi 61
pKi 8.7 [61]
RX821002 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.1 – 9.2 pKi 61,73
pKi 8.1 – 9.2 [61,73]
atipamezole Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.5 pKi 61
pKi 8.5 [61]
rauwolscine Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.4 pKi 73
pKi 8.4 [73]
muscarinic toxin 3 Peptide Click here for species-specific activity table Hs Antagonist 8.3 pKi 9
pKi 8.3 (Ki 5x10-9 M) [9]
WB 4101 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.6 – 8.9 pKi 7,14,61
pKi 7.6 – 8.9 [7,14,61]
bromocriptine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 8.0 – 8.3 pKi 49,62
pKi 8.0 – 8.3 [49,62]
BRL 44408 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.2 – 8.8 pKi 61,73,76
pKi 7.2 – 8.8 [61,73,76]
cabergoline Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 7.9 pKi 49
pKi 7.9 [49]
phentolamine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 7.3 – 8.4 pKi 7,14,61
pKi 7.3 – 8.4 [7,14,61]
risperidone Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 7.3 pKi 61
pKi 7.3 [61]
idazoxan Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.2 pKi 61
pKi 7.2 [61]
spiroxatrine Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.0 – 7.3 pKi 61,73
pKi 7.0 – 7.3 [61,73]
piribedil Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.1 pKi 49
pKi 7.1 [49]
lurasidone Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 6.7 – 7.4 pKi 29,61
pKi 6.7 – 7.4 [29,61]
mirtazapine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 6.8 – 7.1 pKi 21,61
pKi 6.8 – 7.1 [21,61]
Description: Inhibition of [3H]rauwolscine binding.
tolazoline Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 6.7 pKi 33
pKi 6.7 (Ki 1.99x10-7 M) [33]
Description: Inhibition of agonist-stimulated [35S]GTPγS binding
ARC-239 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 5.5 – 6.8 pKi 7,14,61
pKi 5.5 – 6.8 [7,14,61]
chlorpromazine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 5.5 – 6.6 pKi 7,14,61
pKi 5.5 – 6.6 [7,14,61]
prazosin Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 5.3 – 6.5 pKi 7,14,61
pKi 5.3 – 6.5 [7,14,61]
atropine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 4.8 pKi 9
pKi 4.8 (Ki 1.4x10-5 M) [9]
mirtazapine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 7.1 pIC50 36
pIC50 7.1 (IC50 8.511x10-8 M) [36]
Antagonist Comments
The species orthologs of the human α2A receptors (α2D) found in the rat, mouse, cow and chicken have significantly different antagonist pharmacology.
For example, [3H]rauwolscine has a much lower affinity for the α2D as compared to the α2A, whereas [3H]RX821002 has higher affinity [13]. Rauwolscine is a stereoisomer of yohimbine. Other agents that have a five-fold or greater lower affinity for the α2D include WB4101, oxymetazoline, SKF104078, raubasine, chlorpromazine [55]) and BRL44408 [31]. BRL44408 displays some selectivity for α2A-AR and MK912 for the α2C-AR [61]. Bromocriptine can act as a partial agonist in some α2-AR assay systems. Many antidepressants and antipsychotics have significant activity at α2-AR subtypes [61]. In binding assays, affinities are influenced by buffer conditions [13].
Allosteric Modulators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
5-(N,N-hexamethylene)-amiloride Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Negative 2.5 pKd 41,75
pKd 2.5 [41,75]
ethylisopropylamiloride Small molecule or natural product Click here for species-specific activity table Hs Positive 1.8 pKd 75
pKd 1.8 [75]
C10 (homobivalent 4-aminoquinoline) Small molecule or natural product Hs Positive 7.5 pKi 42
pKi 7.5 [42]
Immuno Process Associations
Immuno Process:  Cytokine production & signalling
Immuno Process:  Inflammation
Primary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gi/Go family Potassium channel
Calcium channel
Phospholipase A2 stimulation
Comments:  Inhibition of voltage dependent Ca2+ channels
Augmentation of inwardly rectifying K+ channels.
References:  8,34,43,62,67
Secondary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gs family
Comments:  The physiological significance of this mechanism is unknown. Although this seems to be a contradiction of the primary transduction mechanism, some α2-AR agonists activate adenylyl cyclase at concentrations higher than those that inhibit adenylyl cyclase - hence biphasic responses can be observed.
References:  17,62,67
Tissue Distribution Click here for help
Brain > spleen > kidney > aorta = lung = skeletal muscle > heart = liver.
Species:  Human
Technique:  RNAse protection of mRNA.
References:  18,58
Brain: mainly postsynaptic in prefrontal cortex.
Species:  Human
Technique:  Subcellular fractionation and Western blot.
References:  19
Inferior colliculus.
Species:  Mouse
Technique:  In situ hybridisation.
References:  74
Brain > spleen = kidney = aorta > lung = skeletal muscle.
Absent in heart and liver.
Species:  Rat
Technique:  RNAse protection of mRNA.
References:  6,22
Localization of α2A-AR in rat central nervous system.
Species:  Rat
Technique:  Immunohistochemistry.
References:  63,72
α2A-AR mRNA labeling in cerebral cortex, hypothalamic paraventricular nucleus, reticular thalamic nucleus, pontine nuclei, locus coeruleus, vestibular nuclei, trapezoid nuclei, deep cerebellar nuclei, nucleus tractus solitarii, ventrolateral medullary reticular formation, and intermediolateral cell column of thoracic spinal cord.
Species:  Rat
Technique:  In situ hybridisation.
References:  54,66
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays Click here for help
Measurement of the inhibition of adenylate cyclase activity using intact cell preparations (either native or transfected) using the [3H]adenine prelabeling technique to measure cAMP accumulation.
Species:  Human
Tissue:  HT29 cells.
Response measured:  Inhibition of cAMP accumulation.
References:  8
Inhibition of adenylate cyclase.
Species:  Human
Tissue:  HEK293 cells.
Response measured:  Optimised FRET based Epac biosensors.
References:  69
The signalling and selectivity of α-AR agonists for the human α2A, α2B and α2C-ARs and comparison with human α1 and β-ARs.
Species:  Human
Tissue:  CHO-K1 cell stably expressing α2A-AR.
Response measured:  Whole cell [3H]rauwolscine binding, CRE-SPAP gene transcription, [3H]cAMP accumulation, ERK1/2 phosphorylation.
References:  62
The affinity and selectivity of α-AR antagonists, antidepressants and antipsychotics for the human α2A-, α2B-, and α2C-ARs and comparison with human α1- and β-ARs.
Species:  Human
Tissue:  CHO-K1 cell stably expressing α2A-AR .
Response measured:  Whole cell [3H]rauwolscine binding.
References:  61
Segments of saphenous vein are incubated with [3H]noradrenaline and subsequently superfused with physiological salt solution containing uptake 1 and uptake 2 blockers. The antagonists potencies in facilitating the electrically (2 Hz) evoked tritium overflow is determined.
Species:  Human
Tissue:  Saphenous vein.
Response measured:  Electrically evoked tritium overflow.
References:  16,51
Heterodimer formation between α2A-adrenoceptors and μ opioid receptors.
Species:  Rat
Tissue:  NTS neurons.
Response measured:  Immunofluorescence, co-immunoprecipitation, proximity ligation assays.
References:  71
Physiological Functions Click here for help
Hypotension.
Species:  Mouse
Tissue:  CNS.
References:  35,47
Sedation.
Species:  Mouse
Tissue:  CNS.
References:  27,35,39
Hypothermia.
Species:  Mouse
Tissue:  CNS.
References:  27,35
Anesthetic-sparing effect.
Species:  Mouse
Tissue:  CNS.
References:  35,39
Presynaptic inhibition of noradrenaline release.
Species:  Mouse
Tissue:  Vasa deferens, heart.
References:  2,23,35
Analgesia and sedation.
Species:  Mouse
Tissue:  Brain.
References:  27,35,37,39
Attenuation of insulin release.
Species:  Mouse
Tissue:  Pancreatic islets.
References:  30
Inflammation.
Species:  Mouse
Tissue:  Cytokines in blood, hippocampus.
References:  48
Gut inflammation.
Species:  Mouse
Tissue:  Colon – inflammation enhanced by α2-adrenoceptor agonists and reduced by α2A-selective antagonist.
References:  77
Basal ganglia transmission and motor function.
Species:  Rat
Tissue:  Locus coeruleus α2A-adrenoceptor levels decreased in 6-OHDA lesioned rats restored by L-DOPA treatment.
References:  1
Prefontal cortex cognitive disorders.
Species:  Human
Tissue:  Prefrontal cortex.
References:  3
Protective role of prejunctional α2A-adrenoceptors in hypertensive kidney disease.
Species:  Mouse
Tissue:  Kidney, blood pressure.
References:  25
Bone turnover and osteoporosis.
Species:  Human
Tissue:  Bone samples and osteosarcoma HOS cells.
References:  50
Central cardiovascular regulation – hypotension and bradycardia.
Species:  Human
Tissue:  CNS.
References:  64
Sedation and analgesia.
Species:  Human
Tissue:  CNS.
References:  64
nhibition of insulin release from the pancreas.
Species:  Human
Tissue:  Pancreas.
References:  64
Suppression of opiate withdrawal.
Species:  Human
Tissue:  CNS.
References:  26
Skeletal muscle relaxation.
Species:  Human
Tissue:  Skeletal muscle.
References:  5,20,28
Lowering of intraocular pressure.
Species:  Human
Tissue:  Eye.
References:  32
Inhibition of neurotransmitter release.
N.B. in mammals, including humans.
Species:  Human
Tissue:  CNS and peripheral nervous system.
References:  64
Physiological Consequences of Altering Gene Expression Click here for help
α2A-adrenoceptor knockout mice exhibit disruption of presynaptic inhibition of noradrenaline release at high stimulation frequencies. This study showed that the α2A receptor is the principal autoreceptor in the presynaptic feedback loop regulating noradrenaline release. However, another α2 autoreceptor is also present.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  23
The hypotensive effects of α2A agonists are abolished in α2A-adrenoceptor knockout mice.
Species:  Mouse
Tissue: 
Technique:  Transgenesis.
References:  24
α2A-adrenoceptor knockout mice exhibit no amitriptyline-induced (a tricyclic antidepressant) or clonidine-induced analgesia. This study shows that the α2A-adrenoceptors are involved in the sedative effects of these drugs.
Species:  Mouse
Tissue: 
Technique:  Transgenesis.
References:  56
Blockade of α2A-adrenoceptors may be exploited to reduce visceral fat and to improve insulin secretion.
Species:  Mouse
Tissue: 
Technique:  Gene knockout.
References:  65
Prejunctional inhibitory α2A-adrenoceptors have a protective role in pathophysiologic conditions with an activated renin-angiotensin system, such as hypertensive kidney disease, and support the concept of sympatholytic therapy as a treatment.
Species:  Mouse
Tissue: 
Technique:  Gene knockout.
References:  25
α2A-adrenoceptor knockout mice show an increase in sympathetic activity, resting tachycardia, depletion of cardiac tissue noradrenaline concentration and down-regulation of cardiac β-adrenoceptors.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  2
α2A-adrenoceptor deficiency ameliorates lung injury by increasing noradrenaline concentrations in lung and inhibiting activation of alveolar macrophages.
Species:  Mouse
Tissue: 
Technique:  Transgenesis.
References:  12
α2A-ARs have both positive and negative modulatory effects on opioid antinociception.
Species:  Mouse
Tissue:  Spinal cord.
Technique:  Transgenesis.
References:  10
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Adra2atm1Bkk Adra2atm1Bkk/Adra2atm1Bkk
involves: 129S1/Sv * 129X1/SvJ
MGI:87934  MP:0002078 abnormal glucose homeostasis PMID: 17992256 
Adra2atm1Bkk|Adra2btm1Gsb|Adra2ctm1Gsb Adra2atm1Bkk/Adra2atm1Bkk,Adra2btm1Gsb/Adra2btm1Gsb,Adra2ctm1Gsb/Adra2ctm1Gsb
involves: 129S1/Sv * 129X1/SvJ * C57BL/6 * DBA/2J
MGI:87934  MGI:87935  MGI:87936  MP:0001712 abnormal placenta development PMID: 12068299 
Adra2atm1Bkk Adra2atm1Bkk/Adra2atm1Bkk
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:87934  MP:0005447 abnormal synaptic norepinephrine release PMID: 10647009 
Adra2atm1Bkk|Adra2ctm1Gsb Adra2atm1Bkk/Adra2atm1Bkk,Adra2ctm1Gsb/Adra2ctm1Gsb
involves: 129S1/Sv * 129X1/SvJ * C57BL/6 * DBA/2J
MGI:87934  MGI:87936  MP:0005447 abnormal synaptic norepinephrine release PMID: 10647009 
Adra2atm1Bkk Adra2atm1Bkk/Adra2atm1Bkk
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:87934  MP:0000230 abnormal systemic arterial blood pressure PMID: 10385696 
Adra2atm1Lel Adra2atm1Lel/Adra2atm1Lel
involves: 129S2/SvPas * C57BL/6
MGI:87934  MP:0000230 abnormal systemic arterial blood pressure PMID: 8670421 
Adra2atm1Bkk|Adra2btm1Gsb|Adra2ctm1Gsb Adra2atm1Bkk/Adra2atm1Bkk,Adra2btm1Gsb/Adra2btm1Gsb,Adra2ctm1Gsb/Adra2ctm1Gsb
involves: 129S1/Sv * 129X1/SvJ * C57BL/6 * DBA/2J
MGI:87934  MGI:87935  MGI:87936  MP:0001718 abnormal yolk sac morphology PMID: 12068299 
Adra2atm1Bkk|Adra2ctm1Gsb Adra2atm1Bkk/Adra2atm1Bkk,Adra2ctm1Gsb/Adra2ctm1Gsb
involves: 129S1/Sv * 129X1/SvJ * C57BL/6 * DBA/2J
MGI:87934  MGI:87936  MP:0001625 cardiac hypertrophy PMID: 10647009 
Adra2atm1Bkk|Adra2btm1Gsb|Adra2ctm1Gsb Adra2atm1Bkk/Adra2atm1Bkk,Adra2btm1Gsb/Adra2btm1Gsb,Adra2ctm1Gsb/Adra2ctm1Gsb
involves: 129S1/Sv * 129X1/SvJ * C57BL/6 * DBA/2J
MGI:87934  MGI:87935  MGI:87936  MP:0005333 decreased heart rate PMID: 12068299 
Adra2atm1Bkk|Adra2btm1Gsb|Adra2ctm1Gsb Adra2atm1Bkk/Adra2atm1Bkk,Adra2btm1Gsb/Adra2btm1Gsb,Adra2ctm1Gsb/Adra2ctm1Gsb
involves: 129S1/Sv * 129X1/SvJ * C57BL/6 * DBA/2J
MGI:87934  MGI:87935  MGI:87936  MP:0006207 embryonic lethality during organogenesis PMID: 12068299 
Adra2atm1Bkk Adra2atm1Bkk/Adra2atm1Bkk
involves: 129S1/Sv * 129X1/SvJ
MGI:87934  MP:0000189 hypoglycemia PMID: 17992256 
Adra2atm1Bkk Adra2atm1Bkk/Adra2atm1Bkk
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:87934  MP:0002626 increased heart rate PMID: 10385696 
Adra2atm1Qiwa Adra2atm1Qiwa/Adra2atm1Qiwa
B6.129-Adra2a
MGI:87934  MP:0002169 no abnormal phenotype detected PMID: 19276088 
General Comments
Receptors designated as α2A and α2D are species orthologues. Although these receptors are highly homologous, they have sufficiently different pharmacology to have been designated as separate subtypes in the literature. The α2A subtype is found in the human, pig and rabbit, whereas the α2D is found in the rat, mouse and cow.

References

Show »

1. Alachkar A, Brotchie JM, Jones OT. (2012) Changes in the mRNA levels of α2A and α2C adrenergic receptors in rat models of Parkinson's disease and L-DOPA-induced dyskinesia. J Mol Neurosci, 46 (1): 145-52. [PMID:21562737]

2. Altman JD, Trendelenburg AU, MacMillan L, Bernstein D, Limbird L, Starke K, Kobilka BK, Hein L. (1999) Abnormal regulation of the sympathetic nervous system in alpha2A-adrenergic receptor knockout mice. Mol Pharmacol, 56 (1): 154-61. [PMID:10385696]

3. Arnsten AFT. (2020) Guanfacine's mechanism of action in treating prefrontal cortical disorders: Successful translation across species. Neurobiol Learn Mem, 176: 107327. [PMID:33075480]

4. Auerbach SS, DrugMatrix® and ToxFX® Coordinator National Toxicology Program. National Toxicology Program: Dept of Health and Human Services. Accessed on 02/05/2014. Modified on 02/05/2014. DrugMatrix, https://ntp.niehs.nih.gov/drugmatrix/index.html

5. Bes A, Eyssette M, Pierrot-Deseilligny E, Rohmer F, Warter JM. (1988) A multi-centre, double-blind trial of tizanidine, a new antispastic agent, in spasticity associated with hemiplegia. Curr Med Res Opin, 10 (10): 709-18. [PMID:3286129]

6. Blaxall HS, Hass NA, Bylund DB. (1994) Expression of alpha 2-adrenergic receptor genes in rat tissues. Receptor, 4 (3): 191-9. [PMID:7812219]

7. Bylund DB, Blaxall HS, Iversen LJ, Caron MG, Lefkowitz RJ, Lomasney JW. (1992) Pharmacological characteristics of alpha 2-adrenergic receptors: comparison of pharmacologically defined subtypes with subtypes identified by molecular cloning. Mol Pharmacol, 42: 1-5. [PMID:1353247]

8. Bylund DB, Ray-Prenger C. (1989) Alpha-2A and alpha-2B adrenergic receptor subtypes: attenuation of cyclic AMP production in cell lines containing only one receptor subtype. J Pharmacol Exp Ther, 251 (2): 640-4. [PMID:2553931]

9. Carr BJ, Mihara K, Ramachandran R, Saifeddine M, Nathanson NM, Stell WK, Hollenberg MD. (2018) Myopia-Inhibiting Concentrations of Muscarinic Receptor Antagonists Block Activation of Alpha2A-Adrenoceptors In Vitro. Invest Ophthalmol Vis Sci, 59 (7): 2778-2791. [PMID:29860464]

10. Chabot-Doré AJ, Millecamps M, Naso L, Devost D, Trieu P, Piltonen M, Diatchenko L, Fairbanks CA, Wilcox GL, Hébert TE et al.. (2015) Dual allosteric modulation of opioid antinociceptive potency by α2A-adrenoceptors. Neuropharmacology, 99: 285-300. [PMID:26254859]

11. Chen X, Xu Y, Qu L, Wu L, Han GW, Guo Y, Wu Y, Zhou Q, Sun Q, Chu C et al.. (2019) Molecular Mechanism for Ligand Recognition and Subtype Selectivity of α2C Adrenergic Receptor. Cell Rep, 29 (10): 2936-2943.e4. [PMID:31801061]

12. Cong Z, Li D, Lv X, Yang C, Zhang Q, Wu C, Wang Z, Zhu X. (2020) α2A-adrenoceptor deficiency attenuates lipopolysaccharide-induced lung injury by increasing norepinephrine levels and inhibiting alveolar macrophage activation in acute respiratory distress syndrome. Clin Sci (Lond), 134 (14): 1957-1971. [PMID:32643759]

13. Deupree JD, Hinton KA, Cerutis DR, Bylund DB. (1996) Buffers differentially alter the binding of [3H]rauwolscine and [3H]RX821002 to the alpha-2 adrenergic receptor subtypes. J Pharmacol Exp Ther, 278 (3): 1215-27. [PMID:8819505]

14. Devedjian JC, Esclapez F, Denis-Pouxviel C, Paris H. (1994) Further characterization of human alpha 2-adrenoceptor subtypes: [3H]RX821002 binding and definition of additional selective drugs. Eur J Pharmacol, 252 (1): 43-9. [PMID:7908642]

15. Diamanti E, Del Bello F, Carbonara G, Carrieri A, Fracchiolla G, Giannella M, Mammoli V, Piergentili A, Pohjanoksa K, Quaglia W et al.. (2012) Might the observed α(2A)-adrenoreceptor agonism or antagonism of allyphenyline analogues be ascribed to different molecular conformations?. Bioorg Med Chem, 20 (6): 2082-90. [PMID:22341244]

16. Docherty JR. (1998) Subtypes of functional alpha1- and alpha2-adrenoceptors. Eur J Pharmacol, 361 (1): 1-15. [PMID:9851536]

17. Eason MG, Kurose H, Holt BD, Raymond JR, Liggett SB. (1992) Simultaneous coupling of alpha 2-adrenergic receptors to two G-proteins with opposing effects. Subtype-selective coupling of alpha 2C10, alpha 2C4, and alpha 2C2 adrenergic receptors to Gi and Gs. J Biol Chem, 267 (22): 15795-801. [PMID:1322406]

18. Eason MG, Liggett SB. (1993) Human alpha 2-adrenergic receptor subtype distribution: widespread and subtype-selective expression of alpha 2C10, alpha 2C4, and alpha 2C2 mRNA in multiple tissues. Mol Pharmacol, 44 (1): 70-5. [PMID:7688069]

19. Erdozain AM, Brocos-Mosquera I, Gabilondo AM, Meana JJ, Callado LF. (2019) Differential α2A- and α2C-adrenoceptor protein expression in presynaptic and postsynaptic density fractions of postmortem human prefrontal cortex. J Psychopharmacol, 33 (2): 244-249. [PMID:30255728]

20. Eyssette M, Rohmer F, Serratrice G, Warter JM, Boisson D. (1988) Multi-centre, double-blind trial of a novel antispastic agent, tizanidine, in spasticity associated with multiple sclerosis. Curr Med Res Opin, 10 (10): 699-708. [PMID:3286128]

21. Fernández J, Alonso JM, Andrés JI, Cid JM, Díaz A, Iturrino L, Gil P, Megens A, Sipido VK, Trabanco AA. (2005) Discovery of new tetracyclic tetrahydrofuran derivatives as potential broad-spectrum psychotropic agents. J Med Chem, 48 (6): 1709-12. [PMID:15771415]

22. Handy DE, Flordellis CS, Bogdanova NN, Bresnahan MR, Gavras H. (1993) Diverse tissue expression of rat alpha 2-adrenergic receptor genes. Hypertension, 21 (6 Pt 1): 861-5. [PMID:7684725]

23. Hein L, Altman JD, Kobilka BK. (1999) Two functionally distinct alpha2-adrenergic receptors regulate sympathetic neurotransmission. Nature, 402 (6758): 181-4. [PMID:10647009]

24. Hein L, Limbird LE, Eglen RM, Kobilka BK. (1999) Gene substitution/knockout to delineate the role of alpha 2-adrenoceptor subtypes in mediating central effects of catecholamines and imidazolines. Ann N Y Acad Sci, 881: 265-71. [PMID:10415924]

25. Hering L, Rahman M, Hoch H, Markó L, Yang G, Reil A, Yakoub M, Gupta V, Potthoff SA, Vonend O et al.. (2020) α2A-Adrenoceptors Modulate Renal Sympathetic Neurotransmission and Protect against Hypertensive Kidney Disease. J Am Soc Nephrol, 31 (4): 783-798. [PMID:32086277]

26. Hughes PL, Morse RM. (1985) Use of clonidine in a mixed-drug detoxification regimen: possibility of masking of clinical signs of sedative withdrawal. Mayo Clin Proc, 60 (1): 47-9. [PMID:2856945]

27. Hunter JC, Fontana DJ, Hedley LR, Jasper JR, Lewis R, Link RE, Secchi R, Sutton J, Eglen RM. (1997) Assessment of the role of alpha2-adrenoceptor subtypes in the antinociceptive, sedative and hypothermic action of dexmedetomidine in transgenic mice. Br J Pharmacol, 122 (7): 1339-44. [PMID:9421280]

28. Hutchinson DR. (1989) Modified release tizanidine: a review. J Int Med Res, 17 (6): 565-73. [PMID:2697626]

29. Ishibashi T, Horisawa T, Tokuda K, Ishiyama T, Ogasa M, Tagashira R, Matsumoto K, Nishikawa H, Ueda Y, Toma S et al.. (2010) Pharmacological profile of lurasidone, a novel antipsychotic agent with potent 5-hydroxytryptamine 7 (5-HT7) and 5-HT1A receptor activity. J Pharmacol Exp Ther, 334 (1): 171-81. [PMID:20404009]

30. Ito K, Dezaki K, Yoshida M, Yamada H, Miura R, Rita RS, Ookawara S, Tabei K, Kawakami M, Hara K et al.. (2017) Endogenous α2A-Adrenoceptor-Operated Sympathoadrenergic Tones Attenuate Insulin Secretion via cAMP/TRPM2 Signaling. Diabetes, 66 (3): 699-709. [PMID:28028077]

31. Jahnsen JA, Uhlén S. (2013) The C-terminal half of the α2C-adrenoceptor determines the receptor's membrane expression level and drug selectivity. Naunyn Schmiedebergs Arch Pharmacol, 386 (12): 1031-40. [PMID:23868076]

32. Jampel HD, Robin AL, Quigley HA, Pollack IP. (1988) Apraclonidine. A one-week dose-response study. Arch Ophthalmol, 106 (8): 1069-73. [PMID:3041944]

33. Jasper JR, Lesnick JD, Chang LK, Yamanishi SS, Chang TK, Hsu SA, Daunt DA, Bonhaus DW, Eglen RM. (1998) Ligand efficacy and potency at recombinant alpha2 adrenergic receptors: agonist-mediated [35S]GTPgammaS binding. Biochem Pharmacol, 55 (7): 1035-43. [PMID:9605427]

34. Jones SB, Halenda SP, Bylund DB. (1991) Alpha 2-adrenergic receptor stimulation of phospholipase A2 and of adenylate cyclase in transfected Chinese hamster ovary cells is mediated by different mechanisms. Mol Pharmacol, 39 (2): 239-45. [PMID:1847497]

35. Kable JW, Murrin LC, Bylund DB. (2000) In vivo gene modification elucidates subtype-specific functions of alpha(2)-adrenergic receptors. J Pharmacol Exp Ther, 293 (1): 1-7. [PMID:10734146]

36. Kennis LE, Bischoff FP, Mertens CJ, Love CJ, Van den Keybus FA, Pieters S, Braeken M, Megens AA, Leysen JE. (2000) New 2-substituted 1,2,3,4-tetrahydrobenzofuro[3,2-c]pyridine having highly active and potent central alpha 2-antagonistic activity as potential antidepressants. Bioorg Med Chem Lett, 10 (1): 71-4. [PMID:10636247]

37. Kitano T, Kobayashi T, Yamaguchi S, Otsuguro K. (2019) The α2A -adrenoceptor subtype plays a key role in the analgesic and sedative effects of xylazine. J Vet Pharmacol Ther, 42 (2): 243-247. [PMID:30417462]

38. Kobilka BK, Matsui H, Kobilka TS, Yang-Feng TL, Francke U, Caron MG, Lefkowitz RJ, Regan JW. (1987) Cloning, sequencing, and expression of the gene coding for the human platelet alpha 2-adrenergic receptor. Science, 238 (4827): 650-6. [PMID:2823383]

39. Lakhlani PP, MacMillan LB, Guo TZ, McCool BA, Lovinger DM, Maze M, Limbird LE. (1997) Substitution of a mutant alpha2a-adrenergic receptor via "hit and run" gene targeting reveals the role of this subtype in sedative, analgesic, and anesthetic-sparing responses in vivo. Proc Natl Acad Sci USA, 94 (18): 9950-5. [PMID:9275232]

40. Lanier SM, Downing S, Duzic E, Homcy CJ. (1991) Isolation of rat genomic clones encoding subtypes of the alpha 2-adrenergic receptor. Identification of a unique receptor subtype. J Biol Chem, 266 (16): 10470-8. [PMID:1645350]

41. Leppik RA, Lazareno S, Mynett A, Birdsall NJ. (1998) Characterization of the allosteric interactions between antagonists and amiloride analogues at the human alpha2A-adrenergic receptor. Mol Pharmacol, 53 (5): 916-25. [PMID:9584219]

42. Li Z, Li J, Liu L, Deng W, Liu Q, Liu R, Zhang W, He Z, Fan L, Yang Y et al.. (2020) Structural Insight into the Mechanism of 4-Aminoquinolines Selectivity for the alpha2A-Adrenoceptor. Drug Des Devel Ther, 14: 2585-2594. [PMID:32694911]

43. Limbird LE. (1988) Receptors linked to inhibition of adenylate cyclase: additional signaling mechanisms. FASEB J, 2 (11): 2686-95. [PMID:2840317]

44. Link R, Daunt D, Barsh G, Chruscinski A, Kobilka B. (1992) Cloning of two mouse genes encoding alpha 2-adrenergic receptor subtypes and identification of a single amino acid in the mouse alpha 2-C10 homolog responsible for an interspecies variation in antagonist binding. Mol Pharmacol, 42 (1): 16-27. [PMID:1353249]

45. MacDonald E, Kobilka BK, Scheinin M. (1997) Gene targeting--homing in on alpha 2-adrenoceptor-subtype function. Trends Pharmacol Sci, 18 (6): 211-9. [PMID:9227000]

46. MacLennan SJ, Luong LA, Jasper JR, To ZP, Eglen RM. (1997) Characterization of alpha 2-adrenoceptors mediating contraction of dog saphenous vein: identity with the human alpha 2A subtype. Br J Pharmacol, 121 (8): 1721-9. [PMID:9283709]

47. MacMillan LB, Hein L, Smith MS, Piascik MT, Limbird LE. (1996) Central hypotensive effects of the alpha2a-adrenergic receptor subtype. Science, 273 (5276): 801-3. [PMID:8670421]

48. Mei B, Li J, Zuo Z. (2021) Dexmedetomidine attenuates sepsis-associated inflammation and encephalopathy via central α2A adrenoceptor. Brain Behav Immun, 91: 296-314. [PMID:33039659]

49. Millan MJ, Maiofiss L, Cussac D, Audinot V, Boutin JA, Newman-Tancredi A. (2002) Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor. I. A multivariate analysis of the binding profiles of 14 drugs at 21 native and cloned human receptor subtypes. J Pharmacol Exp Ther, 303 (2): 791-804. [PMID:12388666]

50. Mlakar V, Jurkovic Mlakar S, Zupan J, Komadina R, Prezelj J, Marc J. (2015) ADRA2A is involved in neuro-endocrine regulation of bone resorption. J Cell Mol Med, 19 (7): 1520-9. [PMID:25818344]

51. Molderings GJ, Göthert M. (1995) Subtype determination of presynaptic alpha 2-autoreceptors in the rabbit pulmonary artery and human saphenous vein. Naunyn Schmiedebergs Arch Pharmacol, 352 (5): 483-90. [PMID:8751076]

52. Munk SA, Harcourt D, Ambrus G, Denys L, Gluchowski C, Burke JA, Kharlamb AB, Manlapaz CA, Padillo EU, Runde E et al.. (1996) Synthesis and evaluation of 2-[(5-methylbenz-1-ox-4-azin-6-yl)imino]imidazoline, a potent, peripherally acting alpha 2 adrenoceptor agonist. J Med Chem, 39 (18): 3533-8. [PMID:8784451]

53. Neubig RR, Gantzos RD, Brasier RS. (1985) Agonist and antagonist binding to alpha 2-adrenergic receptors in purified membranes from human platelets. Implications of receptor-inhibitory nucleotide-binding protein stoichiometry. Mol Pharmacol, 28 (5): 475-86. [PMID:2865672]

54. Nicholas AP, Pieribone V, Hökfelt T. (1993) Distributions of mRNAs for alpha-2 adrenergic receptor subtypes in rat brain: an in situ hybridization study. J Comp Neurol, 328 (4): 575-94. [PMID:8381444]

55. O'Rourke MF, Iversen LJ, Lomasney JW, Bylund DB. (1994) Species orthologs of the alpha-2A adrenergic receptor: the pharmacological properties of the bovine and rat receptors differ from the human and porcine receptors. J Pharmacol Exp Ther, 271 (2): 735-40. [PMID:7965790]

56. Ozdoğan UK, Lähdesmäki J, Mansikka H, Scheinin M. (2004) Loss of amitriptyline analgesia in alpha 2A-adrenoceptor deficient mice. Eur J Pharmacol, 485 (1-3): 193-6. [PMID:14757140]

57. Peltonen JM, Pihlavisto M, Scheinin M. (1998) Subtype-specific stimulation of [35S]GTPgammaS binding by recombinant alpha2-adrenoceptors. Eur J Pharmacol, 355 (2-3): 275-9. [PMID:9760042]

58. Perälä M, Hirvonen H, Kalimo H, Ala-Uotila S, Regan JW, Akerman KE, Scheinin M. (1992) Differential expression of two alpha 2-adrenergic receptor subtype mRNAs in human tissues. Brain Res Mol Brain Res, 16 (1-2): 57-63. [PMID:1334200]

59. Pihlavisto M, Sjöholm B, Scheinin M, Wurster S. (1998) Modulation of agonist binding to recombinant human alpha2-adrenoceptors by sodium ions. Biochim Biophys Acta, 1448 (1): 135-46. [PMID:9824686]

60. Piletz JE, Zhu H, Chikkala DN. (1996) Comparison of ligand binding affinities at human I1-imidazoline binding sites and the high affinity state of alpha-2 adrenoceptor subtypes. J Pharmacol Exp Ther, 279 (2): 694-702. [PMID:8930173]

61. Proudman RGW, Akinaga J, Baker JG. (2022) The affinity and selectivity of α-adrenoceptor antagonists, antidepressants and antipsychotics for the human α2A, α2B, and α2C-adrenoceptors and comparison with human α1 and β-adrenoceptors. Pharmacol Res Perspect, 10 (2): e00936. [PMID:35224877]

62. Proudman RGW, Akinaga J, Baker JG. (2022) The signaling and selectivity of α-adrenoceptor agonists for the human α2A, α2B and α2C-adrenoceptors and comparison with human α1 and β-adrenoceptors. Pharmacol Res Perspect, 10 (5): e01003. [PMID:36101495]

63. Rosin DL, Zeng D, Stornetta RL, Norton FR, Riley T, Okusa MD, Guyenet PG, Lynch KR. (1993) Immunohistochemical localization of alpha 2A-adrenergic receptors in catecholaminergic and other brainstem neurons in the rat. Neuroscience, 56 (1): 139-55. [PMID:7901804]

64. Ruffolo Jr RR, Nichols AJ, Stadel JM, Hieble JP. (1993) Pharmacologic and therapeutic applications of alpha 2-adrenoceptor subtypes. Annu Rev Pharmacol Toxicol, 33: 243-79. [PMID:8098595]

65. Ruohonen ST, Valve L, Tuomainen K, Ailanen L, Röyttä M, Manz G, Baur N, Joos TO, Savontaus E, Scheinin M. (2018) Increased Energy Expenditure, Lipolysis and Hyperinsulinemia Confer Resistance to Central Obesity and Type 2 Diabetes in Mice Lacking Alpha2α-Adrenoceptors. Neuroendocrinology, 107 (4): 324-339. [PMID:30041171]

66. Scheinin M, Lomasney JW, Hayden-Hixson DM, Schambra UB, Caron MG, Lefkowitz RJ, Fremeau Jr RT. (1994) Distribution of alpha 2-adrenergic receptor subtype gene expression in rat brain. Brain Res Mol Brain Res, 21 (1-2): 133-49. [PMID:8164514]

67. Scheinin M, Pihlavisto M. (2000) Molecular pharmacology of alpha2-adrenoceptor agonists. Best Practice & Research Clinical Anaesthesiology, 14 (2): 247-260. DOI: 10.1053/bean.2000.00

68. Shattil SJ, McDonough M, Turnbull J, Insel PA. (1981) Characterization of alpha-adrenergic receptors in human platelets using [3H]clonidine. Mol Pharmacol, 19 (1): 179-83. [PMID:6259509]

69. Storch U, Straub J, Erdogmus S, Gudermann T, Mederos Y Schnitzler M. (2017) Dynamic monitoring of Gi/o-protein-mediated decreases of intracellular cAMP by FRET-based Epac sensors. Pflugers Arch, 469 (5-6): 725-737. [PMID:28386636]

70. Summers RJ, Jarrott B, Louis WJ. (1980) Displacement of [3H]clonidine binding by clonidine analogues in membranes from rat cerebral cortex. Eur J Pharmacol, 66 (2-3): 233-41. [PMID:6254785]

71. Sun GC, Ho WY, Chen BR, Cheng PW, Cheng WH, Hsu MC, Yeh TC, Hsiao M, Lu PJ, Tseng CJ. (2015) GPCR dimerization in brainstem nuclei contributes to the development of hypertension. Br J Pharmacol, 172 (10): 2507-18. [PMID:25573074]

72. Talley EM, Rosin DL, Lee A, Guyenet PG, Lynch KR. (1996) Distribution of alpha 2A-adrenergic receptor-like immunoreactivity in the rat central nervous system. J Comp Neurol, 372 (1): 111-34. [PMID:8841924]

73. Uhlén S, Porter AC, Neubig RR. (1994) The novel alpha-2 adrenergic radioligand [3H]-MK912 is alpha-2C selective among human alpha-2A, alpha-2B and alpha-2C adrenoceptors. J Pharmacol Exp Ther, 271 (3): 1558-65. [PMID:7996470]

74. Williams CA, Miller KE, Williams NP, Portfors CV, Perkel DJ. (2021) Distribution and co-expression of adrenergic receptor-encoding mRNA in the mouse inferior colliculus. J Comp Neurol, 529 (8): 1743-1755. [PMID:33067825]

75. Wilson AL, Womble SW, Prakash C, Cragoe Jr EJ, Blair IA, Limbird LE. (1992) Novel amiloride analog allosterically modulates the alpha 2-adrenergic receptor but does not inhibit Na+/H+ exchange. Mol Pharmacol, 42 (2): 175-9. [PMID:1325028]

76. Young P, Berge J, Chapman H, Cawthorne MA. (1989) Novel alpha 2-adrenoceptor antagonists show selectivity for alpha 2A- and alpha 2B-adrenoceptor subtypes. Eur J Pharmacol, 168 (3): 381-6. [PMID:2573535]

77. Zádori ZS, Tóth VE, Fehér Á, Al-Khrasani M, Puskár Z, Kozsurek M, Timár J, Tábi T, Helyes Z, Hein L et al.. (2016) Inhibition of α2A-Adrenoceptors Ameliorates Dextran Sulfate Sodium-Induced Acute Intestinal Inflammation in Mice. J Pharmacol Exp Ther, 358 (3): 483-91. [PMID:27418171]

Contributors

Show »

How to cite this page