Top ▲

5-HT1B receptor

Click here for help

Immunopharmacology Ligand  Target has curated data in GtoImmuPdb

Target id: 2

Nomenclature: 5-HT1B receptor

Family: 5-Hydroxytryptamine receptors

Gene and Protein Information Click here for help
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 390 6q14.1 HTR1B 5-hydroxytryptamine receptor 1B 19,19,25,47,57
Mouse 7 386 9 44.61 cM Htr1b 5-hydroxytryptamine (serotonin) receptor 1B 40
Rat 7 386 8q31 Htr1b 5-hydroxytryptamine receptor 1B 1,81
Previous and Unofficial Names Click here for help
5-HT1B | 5-HT1DB | HTR1D2 | 5-HT1B serotonin receptor | serotonin receptor 1B | 5-HT1Dβ [57,88] | 5-hydroxytryptamine (serotonin) receptor 1B, G protein-coupled
Database Links Click here for help
Specialist databases
GPCRdb 5ht1b_human (Hs), 5ht1b_mouse (Mm), 5ht1b_rat (Rn)
Other databases
Alphafold
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Selected 3D Structures Click here for help
Image of receptor 3D structure from RCSB PDB
Description:  Crystal structure of the chimeric protein of 5-HT1B-BRIL in complex with dihydroergotamine
PDB Id:  4IAQ
Ligand:  dihydroergotamine
Resolution:  2.8Å
Species:  Human
References:  82
Image of receptor 3D structure from RCSB PDB
Description:  Crystal structure of the chimeric protein of 5-HT1B-BRIL in complex with ergotamine
PDB Id:  4IAR
Ligand:  ergotamine
Resolution:  2.7Å
Species:  Human
References:  82
Natural/Endogenous Ligands Click here for help
5-HT-moduline
5-hydroxytryptamine
tryptamine
Comments: Endogenous ligand tryptamine is a weak agonist

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[3H]N-methyl-AZ10419369 Small molecule or natural product Ligand is labelled Ligand is radioactive Hs Partial agonist 9.4 pKd 37
pKd 9.4 (Kd 3.7x10-10 M) [37]
[3H]8-OH-DPAT Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Full agonist 8.9 pKd 52
pKd 8.9 [52]
[125I]GTI Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Rn Agonist 8.9 pKd 9-10
pKd 8.9 (Kd 1.3x10-9 M) [9-10]
[3H]alniditan Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Full agonist 8.6 – 9.0 pKd 32
pKd 8.6 – 9.0 (Kd 2.51x10-9 – 1x10-9 M) [32]
[3H]eletriptan Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Partial agonist 8.5 pKd 50
pKd 8.5 (Kd 3x10-9 M) [50]
[3H]sumatriptan Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Partial agonist 8.0 pKd 50
pKd 8.0 (Kd 1.1x10-8 M) [50]
5-hydroxytryptamine Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Hs Full agonist 7.5 – 8.4 pKd 55,88
pKd 7.5 – 8.4 [55,88]
donitriptan Small molecule or natural product Click here for species-specific activity table Rn Partial agonist 9.7 pKi 26
pKi 9.7 [26]
oxymetazoline Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 9.5 pKi 30
pKi 9.5 [30]
GR 127935 Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 9.0 – 9.8 pKi 17,28,61,70,87
pKi 9.0 – 9.8 [17,28,61,70,87]
donitriptan Small molecule or natural product Click here for species-specific activity table Hs Full agonist 9.4 pKi 26
pKi 9.4 [26]
L-694,247 Small molecule or natural product Click here for species-specific activity table Hs Full agonist 9.2 pKi 18
pKi 9.2 (Ki 6.3x10-10 M) [18]
SB 216641 Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 9.0 pKi 61
pKi 9.0 [61]
alniditan Small molecule or natural product Click here for species-specific activity table Hs Full agonist 8.8 – 9.0 pKi 33
pKi 8.8 – 9.0 [33]
7-methoxy-1-naphthylpiperazine Small molecule or natural product Click here for species-specific activity table Hs Full agonist 8.7 pKi 28
pKi 8.7 [28]
CP94253 Small molecule or natural product Hs Full agonist 8.7 pKi 29
pKi 8.7 (Ki 2x10-9 M) [29]
dihydroergotamine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 8.0 – 9.2 pKi 33,55
pKi 8.0 – 9.2 [33,55]
CGS-12066 Small molecule or natural product Click here for species-specific activity table Hs Full agonist 8.1 – 8.7 pKi 18,88
pKi 8.1 – 8.7 [18,88]
ziprasidone Small molecule or natural product Approved drug Click here for species-specific activity table Hs Full agonist 8.3 pKi 69
pKi 8.3 [69]
5-CT Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 7.7 – 8.8 pKi 55,88
pKi 7.7 – 8.8 [55,88]
5-hydroxytryptamine Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Hs Full agonist 7.4 – 9.0 pKi 13,51-52,70,87-88
pKi 7.4 – 9.0 [13,51-52,70,87-88]
5-(nonyloxy)-tryptamine Small molecule or natural product Hs Full agonist 8.2 pKi 18
pKi 8.2 [18]
lysergol Small molecule or natural product Click here for species-specific activity table Hs Full agonist 7.5 – 8.9 pKi 55,88
pKi 7.5 – 8.9 [55,88]
5-CT Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Mm Full agonist 8.1 pKi 40
pKi 8.1 [40]
5-hydroxytryptamine Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Mm Full agonist 8.1 pKi 40
pKi 8.1 [40]
asenapine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Full agonist 8.1 pKi 69
pKi 8.1 [69]
RU 24969 Small molecule or natural product Click here for species-specific activity table Hs Full agonist 8.1 pKi 40
pKi 8.1 [40]
naratriptan Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Partial agonist 8.1 pKi 50
pKi 8.1 [50]
eletriptan Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Full agonist 8.0 pKi 50
pKi 8.0 (Ki 1x10-8 M) [50]
frovatriptan Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Agonist 8.0 pKi 91
pKi 8.0 (Ki 1.03x10-8 M) [91]
BMS 181,101 Small molecule or natural product Hs Partial agonist 7.6 – 8.1 pKi 51
pKi 7.6 – 8.1 [51]
1-naphthylpiperazine Small molecule or natural product Click here for species-specific activity table Hs Full agonist 7.7 – 7.9 pKi 28,55,88
pKi 7.7 – 7.9 [28,55,88]
lisuride Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Partial agonist 7.7 pKi 44
pKi 7.7 [44]
zolmitriptan Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Partial agonist 7.7 pKi 50
pKi 7.7 [50]
avitriptan Small molecule or natural product Click here for species-specific activity table Hs Agonist 7.7 pKi 68
pKi 7.7 (Ki 2.09x10-8 M) [68]
vortioxetine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Immunopharmacology Ligand Hs Partial agonist 7.5 pKi 4
pKi 7.5 (Ki 3.3x10-8 M) [4]
avitriptan Small molecule or natural product Click here for species-specific activity table Rn Agonist 7.4 pKi 68
pKi 7.4 (Ki 3.63x10-8 M) [68]
5-MeOT Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 7.3 – 7.5 pKi 55,88
pKi 7.3 – 7.5 [55,88]
dipropyl-5-CT Small molecule or natural product Click here for species-specific activity table Hs Full agonist 7.4 pKi 88
pKi 7.4 [88]
sumatriptan Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Partial agonist 6.5 – 8.1 pKi 18,33,45,50-51,55,88
pKi 6.5 – 8.1 (Ki 3.16x10-7 – 7.94x10-9 M) [18,33,45,50-51,55,88]
xanomeline Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 7.3 pKi 85
pKi 7.3 [85]
rizatriptan Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Partial agonist 6.9 pKi 50
pKi 6.9 [50]
L-775,606 Small molecule or natural product Hs Partial agonist 6.3 – 6.9 pKi 51
pKi 6.3 – 6.9 [51]
pergolide Small molecule or natural product Approved drug Click here for species-specific activity table Hs Full agonist 6.6 pKi 44
pKi 6.6 [44]
terguride Small molecule or natural product Approved drug Click here for species-specific activity table Hs Partial agonist 6.6 pKi 44
pKi 6.6 [44]
TFMPP Small molecule or natural product Click here for species-specific activity table Hs Full agonist 6.2 – 6.9 pKi 55,88
pKi 6.2 – 6.9 [55,88]
bromocriptine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Partial agonist 6.5 pKi 44
pKi 6.5 [44]
LY344864 Small molecule or natural product Click here for species-specific activity table Hs Full agonist 6.3 pKi 58
pKi 6.3 [58]
cabergoline Small molecule or natural product Approved drug Click here for species-specific activity table Hs Full agonist 6.3 pKi 44
pKi 6.3 [44]
olanzapine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Full agonist 6.3 pKi 69
pKi 6.3 [69]
tryptamine Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Hs Full agonist 6.3 pKi 88
pKi 6.3 [88]
clozapine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Full agonist 6.2 pKi 69
pKi 6.2 [69]
BRL-15572 Small molecule or natural product Click here for species-specific activity table Immunopharmacology Ligand Hs Partial agonist 6.1 pKi 61
pKi 6.1 [61]
aripiprazole Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 6.1 pKi 72
pKi 6.1 [72]
2-methyl-5-HT Small molecule or natural product Click here for species-specific activity table Hs Full agonist 6.1 pKi 88
pKi 6.1 [88]
roxindole Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 5.8 – 6.0 pKi 44,52
pKi 5.8 – 6.0 [44,52]
capeserod Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 5.3 pKi 49
pKi 5.3 [49]
almotriptan Small molecule or natural product Approved drug Click here for species-specific activity table Hs Agonist 7.9 pIC50 8
pIC50 7.9 (IC50 1.2x10-8 M) [8]
Description: Affinity of almotriptan at recombinant h5-HT1B receptors expressed in HeLa cells, determined in a radioligand displacement assay using [125I]GTI as tracer.
CP-122288 Small molecule or natural product Click here for species-specific activity table Hs Full agonist 7.6 pIC50 15
pIC50 7.6 [15]
L-772,405 Small molecule or natural product Click here for species-specific activity table Hs Full agonist 6.8 pIC50 65
pIC50 6.8 [65]
8-OH-DPAT Small molecule or natural product Click here for species-specific activity table Hs Full agonist 6.2 pIC50 15
pIC50 6.2 [15]
[11C]AZ10419369 Small molecule or natural product Ligand is labelled Ligand is radioactive Hs Partial agonist - - 80
[80]
View species-specific agonist tables
Agonist Comments
Frovatriptan is selective for 1B and 1D 5-HT receptor subtypes compared to the 1A subtype [91].
BRL-15572 can be used to distinguish between 5-HT1D and 5-HT1B receptors, being approximately 60-fold selective for the 1D subtype [61].
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
GR-55562 Small molecule or natural product Hs Antagonist 7.4 pKB 23
pKB 7.4 [23]
[3H]GR 125,743 Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Antagonist 8.6 – 9.2 pKd 18,90
pKd 8.6 – 9.2 (Kd 2.6x10-9 – 7.1x10-10 M) [18,90]
GR 127935 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 9.2 pKi 18
pKi 9.2 [18]
5-OH-DPAT Small molecule or natural product Mm Antagonist 8.4 pKi 40
pKi 8.4 [40]
SB 224289 Small molecule or natural product Click here for species-specific activity table Hs Inverse agonist 8.2 – 8.6 pKi 17,51,70
pKi 8.2 – 8.6 (Ki 6.31x10-9 – 2.51x10-9 M) [17,51,70]
ketanserin Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Mm Antagonist 8.3 pKi 40
pKi 8.3 [40]
spiperone Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Mm Antagonist 8.3 pKi 40
pKi 8.3 [40]
yohimbine Small molecule or natural product Approved drug Click here for species-specific activity table Mm Antagonist 8.3 pKi 40
pKi 8.3 [40]
mianserin Small molecule or natural product Approved drug Click here for species-specific activity table Mm Antagonist 8.3 pKi 40
pKi 8.3 [40]
SB236057 Small molecule or natural product Hs Inverse agonist 8.2 pKi 42
pKi 8.2 (Ki 6.31x10-9 M) [42]
SB 272183 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.1 pKi 86
pKi 8.1 [86]
(-)-pindolol Small molecule or natural product Mm Antagonist 8.1 pKi 40
pKi 8.1 [40]
cyanopindolol Small molecule or natural product Mm Antagonist 8.1 pKi 40
pKi 8.1 [40]
SB 649915 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.0 pKi 84
pKi 8.0 [84]
methiothepin Small molecule or natural product Click here for species-specific activity table Hs Inverse agonist 7.1 – 8.5 pKi 18,51,55,87
pKi 7.1 – 8.5 [18,51,55,87]
GR-55562 Small molecule or natural product Hs Antagonist 7.5 pKi 18
pKi 7.5 [18]
yohimbine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 6.8 – 7.6 pKi 45,88
pKi 6.8 – 7.6 [45,88]
zotepine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 7.2 pKi 69
pKi 7.2 [69]
metergoline Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.2 pKi 55
pKi 7.2 [55]
methysergide Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 6.6 – 7.6 pKi 55,88
pKi 6.6 – 7.6 [55,88]
sertindole Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 7.0 pKi 69
pKi 7.0 [69]
risperidone Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 6.6 – 7.3 pKi 32,69,71
pKi 6.6 – 7.3 [32,69,71]
rauwolscine Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.5 – 7.4 pKi 55,88
pKi 6.5 – 7.4 [55,88]
9-OH-risperidone Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.8 pKi 69
pKi 6.8 [69]
SB 714786 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.7 pKi 84
pKi 6.7 [84]
(S)-flurocarazolol Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.5 pKi 63
pKi 6.5 [63]
pipamperone Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.2 pKi 69
pKi 6.2 [69]
(R)-flurocarazolol Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.1 pKi 63
pKi 6.1 [63]
S33084 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.1 pKi 43
pKi 6.1 [43]
(+)-WAY 100135 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 5.8 pKi 13
pKi 5.8 [13]
ocaperidone Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.9 – 7.2 pIC50 32
pIC50 6.9 – 7.2 [32]
ritanserin Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 6.0 – 6.5 pIC50 15,32
pIC50 6.0 – 6.5 [15,32]
ketanserin Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 5.2 – 5.4 pIC50 15,32
pIC50 5.2 – 5.4 [15,32]
View species-specific antagonist tables
Antagonist Comments
It is possible that radioligand [3H]N-methyl-AZ10419369 may have properties as a partial agonist at the 5-HT1B receptor [37].
Allosteric Modulators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
5-HT-moduline Peptide Click here for species-specific activity table Ligand is endogenous in the given species Hs Negative 11.9 pIC50 64
pIC50 11.9 [64]
Immunopharmacology Comments
The expression of 5-HT1B receptors on immune cells indicates that it plays some part in immune/inflammatory responses [83].
Cell Type Associations
Immuno Cell Type:  Granulocytes
Cell Ontology Term:   mature eosinophil (CL:0000041)
Comment:  Expressed by eosinophils.
References:  83
Immuno Cell Type:  Dendritic cells
Cell Ontology Term:   dendritic cell (CL:0000451)
Comment:  Involved in DC chemotaxis.
References:  2
Immuno Cell Type:  T cells
Comment:  Involved in T cell proliferation.
References:  2
Immuno Process Associations
Immuno Process:  Antigen presentation
Primary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gi/Go family Adenylyl cyclase inhibition
References:  34,92
Tissue Distribution Click here for help
Brain: striatum, cortex, lateral geniculate nucleus, raphe nucleus.
Species:  Human
Technique:  in situ hybridisation.
References:  79
Trigeminal ganglion.
Species:  Human
Technique:  immunocytochemistry.
References:  22
Benign and malignant prostate tissue.
Species:  Human
Technique:  Western blotting.
References:  14
Brain: substantia nigra, globus pallidus > striatum > amygdala, hippocampus, septa region, hypothalamus.
Species:  Human
Technique:  Radioligand binding.
References:  78
Cortical cerebral arteries (smooth muscle cell layer > endothelial cell layer).
Species:  Human
Technique:  immunocytochemistry.
References:  53
Coronary artery > atrium > ventricle, epicardium.
Species:  Human
Technique:  RT-PCR.
References:  54
Brain: substantia nigra, globus pallidus > caudate nucleus, putamen, nucleus accumbens, central gray, hippocampal formation > various cortical regions.
Species:  Human
Technique:  Radioligand binding.
References:  7
Suprachiasmatic nucleus.
Species:  Mouse
Technique:  Electron microscopic immunocytochemistry.
References:  6,59
Thymus, peripheral blood lymphocytes, spleen, mitogen-activated spleen cells.
Species:  Rat
Technique:  RT-PCR.
References:  76
CNS: ventral pallidum, globus pallidus, dorsal subiculum, substantia nigra > caudate–putamen, entopeduncular nucleus, superficial gray layer of the superior colliculus, deep nuclei of the cerebellum > cerebral cortex, thalamus.
Species:  Rat
Technique:  immunocytochemistry.
References:  66
Lumbar dorsal root ganglia, superior cervical ganglia, lumbar sympathetic ganglia.
Species:  Rat
Technique:  RT-PCR.
References:  60
Suprachiasmatic nucleus.
Species:  Rat
Technique:  Radioligand binding.
References:  39
Trigeminal ganglion.
Species:  Rat
Technique:  Immunohistochemistry.
References:  36
Hypothalamus: magnocellular nuclei > supraoptic nucleus, paraventricular nucleus (dorsolateral) and accessory perifornical, circular and retrochiasmatic nuclei.
Species:  Rat
Technique:  Immunohistochemistry.
References:  38
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays Click here for help
Measurement of cell growth ([3H]thymidine incorporation) of rat C6 glial cells transfected with the 5-HT1B receptor.
Species:  Human
Tissue:  C6 glial cells.
Response measured:  Cell proliferation.
References:  57
Measurement of cAMP levels in COS-7 cells transfected with the rat 5-HT1B receptor.
Species:  Rat
Tissue:  COS-7 cells.
Response measured:  Inhibition of cAMP accumulation.
References:  1
Measurement of cAMP levels in NIH3T3 cells endogenously expressing the 5-HT1B receptor.
Species:  Mouse
Tissue:  NIH3T3 cell line.
Response measured:  Inhibition of cAMP accumulation.
References:  40
Measurement of cAMP levels in mouse adrenal Y-1 cells transfected with the 5-HT1B receptor.
Species:  Human
Tissue:  Y-1 cells.
Response measured:  Inhibition of cAMP accumulation.
References:  88
Measurement of cAMP levels in rat C6 glial cells transfected with the human 5-HT1B receptor.
Species:  Human
Tissue:  C6 glial cells.
Response measured:  Inhibition of cAMP accumulation.
References:  57
Physiological Functions Click here for help
Vasoconstriction.
Species:  Human
Tissue:  Coronary artery.
References:  54
Vasocontriction.
Species:  Human
Tissue:  Cortical cerebral artery.
References:  53
Mediation of impulsivity and prefrontal cortex-dependent learning and memory.
Species:  Mouse
Tissue:  In vivo.
References:  56
Regulation of hippocampal functions.
Species:  Rat
Tissue:  In vivo.
References:  11
Inhibition of food intake.
Species:  Rat
Tissue:  In vivo.
References:  31
Presynaptic inhibition of GABA release onto GABAB receptors but not GABAA.
Species:  Rat
Tissue:  Dopamine-containing neurons of the midbrain.
References:  27
Inhibition of GABA release.
Species:  Rat
Tissue:  Globus pallidus.
References:  12
Relief from akinesia.
Species:  Rat
Tissue:  In vivo.
References:  12
Lowering of hippocampal excitatory synaptic transmission.
Species:  Rat
Tissue:  CA1 pyramidal neurons.
References:  46
Inhibition of glutamatergic synaptic transmission.
Species:  Rat
Tissue:  Hypoglossal motoneurons.
References:  74
Presynaptic inhibition of 5-HT (autoreceptor function), GABA and glutamate release (heteroreceptor function).
Species:  Mouse
Tissue:  Dorsal raphe, ventral midbrain and nucleus accumbens.
References:  48
Presynaptic decrease in retinal input to the circadian system.
Species:  Mouse
Tissue:  in vivo (retinal axons in the suprachiasmatic nucleus).
References:  59
Antinociception.
Species:  Mouse
Tissue:  Ventrolateral periaqueductal gray.
References:  5
Regulation of aggressive behaviour.
Species:  Mouse
Tissue:  In vivo.
References:  67
Presynaptic inhibition of 5-HT release.
Species:  Mouse
Tissue:  in vivo (frontal cortex and ventral hippocampus).
References:  77
Presynaptic inhibition of acetylcholine release.
Species:  Rat
Tissue:  Hippocampus.
References:  41
Presynaptic inhibition of dopamine release.
Species:  Rat
Tissue:  In vivo.
References:  3
Physiological Consequences of Altering Gene Expression Click here for help
5-HT1B receptor knockout mice exhibit altered decision making abilities and response inhibition.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  56
5-HT1B receptor knockout mice exhibit facilitated reference memory and impaired delay-dependent working memory.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  89
Juvenile 5-HT1B receptor knockout mice exhibit reduced anxiety and hyperactivity, reduced sensitivity to 5-HT1A receptor activity and reduced 5-HT1A receptor abundance in some brain regions.
Species:  Mouse
Tissue: 
Technique:  Transgenesis.
References:  16
5-HT1B receptor knockout mice lack inhibition of 5-HT, GABA and glutamate release in the CNS.
Species:  Mouse
Tissue: 
Technique:  Transgenesis.
References:  48
5-HT1B knockout mice exhibit a reduced effect of cocaine on the induction of the immediate-early gene c-fos, commonly used as a molecular marker for neuronal activation. Indicates that this receptor subtype is involved in mediating the stimulatory effects of cocaine.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  35
5-HT1B knockout mice exhibit increased aggressive behaviour.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  67
5-HT1B receptor knockout mice exhibit no inhibition of 5-HT release in the frontal cortex and ventral hippocampus.
Species:  Mouse
Tissue: 
Technique:  Transgenesis.
References:  77
5-HT1B knockout mice exhibit altered monoamine metabolism in the CNS.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  3
5-HT1B receptor knockout mice exhibit elevated extracellular dopamine levels and dopamine release in the nucleus accumbens.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  73
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Htr1btm1Rhn|Slc6a4tm1Kpl Htr1btm1Rhn/Htr1btm1Rhn,Slc6a4tm1Kpl/Slc6a4tm1Kpl
involves: 129S1/Sv * 129S2/SvPas * 129X1/SvJ * C57BL/6
MGI:96274  MGI:96285  MP:0000285 abnormal heart valve morphology PMID: 16380550 
Htr1btm1Rhn Htr1btm1Rhn/Htr1btm1Rhn
involves: 129S2/SvPas
MGI:96274  MP:0003313 abnormal locomotor activation PMID: 12798274 
Htr1btm1Rhn Htr1btm1Rhn/Htr1btm1Rhn
involves: 129S2/SvPas * 129S6/SvEvTac
MGI:96274  MP:0002803 abnormal operant conditional behavior PMID: 12742250 
Htr1btm1Rhn Htr1btm1Rhn/Htr1btm1Rhn
involves: 129S2/SvPas
MGI:96274  MP:0005006 abnormal osteoblast physiology PMID: 19041748 
Htr1btm1Rhn Htr1btm1Rhn/Htr1btm1Rhn
involves: 129S2/SvPas
MGI:96274  MP:0000057 abnormal osteogenesis PMID: 19041748 
Htr1b+|Htr1btm1Rhn Htr1btm1Rhn/Htr1b+
involves: 129S2/SvPas
MGI:96274  MP:0000057 abnormal osteogenesis PMID: 19041748 
Htr1btm1Rhn Htr1btm1Rhn/Htr1btm1Rhn
involves: 129S2/SvPas
MGI:96274  MP:0001463 abnormal spatial learning PMID: 12798274 
Htr1btm1Rhn|Slc6a4tm1Kpl Htr1btm1Rhn/Htr1btm1Rhn,Slc6a4tm1Kpl/Slc6a4tm1Kpl
involves: 129S1/Sv * 129S2/SvPas * 129X1/SvJ * C57BL/6
MGI:96274  MGI:96285  MP:0003141 cardiac fibrosis PMID: 16380550 
Htr1btm1Rhn Htr1btm1Rhn/Htr1btm1Rhn
involves: 129S2/SvPas
MGI:96274  MP:0001364 decreased anxiety-related response PMID: 10996411 
Htr1btm1Rhn|Slc6a4tm1Kpl Htr1btm1Rhn/Htr1btm1Rhn,Slc6a4tm1Kpl/Slc6a4tm1Kpl
involves: 129S1/Sv * 129S2/SvPas * 129X1/SvJ * C57BL/6
MGI:96274  MGI:96285  MP:0005140 decreased cardiac muscle contractility PMID: 16380550 
Htr1btm1Rhn Htr1btm1Rhn/Htr1btm1Rhn
involves: 129S2/SvPas
MGI:96274  MP:0001489 decreased startle reflex PMID: 11164514 
Htr1btm1Rhn|Slc6a4tm1Kpl Htr1btm1Rhn/Htr1btm1Rhn,Slc6a4tm1Kpl/Slc6a4tm1Kpl
involves: 129S1/Sv * 129S2/SvPas * 129X1/SvJ * C57BL/6
MGI:96274  MGI:96285  MP:0002795 dilated cardiomyopathy PMID: 16380550 
Htr1btm1Rhn|Slc6a4tm1Kpl Htr1btm1Rhn/Htr1btm1Rhn,Slc6a4tm1Kpl/Slc6a4tm1Kpl
involves: 129S1/Sv * 129S2/SvPas * 129X1/SvJ * C57BL/6
MGI:96274  MGI:96285  MP:0003958 heart valve hyperplasia PMID: 16380550 
Htr1btm1Rhn Htr1btm1Rhn/Htr1btm1Rhn
involves: 129S2/SvPas
MGI:96274  MP:0001354 increased aggression towards males PMID: 8091214 
Htr1btm1Rhn Htr1btm1Rhn/Htr1btm1Rhn
involves: 129S2/SvPas
MGI:96274  MP:0001260 increased body weight PMID: 11164514  11790410 
Htr1btm1Rhn Htr1btm1Rhn/Htr1btm1Rhn
involves: 129S2/SvPas
MGI:96274  MP:0005605 increased bone mass PMID: 19041748 
Htr1b+|Htr1btm1Rhn Htr1btm1Rhn/Htr1b+
involves: 129S2/SvPas
MGI:96274  MP:0005605 increased bone mass PMID: 19041748 
Htr1b+|Htr1btm1Rhn|Tg(Vil-cre)20Syr|Tph1+|Tph1tm1Kry Htr1btm1Rhn/Htr1b+,Tph1tm1Kry/Tph1+,Tg(Vil-cre)20Syr/0
involves: 129S2/SvPas * C57BL/6 * DBA/2
MGI:3053809  MGI:96274  MGI:98796  MP:0005605 increased bone mass PMID: 19041748 
Htr1btm1Rhn Htr1btm1Rhn/Htr1btm1Rhn
involves: 129S2/SvPas
MGI:96274  MP:0003911 increased drinking behavior PMID: 11790410 
Htr1btm1Rhn Htr1btm1Rhn/Htr1btm1Rhn
involves: 129S2/SvPas
MGI:96274  MP:0004988 increased osteoblast cell number PMID: 19041748 
Htr1b+|Htr1btm1Rhn Htr1btm1Rhn/Htr1b+
involves: 129S2/SvPas
MGI:96274  MP:0004988 increased osteoblast cell number PMID: 19041748 
Htr1btm1Rhn Htr1btm1Rhn/Htr1btm1Rhn
involves: 129S2/SvPas
MGI:96274  MP:0001147 small testis PMID: 11790410 
Biologically Significant Variants Click here for help
Type:  Single nucleotide polymorphism
Species:  Human
Description:  861 G -> C polymorphism of the HTR1B gene: 861G allele linked to the development of attention deficit hyperactivity disorder (ADHD).
References:  21,62
Type:  Single nucleotide polymorphism
Species:  Human
Description:  861 G -> C polymorphism: 861C allele linked to the development of alcohol-dependence.
References:  20
Type:  Single nucleotide polymorphism
Species:  Human
Description:  861 G -> C polymorphism: 861C allele linked with substance abuse disorder and major depression.
References:  24
Type:  Single nucleotide polymorphism
Species:  Human
Description:  861 G -> C polymorphism: 861G allele linked to antisocial personality and conduct disorder in alcoholics.
References:  75

References

Show »

1. Adham N, Romanienko P, Hartig P, Weinshank RL, Branchek T. (1992) The rat 5-hydroxytryptamine1B receptor is the species homologue of the human 5-hydroxytryptamine1D beta receptor. Mol Pharmacol, 41 (1): 1-7. [PMID:1732716]

2. Ahern GP. (2011) 5-HT and the immune system. Curr Opin Pharmacol, 11 (1): 29-33. [PMID:21393060]

3. Ase AR, Reader TA, Hen R, Riad M, Descarries L. (2000) Altered serotonin and dopamine metabolism in the CNS of serotonin 5-HT(1A) or 5-HT(1B) receptor knockout mice. J Neurochem, 75 (6): 2415-26. [PMID:11080193]

4. Bang-Andersen B, Ruhland T, Jørgensen M, Smith G, Frederiksen K, Jensen KG, Zhong H, Nielsen SM, Hogg S, Mørk A et al.. (2011) Discovery of 1-[2-(2,4-dimethylphenylsulfanyl)phenyl]piperazine (Lu AA21004): a novel multimodal compound for the treatment of major depressive disorder. J Med Chem, 54 (9): 3206-21. [PMID:21486038]

5. Bartsch T, Knight YE, Goadsby PJ. (2004) Activation of 5-HT(1B/1D) receptor in the periaqueductal gray inhibits nociception. Ann Neurol, 56 (3): 371-81. [PMID:15349864]

6. Belenky MA, Pickard GE. (2001) Subcellular distribution of 5-HT(1B) and 5-HT(7) receptors in the mouse suprachiasmatic nucleus. J Comp Neurol, 432 (3): 371-88. [PMID:11246214]

7. Bonaventure P, Schotte A, Cras P, Leysen JE. (1997) Autoradiographic mapping of 5-HT1B- and 5-HT1D receptors in human brain using [3H]alniditan, a new radioligand. Recept Channels, 5 (3-4): 225-30. [PMID:9606727]

8. Bou J, Domènech T, Puig J, Heredia A, Gras J, Fernández-Forner D, Beleta J, Palacios JM. (2000) Pharmacological characterization of almotriptan: an indolic 5-HT receptor agonist for the treatment of migraine. Eur J Pharmacol, 410 (1): 33-41. [PMID:11134654]

9. Boulenguez P, Segu L, Chauveau J, Morel A, Lanoir J, Delaage M. (1992) Biochemical and pharmacological characterization of serotonin-O-carboxymethylglycyl[125I]iodotyrosinamide, a new radioiodinated probe for 5-HT1B and 5-HT1D binding sites. J Neurochem, 58 (3): 951-9. [PMID:1738002]

10. Bruinvels AT, Palacios JM, Hoyer D. (1993) Autoradiographic characterisation and localisation of 5-HT1D compared to 5-HT1B binding sites in rat brain. Naunyn Schmiedebergs Arch Pharmacol, 347 (6): 569-82. [PMID:8361548]

11. Buhot MC, Naïli S. (1995) Changes in exploratory activity following stimulation of hippocampal 5-HT1A and 5-HT1B receptors in the rat. Hippocampus, 5 (3): 198-208. [PMID:7550615]

12. Chadha A, Sur C, Atack J, Duty S. (2000) The 5HT(1B) receptor agonist, CP-93129, inhibits [(3)H]-GABA release from rat globus pallidus slices and reverses akinesia following intrapallidal injection in the reserpine-treated rat. Br J Pharmacol, 130 (8): 1927-32. [PMID:10952684]

13. Davidson C, Ho M, Price GW, Jones BJ, Stamford JA. (1997) (+)-WAY 100135, a partial agonist, at native and recombinant 5-HT1B/1D receptors. Br J Pharmacol, 121 (4): 737-42. [PMID:9208142]

14. Dizeyi N, Bjartell A, Nilsson E, Hansson J, Gadaleanu V, Cross N, Abrahamsson PA. (2004) Expression of serotonin receptors and role of serotonin in human prostate cancer tissue and cell lines. Prostate, 59 (3): 328-36. [PMID:15042609]

15. Doménech T, Beleta J, Palacios JM. (1997) Characterization of human serotonin 1D and 1B receptors using [3H]-GR-125743, a novel radiolabelled serotonin 5HT1D/1B receptor antagonist. Naunyn Schmiedebergs Arch Pharmacol, 356 (3): 328-34. [PMID:9303569]

16. El-Khodor BF, Dimmler MH, Amara DA, Hofer M, Hen R, Brunner D. (2004) Juvenile 5HT(1B) receptor knockout mice exhibit reduced pharmacological sensitivity to 5HT(1A) receptor activation. Int J Dev Neurosci, 22 (5-6): 405-13. [PMID:15380839]

17. Gaster LM, Blaney FE, Davies S, Duckworth DM, Ham P, Jenkins S, Jennings AJ, Joiner GF, King FD, Mulholland KR et al.. (1998) The selective 5-HT1B receptor inverse agonist 1'-methyl-5-[[2'-methyl-4'-(5-methyl-1,2, 4-oxadiazol-3-yl)biphenyl-4-yl]carbonyl]-2,3,6,7-tetrahydro- spiro[furo[2,3-f]indole-3,4'-piperidine] (SB-224289) potently blocks terminal 5-HT autoreceptor function both in vitro and in vivo. J Med Chem, 41 (8): 1218-35. [PMID:9548813]

18. Grånäs C, Larhammar D. (1999) Identification of an amino acid residue important for binding of methiothepin and sumatriptan to the human 5-HT(1B) receptor. Eur J Pharmacol, 380 (2-3): 171-81. [PMID:10513577]

19. Hamblin MW, Metcalf MA, McGuffin RW, Karpells S. (1992) Molecular cloning and functional characterization of a human 5-HT1B serotonin receptor: a homologue of the rat 5-HT1B receptor with 5-HT1D-like pharmacological specificity. Biochem Biophys Res Commun, 184 (2): 752-9. [PMID:1315531]

20. Hasegawa Y, Higuchi S, Matsushita S, Miyaoka H. (2002) Association of a polymorphism of the serotonin 1B receptor gene and alcohol dependence with inactive aldehyde dehydrogenase-2. J Neural Transm (Vienna), 109 (4): 513-21. [PMID:11956970]

21. Hawi Z, Dring M, Kirley A, Foley D, Kent L, Craddock N, Asherson P, Curran S, Gould A, Richards S et al.. (2002) Serotonergic system and attention deficit hyperactivity disorder (ADHD): a potential susceptibility locus at the 5-HT(1B) receptor gene in 273 nuclear families from a multi-centre sample. Mol Psychiatry, 7 (7): 718-25. [PMID:12192616]

22. Hou M, Kanje M, Longmore J, Tajti J, Uddman R, Edvinsson L. (2001) 5-HT(1B) and 5-HT(1D) receptors in the human trigeminal ganglion: co-localization with calcitonin gene-related peptide, substance P and nitric oxide synthase. Brain Res, 909 (1-2): 112-20. [PMID:11478927]

23. Hoyer D, Hannon JP, Martin GR. (2002) Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav, 71 (4): 533-54. [PMID:11888546]

24. Huang YY, Oquendo MA, Friedman JM, Greenhill LL, Brodsky B, Malone KM, Khait V, Mann JJ. (2003) Substance abuse disorder and major depression are associated with the human 5-HT1B receptor gene (HTR1B) G861C polymorphism. Neuropsychopharmacology, 28 (1): 163-9. [PMID:12496953]

25. Jin H, Oksenberg D, Ashkenazi A, Peroutka SJ, Duncan AM, Rozmahel R, Yang Y, Mengod G, Palacios JM, O'Dowd BF. (1992) Characterization of the human 5-hydroxytryptamine1B receptor. J Biol Chem, 267 (9): 5735-8. [PMID:1348246]

26. John GW, Pauwels PJ, Perez M, Halazy S, Le Grand B, Verscheure Y, Valentin JP, Palmier C, Wurch T, Chopin P et al.. (1999) F 11356, a novel 5-hydroxytryptamine (5-HT) derivative with potent, selective, and unique high intrinsic activity at 5-HT1B/1D receptors in models relevant to migraine. J Pharmacol Exp Ther, 290 (1): 83-95. [PMID:10381763]

27. Johnson SW, Mercuri NB, North RA. (1992) 5-hydroxytryptamine1B receptors block the GABAB synaptic potential in rat dopamine neurons. J Neurosci, 12 (5): 2000-6. [PMID:1578282]

28. Jorand-Lebrun C, Pauwels PJ, Palmier C, Moret C, Chopin P, Perez M, Marien M, Halazy S. (1997) 5-HT1B receptor antagonist properties of novel arylpiperazide derivatives of 1-naphthylpiperazine. J Med Chem, 40 (24): 3974-8. [PMID:9397179]

29. Koe BK, Nielsen JA, Macor JE, Heym J. (1992) Biochemical and behavioural studies of the 5-HT1B receptor agonist, CP-94,253. Drug Dev Res, 26: 241-250.

30. Law H, Dukat M, Teitler M, Lee DK, Mazzocco L, Kamboj R, Rampersad V, Prisinzano T, Glennon RA. (1998) Benzylimidazolines as h5-HT1B/1D serotonin receptor ligands: a structure-affinity investigation. J Med Chem, 41 (13): 2243-51. [PMID:9632357]

31. Lee MD, Kennett GA, Dourish CT, Clifton PG. (2002) 5-HT1B receptors modulate components of satiety in the rat: behavioural and pharmacological analyses of the selective serotonin1B agonist CP-94,253. Psychopharmacology (Berl.), 164 (1): 49-60. [PMID:12373419]

32. Lesage AS, Wouters R, Van Gompel P, Heylen L, Vanhoenacker P, Haegeman G, Luyten WH, Leysen JE. (1998) Agonistic properties of alniditan, sumatriptan and dihydroergotamine on human 5-HT1B and 5-HT1D receptors expressed in various mammalian cell lines. Br J Pharmacol, 123 (8): 1655-65. [PMID:9605573]

33. Leysen JE, Gommeren W, Heylen L, Luyten WH, Van de Weyer I, Vanhoenacker P, Haegeman G, Schotte A, Van Gompel P, Wouters R et al.. (1996) Alniditan, a new 5-hydroxytryptamine1D agonist and migraine-abortive agent: ligand-binding properties of human 5-hydroxytryptamine1D alpha, human 5-hydroxytryptamine1D beta, and calf 5-hydroxytryptamine1D receptors investigated with [3H]5-hydroxytryptamine and [3H]alniditan. Mol Pharmacol, 50 (6): 1567-80. [PMID:8967979]

34. Lin SL, Setya S, Johnson-Farley NN, Cowen DS. (2002) Differential coupling of 5-HT(1) receptors to G proteins of the G(i) family. Br J Pharmacol, 136 (7): 1072-8. [PMID:12145108]

35. Lucas JJ, Segu L, Hen R. (1997) 5-Hydroxytryptamine1B receptors modulate the effect of cocaine on c-fos expression: converging evidence using 5-hydroxytryptamine1B knockout mice and the 5-hydroxytryptamine1B/1D antagonist GR127935. Mol Pharmacol, 51 (5): 755-63. [PMID:9145913]

36. Ma QP. (2001) Co-localization of 5-HT(1B/1D/1F) receptors and glutamate in trigeminal ganglia in rats. Neuroreport, 12 (8): 1589-91. [PMID:11409721]

37. Maier DL, Sobotka-Briner C, Ding M, Powell ME, Jiang Q, Hill G, Heys JR, Elmore CS, Pierson ME, Mrzljak L. (2009) [N-methyl-3H3]AZ10419369 binding to the 5-HT1B receptor: in vitro characterization and in vivo receptor occupancy. J Pharmacol Exp Ther, 330 (1): 342-51. [PMID:19401496]

38. Makarenko IG, Meguid MM, Ugrumov MV. (2002) Distribution of serotonin 5-hydroxytriptamine 1B (5-HT(1B)) receptors in the normal rat hypothalamus. Neurosci Lett, 328 (2): 155-9. [PMID:12133578]

39. Manrique C, Héry F, Faudon M, François-Bellan AM. (1999) Indirect evidence for an association of 5-HT(1B) binding sites with retinal and geniculate axon terminals in the rat suprachiasmatic nucleus. Synapse, 33 (4): 314-23. [PMID:10421712]

40. Maroteaux L, Saudou F, Amlaiky N, Boschert U, Plassat JL, Hen R. (1992) Mouse 5HT1B serotonin receptor: cloning, functional expression, and localization in motor control centers. Proc Natl Acad Sci USA, 89 (7): 3020-4. [PMID:1557407]

41. Maura G, Raiteri M. (1986) Cholinergic terminals in rat hippocampus possess 5-HT1B receptors mediating inhibition of acetylcholine release. Eur J Pharmacol, 129 (3): 333-7. [PMID:3780847]

42. Middlemiss DN, Göthert M, Schlicker E, Scott CM, Selkirk JV, Watson J, Gaster LM, Wyman P, Riley G, Price GW. (1999) SB-236057, a selective 5-HT1B receptor inverse agonist, blocks the 5-HT human terminal autoreceptor. Eur J Pharmacol, 375 (1-3): 359-65. [PMID:10443589]

43. Millan MJ, Gobert A, Newman-Tancredi A, Lejeune F, Cussac D, Rivet JM, Audinot V, Dubuffet T, Lavielle G. (2000) S33084, a novel, potent, selective, and competitive antagonist at dopamine D(3)-receptors: I. Receptorial, electrophysiological and neurochemical profile compared with GR218,231 and L741,626. J Pharmacol Exp Ther, 293 (3): 1048-62. [PMID:10869410]

44. Millan MJ, Maiofiss L, Cussac D, Audinot V, Boutin JA, Newman-Tancredi A. (2002) Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor. I. A multivariate analysis of the binding profiles of 14 drugs at 21 native and cloned human receptor subtypes. J Pharmacol Exp Ther, 303 (2): 791-804. [PMID:12388666]

45. Millan MJ, Newman-Tancredi A, Audinot V, Cussac D, Lejeune F, Nicolas JP, Cogé F, Galizzi JP, Boutin JA, Rivet JM et al.. (2000) Agonist and antagonist actions of yohimbine as compared to fluparoxan at alpha(2)-adrenergic receptors (AR)s, serotonin (5-HT)(1A), 5-HT(1B), 5-HT(1D) and dopamine D(2) and D(3) receptors. Significance for the modulation of frontocortical monoaminergic transmission and depressive states. Synapse, 35 (2): 79-95. [PMID:10611634]

46. Mlinar B, Corradetti R. (2003) Endogenous 5-HT, released by MDMA through serotonin transporter- and secretory vesicle-dependent mechanisms, reduces hippocampal excitatory synaptic transmission by preferential activation of 5-HT1B receptors located on CA1 pyramidal neurons. Eur J Neurosci, 18 (6): 1559-71. [PMID:14511335]

47. Mochizuki D, Yuyama Y, Tsujita R, Komaki H, Sagai H. (1992) Cloning and expression of the human 5-HT1B-type receptor gene. Biochem Biophys Res Commun, 185 (2): 517-23. [PMID:1610347]

48. Morikawa H, Manzoni OJ, Crabbe JC, Williams JT. (2000) Regulation of central synaptic transmission by 5-HT(1B) auto- and heteroreceptors. Mol Pharmacol, 58 (6): 1271-8. [PMID:11093763]

49. Moser PC, Bergis OE, Jegham S, Lochead A, Duconseille E, Terranova JP, Caille D, Berque-Bestel I, Lezoualc'h F, Fischmeister R et al.. (2002) SL65.0155, a novel 5-hydroxytryptamine(4) receptor partial agonist with potent cognition-enhancing properties. J Pharmacol Exp Ther, 302 (2): 731-41. [PMID:12130738]

50. Napier C, Stewart M, Melrose H, Hopkins B, McHarg A, Wallis R. (1999) Characterisation of the 5-HT receptor binding profile of eletriptan and kinetics of [3H]eletriptan binding at human 5-HT1B and 5-HT1D receptors. Eur J Pharmacol, 368 (2-3): 259-68. [PMID:10193663]

51. Newman-Tancredi A, Audinot V, Moreira C, Verrièle L, Millan MJ. (2000) Inverse agonism and constitutive activity as functional correlates of serotonin h5-HT(1B) receptor/G-protein stoichiometry. Mol Pharmacol, 58 (5): 1042-9. [PMID:11040052]

52. Newman-Tancredi A, Cussac D, Audinot V, Millan MJ. (1999) Actions of roxindole at recombinant human dopamine D2, D3 and D4 and serotonin 5-HT1A, 5-HT1B and 5-HT1D receptors. Naunyn Schmiedebergs Arch Pharmacol, 359 (6): 447-53. [PMID:10431754]

53. Nilsson T, Longmore J, Shaw D, Olesen IJ, Edvinsson L. (1999) Contractile 5-HT1B receptors in human cerebral arteries: pharmacological characterization and localization with immunocytochemistry. Br J Pharmacol, 128 (6): 1133-40. [PMID:10578124]

54. Nilsson T, Longmore J, Shaw D, Pantev E, Bard JA, Branchek T, Edvinsson L. (1999) Characterisation of 5-HT receptors in human coronary arteries by molecular and pharmacological techniques. Eur J Pharmacol, 372 (1): 49-56. [PMID:10374714]

55. Parker EM, Izzarelli DG, Lewis-Higgins L, Palmer D, Shapiro RA. (1996) Two amino acid differences in the sixth transmembrane domain are partially responsible for the pharmacological differences between the 5-HT1D beta and 5-HT1E 5-hydroxytryptamine receptors. J Neurochem, 67 (5): 2096-103. [PMID:8863519]

56. Pattij T, Broersen LM, van der Linde J, Groenink L, van der Gugten J, Maes RA, Olivier B. (2003) Operant learning and differential-reinforcement-of-low-rate 36-s responding in 5-HT1A and 5-HT1B receptor knockout mice. Behav Brain Res, 141 (2): 137-45. [PMID:12742250]

57. Pauwels PJ, Wurch T, Amoureux MC, Palmier C, Colpaert FC. (1996) Stimulation of cloned human serotonin 5-HT1D beta receptor sites in stably transfected C6 glial cells promotes cell growth. J Neurochem, 66 (1): 65-73. [PMID:8522991]

58. Phebus LA, Johnson KW, Zgombick JM, Gilbert PJ, Van Belle K, Mancuso V, Nelson DL, Calligaro DO, Kiefer Jr AD, Branchek TA et al.. (1997) Characterization of LY344864 as a pharmacological tool to study 5-HT1F receptors: binding affinities, brain penetration and activity in the neurogenic dural inflammation model of migraine. Life Sci, 61 (21): 2117-26. [PMID:9395253]

59. Pickard GE, Smith BN, Belenky M, Rea MA, Dudek FE, Sollars PJ. (1999) 5-HT1B receptor-mediated presynaptic inhibition of retinal input to the suprachiasmatic nucleus. J Neurosci, 19 (10): 4034-45. [PMID:10234032]

60. Pierce PA, Xie GX, Levine JD, Peroutka SJ. (1996) 5-Hydroxytryptamine receptor subtype messenger RNAs in rat peripheral sensory and sympathetic ganglia: a polymerase chain reaction study. Neuroscience, 70 (2): 553-9. [PMID:8848158]

61. Price GW, Burton MJ, Collin LJ, Duckworth M, Gaster L, Göthert M, Jones BJ, Roberts C, Watson JM, Middlemiss DN. (1997) SB-216641 and BRL-15572--compounds to pharmacologically discriminate h5-HT1B and h5-HT1D receptors. Naunyn Schmiedebergs Arch Pharmacol, 356 (3): 312-20. [PMID:9303567]

62. Quist JF, Barr CL, Schachar R, Roberts W, Malone M, Tannock R, Basile VS, Beitchman J, Kennedy JL. (2003) The serotonin 5-HT1B receptor gene and attention deficit hyperactivity disorder. Mol Psychiatry, 8 (1): 98-102. [PMID:12556913]

63. Roth BL, Ernsberger P, Steinberg SA, Rao S, Rauser L, Savage J, Hufeisen S, Berridge MS, Muzic Jr RF. (2001) The in vitro pharmacology of the beta-adrenergic receptor pet ligand (s)-fluorocarazolol reveals high affinity for cloned beta-adrenergic receptors and moderate affinity for the human 5-HT1A receptor. Psychopharmacology (Berl.), 157 (1): 111-4. [PMID:11512051]

64. Rousselle JC, Plantefol M, Fillion MP, Massot O, Pauwels PJ, Fillion G. (1998) Specific interaction of 5-HT-moduline with human 5-HT1b as well as 5-HT1d receptors expressed in transfected cultured cells. Naunyn Schmiedebergs Arch Pharmacol, 358 (3): 279-86. [PMID:9774213]

65. Russell MG, Matassa VG, Pengilley RR, van Niel MB, Sohal B, Watt AP, Hitzel L, Beer MS, Stanton JA, Broughton HB et al.. (1999) 3-[3-(Piperidin-1-yl)propyl]indoles as highly selective h5-HT(1D) receptor agonists. J Med Chem, 42 (24): 4981-5001. [PMID:10585208]

66. Sari Y, Miquel MC, Brisorgueil MJ, Ruiz G, Doucet E, Hamon M, Vergé D. (1999) Cellular and subcellular localization of 5-hydroxytryptamine1B receptors in the rat central nervous system: immunocytochemical, autoradiographic and lesion studies. Neuroscience, 88 (3): 899-915. [PMID:10363826]

67. Saudou F, Amara DA, Dierich A, LeMeur M, Ramboz S, Segu L, Buhot MC, Hen R. (1994) Enhanced aggressive behavior in mice lacking 5-HT1B receptor. Science, 265 (5180): 1875-8. [PMID:8091214]

68. Saxena PR, De Vries P, Wang W, Heiligers JP, Maassen vandenBrink A, Bax WA, Yocca FD. (1997) Effects of avitriptan, a new 5-HT 1B/1D receptor agonist, in experimental models predictive of antimigraine activity and coronary side-effect potential. Naunyn Schmiedebergs Arch Pharmacol, 355 (2): 295-302. [PMID:9050026]

69. Schotte A, Janssen PF, Gommeren W, Luyten WH, Van Gompel P, Lesage AS, De Loore K, Leysen JE. (1996) Risperidone compared with new and reference antipsychotic drugs: in vitro and in vivo receptor binding. Psychopharmacology (Berl.), 124 (1-2): 57-73. [PMID:8935801]

70. Selkirk JV, Scott C, Ho M, Burton MJ, Watson J, Gaster LM, Collin L, Jones BJ, Middlemiss DN, Price GW. (1998) SB-224289--a novel selective (human) 5-HT1B receptor antagonist with negative intrinsic activity. Br J Pharmacol, 125 (1): 202-8. [PMID:9776361]

71. Shahid M, Walker GB, Zorn SH, Wong EH. (2009) Asenapine: a novel psychopharmacologic agent with a unique human receptor signature. J Psychopharmacol (Oxford), 23 (1): 65-73. [PMID:18308814]

72. Shapiro DA, Renock S, Arrington E, Chiodo LA, Liu LX, Sibley DR, Roth BL, Mailman R. (2003) Aripiprazole, a novel atypical antipsychotic drug with a unique and robust pharmacology. Neuropsychopharmacology, 28 (8): 1400-11. [PMID:12784105]

73. Shippenberg TS, Hen R, He M. (2000) Region-specific enhancement of basal extracellular and cocaine-evoked dopamine levels following constitutive deletion of the Serotonin(1B) receptor. J Neurochem, 75 (1): 258-65. [PMID:10854269]

74. Singer JH, Bellingham MC, Berger AJ. (1996) Presynaptic inhibition of glutamatergic synaptic transmission to rat motoneurons by serotonin. J Neurophysiol, 76 (2): 799-807. [PMID:8871200]

75. Soyka M, Preuss UW, Koller G, Zill P, Bondy B. (2004) Association of 5-HT1B receptor gene and antisocial behavior in alcoholism. J Neural Transm (Vienna), 111 (1): 101-9. [PMID:14714219]

76. Stefulj J, Jernej B, Cicin-Sain L, Rinner I, Schauenstein K. (2000) mRNA expression of serotonin receptors in cells of the immune tissues of the rat. Brain Behav Immun, 14 (3): 219-24. [PMID:10970681]

77. Trillat AC, Malagié I, Scearce K, Pons D, Anmella MC, Jacquot C, Hen R, Gardier AM. (1997) Regulation of serotonin release in the frontal cortex and ventral hippocampus of homozygous mice lacking 5-HT1B receptors: in vivo microdialysis studies. J Neurochem, 69 (5): 2019-25. [PMID:9349547]

78. Varnäs K, Hall H, Bonaventure P, Sedvall G. (2001) Autoradiographic mapping of 5-HT(1B) and 5-HT(1D) receptors in the post mortem human brain using [(3)H]GR 125743. Brain Res, 915 (1): 47-57. [PMID:11578619]

79. Varnäs K, Hurd YL, Hall H. (2005) Regional expression of 5-HT1B receptor mRNA in the human brain. Synapse, 56 (1): 21-8. [PMID:15700286]

80. Varnäs K, Nyberg S, Halldin C, Varrone A, Takano A, Karlsson P, Andersson J, McCarthy D, Smith M, Pierson ME et al.. (2011) Quantitative analysis of [11C]AZ10419369 binding to 5-HT1B receptors in human brain. J Cereb Blood Flow Metab, 31 (1): 113-23. [PMID:20424633]

81. Voigt MM, Laurie DJ, Seeburg PH, Bach A. (1991) Molecular cloning and characterization of a rat brain cDNA encoding a 5-hydroxytryptamine1B receptor. EMBO J, 10 (13): 4017-23. [PMID:1836757]

82. Wang C, Jiang Y, Ma J, Wu H, Wacker D, Katritch V, Han GW, Liu W, Huang XP, Vardy E et al.. (2013) Structural basis for molecular recognition at serotonin receptors. Science, 340 (6132): 610-4. [PMID:23519210]

83. Wang SJ, Sharkey KA, McKay DM. (2018) Modulation of the immune response by helminths: a role for serotonin?. Biosci Rep, 38 (5). DOI: 10.1042/BSR20180027 [PMID:30177522]

84. Ward SE, Harrington FP, Gordon LJ, Hopley SC, Scott CM, Watson JM. (2005) Discovery of the first potent, selective 5-hydroxytryptamine1D receptor antagonist. J Med Chem, 48 (10): 3478-80. [PMID:15887956]

85. Watson J, Brough S, Coldwell MC, Gager T, Ho M, Hunter AJ, Jerman J, Middlemiss DN, Riley GJ, Brown AM. (1998) Functional effects of the muscarinic receptor agonist, xanomeline, at 5-HT1 and 5-HT2 receptors. Br J Pharmacol, 125 (7): 1413-20. [PMID:9884068]

86. Watson J, Roberts C, Scott C, Kendall I, Collin L, Day NC, Harries MH, Soffin E, Davies CH, Randall AD et al.. (2001) SB-272183, a selective 5-HT(1A), 5-HT(1B) and 5-HT(1D) receptor antagonist in native tissue. Br J Pharmacol, 133 (6): 797-806. [PMID:11454652]

87. Watson JM, Burton MJ, Price GW, Jones BJ, Middlemiss DN. (1996) GR127935 acts as a partial agonist at recombinant human 5-HT1D alpha and 5-HT1D beta receptors. Eur J Pharmacol, 314 (3): 365-72. [PMID:8957260]

88. Weinshank RL, Zgombick JM, Macchi MJ, Branchek TA, Hartig PR. (1992) Human serotonin 1D receptor is encoded by a subfamily of two distinct genes: 5-HT1D alpha and 5-HT1D beta. Proc Natl Acad Sci USA, 89 (8): 3630-4. [PMID:1565658]

89. Wolff M, Benhassine N, Costet P, Hen R, Segu L, Buhot MC. (2003) Delay-dependent working memory impairment in young-adult and aged 5-HT1BKO mice as assessed in a radial-arm water maze. Learn Mem, 10 (5): 401-9. [PMID:14557613]

90. Xie Z, Lee SP, O'Dowd BF, George SR. (1999) Serotonin 5-HT1B and 5-HT1D receptors form homodimers when expressed alone and heterodimers when co-expressed. FEBS Lett, 456 (1): 63-7. [PMID:10452531]

91. Xu YC, Schaus JM, Walker C, Krushinski J, Adham N, Zgombick JM, Liang SX, Kohlman DT, Audia JE. (1999) N-Methyl-5-tert-butyltryptamine: A novel, highly potent 5-HT1D receptor agonist. J Med Chem, 42 (3): 526-31. [PMID:9986723]

92. Zgombick JM, Branchek TA. (1998) Native 5-HT1B receptors expressed in OK cells display dual coupling to elevation of intracellular calcium concentrations and inhibition of adenylate cyclase. Naunyn Schmiedebergs Arch Pharmacol, 358 (5): 503-8. [PMID:9840417]

Contributors

Show »

How to cite this page