Top ▲

M3 receptor

Click here for help

Target not currently curated in GtoImmuPdb

Target id: 15

Nomenclature: M3 receptor

Family: Acetylcholine receptors (muscarinic)

Gene and Protein Information Click here for help
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 590 1q43 CHRM3 cholinergic receptor muscarinic 3 33
Mouse 7 589 13 3.72 cM Chrm3 cholinergic receptor, muscarinic 3, cardiac 71
Rat 7 589 17q12.1 Chrm3 cholinergic receptor, muscarinic 3 50,110
Previous and Unofficial Names Click here for help
HM4 [84-85] | Chrm-3 | M3R | cholinergic receptor, muscarinic 3 | cholinergic receptor | cholinergic receptor, muscarinic 3, cardiac
Database Links Click here for help
Specialist databases
GPCRdb acm3_human (Hs), acm3_mouse (Mm), acm3_rat (Rn)
Other databases
Alphafold
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Orphanet
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Selected 3D Structures Click here for help
Image of receptor 3D structure from RCSB PDB
Description:  Structure of the M3 Muscarinic Acetylcholine Receptor
PDB Id:  4DAJ
Ligand:  tiotropium
Resolution:  3.4Å
Species:  Rat
References:  56
Natural/Endogenous Ligands Click here for help
acetylcholine

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[3H]iperoxo Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Agonist 8.4 pKd 97
pKd 8.4 (Kd 3.98x10-9 M) [97]
NNC 11-1585 Small molecule or natural product Click here for species-specific activity table Hs Full agonist 8.3 pKi 20
pKi 8.3 [20]
NNC 11-1607 Small molecule or natural product Click here for species-specific activity table Hs Full agonist 8.1 pKi 20
pKi 8.1 [20]
pentylthio-TZTP Small molecule or natural product Click here for species-specific activity table Hs Full agonist 8.1 pKi 47
pKi 8.1 [47]
NNC 11-1314 Small molecule or natural product Click here for species-specific activity table Hs Full agonist 7.1 – 7.7 pKi 20
pKi 7.1 – 7.7 [20]
xanomeline Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Partial agonist 7.2 – 7.4 pKi 88,117,126
pKi 7.2 – 7.4 [88,117,126]
sabcomeline Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 7.0 pKi 126
pKi 7.0 [126]
arecaidine propargyl ester Small molecule or natural product Click here for species-specific activity table Hs Full agonist 5.7 pKi 47
pKi 5.7 [47]
acetylcholine Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Rn Full agonist 5.6 pKi 19
pKi 5.6 [19]
cevimeline Small molecule or natural product Approved drug Click here for species-specific activity table Hs Agonist 5.6 pKi 69
pKi 5.6 (Ki 2.575x10-6 M) [69]
Description: Displacement of [3H]QNB from cloned receptor.
arecoline Small molecule or natural product Click here for species-specific activity table Hs Full agonist 5.4 pKi 47,82,94
pKi 5.4 [47,82,94]
oxotremorine Small molecule or natural product Click here for species-specific activity table Hs Full agonist 5.3 pKi 47,94
pKi 5.3 [47,94]
McN-A-343 Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 5.0 – 5.3 pKi 94
pKi 5.0 – 5.3 [94]
milameline Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 5.1 pKi 126
pKi 5.1 [126]
oxotremorine-M Small molecule or natural product Click here for species-specific activity table Hs Full agonist 5.1 pKi 47
pKi 5.1 [47]
pilocarpine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Partial agonist 5.1 pKi 47,94
pKi 5.1 [47,94]
acetylcholine Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Hs Full agonist 4.5 – 5.4 pKi 19,47,51
pKi 4.5 – 5.4 [19,47,51]
methylfurmethide Small molecule or natural product Click here for species-specific activity table Hs Full agonist 4.6 pKi 47
pKi 4.6 [47]
bethanechol Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Full agonist 4.2 pKi 47,94
pKi 4.2 [47,94]
carbachol Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 4.0 – 4.4 pKi 19,47,126
pKi 4.0 – 4.4 [19,47,126]
carbachol Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Rn Full agonist 4.2 pKi 19
pKi 4.2 [19]
furtrethonium Small molecule or natural product Click here for species-specific activity table Hs Full agonist 4.1 pKi 47
pKi 4.1 [47]
methacholine Small molecule or natural product Approved drug Click here for species-specific activity table Immunopharmacology Ligand Rn Agonist 6.9 pEC50 83,94
pEC50 6.9 (EC50 1.2x10-7 M) [83,94]
(+)-aceclidine Small molecule or natural product Click here for species-specific activity table Hs Full agonist 5.7 pEC50 29
pEC50 5.7 [29]
(-)-aceclidine Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 5.1 pEC50 29
pEC50 5.1 [29]
iperoxo Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Agonist - - 97
[97]
[3H]acetylcholine Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Ligand has a PDB structure Hs Agonist - -
View species-specific agonist tables
Agonist Comments
Please consult references [10,30,62,94,115,124] for further details of the activity of some of the ligands in this list.
McN-A-343 has been found to be a partial agonist at the M3 receptor [94,115]. However, in reference [62] it was found to be inactive in a study of GTPase activation.
Oxotremorine has been found to be a full agonist [30,94,115] and a partial agonist [62,94] at the M3 receptor.
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[3H]tiotropium Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Antagonist 10.7 pKd 96
pKd 10.7 [96]
[3H]QNB Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Antagonist 10.4 pKd 46,85
pKd 10.4 (Kd 3.98x10-11 M) [46,85]
CHF-6366 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 10.2 pKd 16
pKd 10.2 (Kd 6.3x10-11 M) [16]
Description: Binding to human cloned M3 receptor using [3H]-N-methylscopolamine as tracer
[3H]N-methyl scopolamine Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Rn Antagonist 10.0 pKd 19,115
pKd 10.0 [19,115]
[3H]N-methyl scopolamine Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Antagonist 9.7 – 10.2 pKd 17,43,46-47,52,60
pKd 9.7 – 10.2 (Kd 2.2x10-10 – 6x10-11 M) [17,43,46-47,52,60]
[3H]darifenacin Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Antagonist 9.5 pKd 101
pKd 9.5 (Kd 3.16x10-10 M) [101]
biperiden Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 8.4 pKd 6
pKd 8.4 (Kd 3.9x10-9 M) [6]
N-methyl scopolamine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 10.4 pKi 25
pKi 10.4 [25]
tiotropium Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Immunopharmacology Ligand Hs Antagonist 9.5 – 11.1 pKi 24-25,90,107-108
pKi 9.5 – 11.1 [24-25,90,107-108]
umeclidinium Small molecule or natural product Approved drug Click here for species-specific activity table Immunopharmacology Ligand Hs Antagonist 10.2 pKi 57,96
pKi 10.2 (Ki 6x10-11 M) [57,96]
aclidinium Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 10.1 – 10.2 pKi 90,108
pKi 10.1 – 10.2 [90,108]
propantheline Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 10.0 pKi 44
pKi 10.0 [44]
AE9C90CB Small molecule or natural product Click here for species-specific activity table Hs Antagonist 9.9 pKi 100
pKi 9.9 [100]
revefenacin Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 9.8 pKi 42
pKi 9.8 (Ki 1.78x10-10 M) [42]
Description: Determined from a radioligand binding assay using membranes from CHO‐K1 cells expressing the hM3 receptor, and displacement of [3H]NMS tracer.
clidinium Small molecule or natural product Approved drug Primary target of this compound Hs Antagonist 9.6 pKi 25
pKi 9.6 [25]
ipratropium Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Immunopharmacology Ligand Hs Antagonist 9.3 – 9.8 pKi 25,43,90
pKi 9.3 – 9.8 [25,43,90]
scopolamine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 9.4 pKi 6,44
pKi 9.4 [6,44]
4-DAMP Small molecule or natural product Click here for species-specific activity table Hs Antagonist 9.3 pKi 27
pKi 9.3 [27]
4-DAMP Small molecule or natural product Click here for species-specific activity table Rn Antagonist 9.2 pKi 50
pKi 9.2 [50]
atropine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 8.5 – 9.8 pKi 21,43-44,85
pKi 8.5 – 9.8 [21,43-44,85]
[3H]4-DAMP Small molecule or natural product Ligand is labelled Ligand is radioactive Hs Antagonist 8.8 – 9.4 pKi 18,48
pKi 8.8 – 9.4 [18,48]
dicyclomine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 9.0 pKi 3
pKi 9.0 (Ki 9.3x10-10 M) [3]
atropine Small molecule or natural product Approved drug Click here for species-specific activity table Rn Antagonist 8.7 – 9.3 pKi 19,50
pKi 8.7 – 9.3 [19,50]
darifenacin Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 8.9 – 9.1 pKi 37,43,100
pKi 8.9 – 9.1 [37,43,100]
hexocyclium Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.9 pKi 11
pKi 8.9 [11]
silahexocyclium Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.9 pKi 11
pKi 8.9 [11]
oxybutynin Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 8.8 pKi 23,100
pKi 8.8 [23,100]
mepenzolic acid Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 8.6 pKi 129
pKi 8.6 (Ki 2.6x10-9 M) [129]
tolterodine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 8.4 – 8.5 pKi 37,100
pKi 8.4 – 8.5 [37,100]
UH-AH 37 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.1 – 8.2 pKi 37,123
pKi 8.1 – 8.2 [37,123]
p-F-HHSiD Small molecule or natural product Rn Antagonist 8.0 pKi 50
pKi 8.0 [50]
amitriptyline Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 7.9 pKi 102
pKi 7.9 (Ki 1.28x10-8 M) [102]
hexahydrosiladifenidol Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.7 – 8.0 pKi 11,31
pKi 7.7 – 8.0 [11,31]
solifenacin Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 7.7 – 8.0 pKi 45,100
pKi 7.7 – 8.0 [45,100]
hexahydrodifenidol Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.8 pKi 11
pKi 7.8 [11]
p-F-HHSiD Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.3 – 7.9 pKi 31,44
pKi 7.3 – 7.9 [31,44]
dosulepin Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 7.4 pKi 102
pKi 7.4 (Ki 3.8x10-8 M) [102]
AQ-RA 741 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.2 – 7.3 pKi 27,37
pKi 7.2 – 7.3 [27,37]
AFDX384 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.2 pKi 27
pKi 7.2 [27]
himbacine Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.9 – 7.2 pKi 27,49,75
pKi 6.9 – 7.2 [27,49,75]
tropicamide Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 7.0 pKi 21
pKi 7.0 [21]
(S)-dimetindene Small molecule or natural product Click here for species-specific activity table Immunopharmacology Ligand Hs Antagonist 6.9 pKi 14
pKi 6.9 (Ki 1.38x10-7 M) [14]
Description: Binding to hM3 receptors expressed in CHO cells.
tripitramine Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.8 pKi 76
pKi 6.8 [76]
pirenzepine Small molecule or natural product Approved drug Click here for species-specific activity table Rn Antagonist 6.7 pKi 50
pKi 6.7 [50]
pirenzepine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 6.5 – 6.8 pKi 11,27,41,44,49,123
pKi 6.5 – 6.8 [11,27,41,44,49,123]
methoctramine Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.1 – 6.9 pKi 11,27,31,41,101
pKi 6.1 – 6.9 [11,27,31,41,101]
guanylpirenzepine Small molecule or natural product Click here for species-specific activity table Rn Antagonist 6.2 pKi 114
pKi 6.2 [114]
otenzepad Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.1 pKi 11
pKi 6.1 [11]
VU0255035 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.1 pKi 98
pKi 6.1 [98]
otenzepad Small molecule or natural product Click here for species-specific activity table Rn Antagonist 6.0 pKi 50
pKi 6.0 [50]
muscarinic toxin 3 Peptide Click here for species-specific activity table Hs Antagonist <6.0 pKi 49
pKi <6.0 [49]
lithocholylcholine Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.0 pKi 19
pKi 6.0 [19]
lithocholylcholine Small molecule or natural product Click here for species-specific activity table Rn Antagonist 6.0 pKi 19
pKi 6.0 [19]
muscarinic toxin 7 Peptide Click here for species-specific activity table Hs Antagonist <5.0 pKi 78
pKi <5.0 [78]
ML381 Small molecule or natural product Click here for species-specific activity table Hs Antagonist <4.5 pKi 36
pKi <4.5 (Ki >3x10-5 M) [36]
glycopyrrolate Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Immunopharmacology Ligand Hs Antagonist 9.6 – 9.8 pIC50 105,107
pIC50 9.6 – 9.8 [105,107]
Description: Assay uses glycopyrronium bromide
solifenacin Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 6.9 pIC50 89
pIC50 6.9 (IC50 1.308x10-7 M) [89]
View species-specific antagonist tables
Antagonist Comments
Biperiden is an approved drug antagonist of muscarinic acetylcholine receptors. We have tagged the M1 subtype as the drug's primary target as affinity is 10-fold higher at this receptor subtype [6].
Allosteric Modulators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
alcuronium Small molecule or natural product Click here for species-specific activity table Hs Negative 5.8 pKd 47
pKd 5.8 [47]
vincamine Small molecule or natural product Click here for species-specific activity table Hs Neutral 5.7 pKd 47
pKd 5.7 [47]
WIN 51,708 Small molecule or natural product Click here for species-specific activity table Hs Negative 5.5 pKd 65
pKd 5.5 [65]
vinburnine Small molecule or natural product Click here for species-specific activity table Hs Neutral 5.2 pKd 47
pKd 5.2 [47]
Gö 7874 Small molecule or natural product Click here for species-specific activity table Hs Negative 5.1 pKd 64
pKd 5.1 [64]
WIN 62,577 Small molecule or natural product Click here for species-specific activity table Hs Positive 5.1 pKd 65
pKd 5.1 (Kd 7.94x10-6 M) [65]
strychnine Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Negative 4.2 – 5.7 pKd 47,60
pKd 4.2 – 5.7 [47,60]
thiochrome Small molecule or natural product Click here for species-specific activity table Hs Neutral 4.4 pKd 61
pKd 4.4 [61]
N-benzyl brucine Small molecule or natural product Click here for species-specific activity table Hs Negative 3.8 pKd 63
pKd 3.8 [63]
N-benzyl brucine Small molecule or natural product Click here for species-specific activity table Hs Positive 3.8 pKd 63
pKd 3.8 [63]
brucine Small molecule or natural product Click here for species-specific activity table Hs Negative 3.6 – 4.0 pKd 47,63
pKd 3.6 – 4.0 [47,63]
N-chloromethyl-brucine Small molecule or natural product Click here for species-specific activity table Hs Positive 3.3 pKd 63
pKd 3.3 (Kd 5.012x10-4 M) [63]
brucine N-oxide Small molecule or natural product Click here for species-specific activity table Hs Neutral 2.5 pKd 63
pKd 2.5 [63]
brucine N-oxide Small molecule or natural product Click here for species-specific activity table Hs Positive 2.5 pKd 63
pKd 2.5 [63]
VU0119498 Small molecule or natural product Click here for species-specific activity table Hs Positive 5.2 pEC50 8
pEC50 5.2 (EC50 6.38x10-6 M) [8]
Primary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gq/G11 family Phospholipase C stimulation
References:  9,84
Tissue Distribution Click here for help
Lung.
Species:  Human
Technique:  Radioligand binding.
References:  70
Ciliary muscle.
Species:  Human
Technique:  In situ hybridisation and Northern blotting.
References:  133
Esophageal smooth muscle.
Species:  Human
Technique:  Radioligand binding.
References:  91
Bladder.
Species:  Human
Technique:  RT-PCR.
References:  111
CNS: cerebral cortex, corpus striatum, hippocampus, thalamus, hypothalamus, midbrain, pons-medulla.
Species:  Mouse
Technique:  Radioligand binding.
References:  79
Intestinal smooth muscle.
Species:  Rat
Technique:  Radioligand binding.
References:  15
Heart: intrinsic neurons.
Species:  Rat
Technique:  in situ hybridisation.
References:  40
Gastric smooth muscle.
Species:  Rat
Technique:  RT-PCR.
References:  68
CNS: pons.
Species:  Rat
Technique:  Radioligand binding.
References:  4
CNS: basal forebrain, parabigeminal nucleus, pedunculopontine and laterodorsal tegmental nuclei, cranial nerve nuclei.
Species:  Rat
Technique:  in situ hybridisation.
References:  112
CNS: cerebral cortex, hippocampu, corpus striatum, olfactory tubercle, midbrain, pons-medulla, cerebellum.
Species:  Rat
Technique:  Immunoprecipitation.
References:  130
CNS: hippocampus.
Species:  Rat
Technique:  immunocytochemistry.
References:  67
CNS: limbic cortical regions, striatum, hippocampus, anterior thalamic nuclei, superior colliculus, pontine nuclei.
Species:  Rat
Technique:  immunocytochemistry.
References:  66
Vestibular system.
Species:  Rat
Technique:  RT-PCR.
References:  113
Salivary gland: striated and interlobular duct cells.
Species:  Rat
Technique:  Immunohistochemistry.
References:  99
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays Click here for help
Measurement of IP levels in isolated rat ventricular cardiomyocytes.
Species:  Rat
Tissue:  Isolated ventricular cardiomyocytes.
Response measured:  Stimulation of IP formation.
References:  92
Measurement of PI hydrolysis in CHO cells transfected with the human M3 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Stimulation of PI hydrolysis.
References:  20
Measurement of IP3 levels in CHO cells transfected with the rat M3 receptor.
Species:  Rat
Tissue:  CHO cells.
Response measured:  Stimulation of IP3 accumulation.
References:  19
Measurement of IP1 levels in murine fibroblast cells (B82) transfected with the rat M3 receptor.
Species:  Rat
Tissue:  B82 cells.
Response measured:  Stimulation of IP1 accumulation.
References:  50
Measurement of cAMP and Ca2+ levels in rat parotid cells endogenously expressing the M3 receptor.
Species:  Rat
Tissue:  Parotid cells.
Response measured:  Inhibition of cAMP accumulation and stimulation of Ca2+ mobilisation.
References:  80
Measurement of IP levels in CHO cells transfected with the human M3 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Stimulation of IP accumulation.
References:  94,118
Measurement of IP levels in human right atrial slices.
Species:  Human
Tissue:  Atrial slices.
Response measured:  Stimulation of IP formation.
References:  125
Measurement of neuronal nitric oxide synthetase activity in CHO cells transfected with the M3 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Increase in NO synthetase activity.
References:  116
Measurement of ERK1/2 activity in COS-7 cells transfected with the human M3 receptor.
Species:  Human
Tissue:  COS-7 cells.
Response measured:  Increase in ERK1/2 activity.
References:  95
Measurement of ERK1/2 activity in CHO cells transfected with the human M3 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Increase in ERK1/2 activity.
References:  12
Measurement of ERK1/2 activity in human SK-N-BE2(C) cells endogenously expressing the M3 receptor.
Species:  Human
Tissue:  SK-N-BE2(C) cells.
Response measured:  Increase in ERK1/2 activity.
References:  54
Measurement of the effects of a ligand on the level, or rate, of binding of GTPγ35S to membranes.
Species:  Human
Tissue:  CHO cells.
Response measured:  The binding of GTPγ35S to G proteins coupled to the receptor.
References:  5,59-62,64-65
Measurement of the effects of a ligand on the rate of hydrolysis of GTP by G proteins in membranes.
Species:  Human
Tissue:  CHO cell membranes.
Response measured:  Generation of 32Pi from [γ-32P]GTP.
References:  62
Physiological Functions Click here for help
Vasodilation.
Species:  Rat
Tissue:  Thoracic aortic rings.
References:  53
Vasodilation
Species:  Mouse
Tissue:  Thoracic aortic rings.
References:  53
Stimulation of pancreatic insulin and glucagon release.
Species:  Mouse
Tissue:  In vivo.
References:  26
Bronchoconstriction.
Species:  Rat
Tissue:  Isolated lung.
References:  87
Modulation of salivary gland function.
Species:  Rat
Tissue:  In vivo.
References:  109
Modulation of excitatory transmission.
Species:  Rat
Tissue:  Mesencephalic slices.
References:  39
Gastric acid secretion.
Species:  Rat
Tissue:  Gastric parietal cells.
References:  86
Modulation of insulin secretion.
Species:  Rat
Tissue:  Isolated pancreatic islets.
References:  93
Vasodilation.
Species:  Rat
Tissue:  Pulmonary artery.
References:  74
Stimulation of urination.
Species:  Rat
Tissue:  In vivo.
References:  55
Contraction.
Species:  Human
Tissue:  Urinary bladder detrusor muscle.
References:  22
Contraction.
Species:  Rat
Tissue:  Urinary bladder detrusor muscle.
References:  81
Contraction.
Species:  Human
Tissue:  Esophageal smooth muscle.
References:  91
Contraction.
Species:  Rat
Tissue:  Ileum.
References:  15
Physiological Consequences of Altering Gene Expression Click here for help
M3 receptor knockout mice exhibit impaired gastric acid secretion.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  1-2
M3 receptor knockout mice show reduced adiposity and serum insulin and leptin levels, and exhibit reduced food intake.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  128
Lung slices from M3 receptor knockout mice exhibit reduced agonist-induced bronchoconstriction compared to wild-type mice.
This bronchoconstriction is completely abolished in M2/M3 double knockout mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  106
M3 receptor knockout mice exhibit abolished agonist-induced or vagally-stimulated bronchoconstriction in vivo.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  32
Isolated coronary arteries and aortic rings from M3 receptor knockout mice exhibit a reduction in agonist-induced dilation compared to wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  58
M3 receptor knockout mice exhibit alterations in paradoxical sleep.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  38
M3 receptor knockout mice exhibit growth retardation, increased pupil size and reduced salivary secretion.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  72
Striatal slices from M3 receptor knockout mice exhibit an increase in muscarinic agonist-induced potentiation of dopamine release.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  132
M3 receptor knockout mice exhibit abolished agonist-induced PLC activation and insulin secretion from pancreatic islets.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  131
M3 receptor knockout mice exhibit altered ventilatory pattern and chemosensitivity.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  7
M3 receptor knockout mice exhibit impaired salivation.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  77
M3 receptor knockout mice exhibit abolished agonist-induced pancreatic insulin and glucagon release as seen in wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  26
M3 receptor knockout mice exhibit reduced gastric pepsinogen secretion.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  127
Thoracic aortic rings from M3 receptor knockout mice exhibit reduced agonist-induced relaxation compared to those from wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  53
Transgenic mice overexpressing the M3 receptor in pancreatic β-cells exhibit increased glucose tolerance and insulin release. They are resistant to diet-induced glucose intolerance and hyperglycemia.
Species:  Mouse
Tissue: 
Technique:  Transgenesis.
References:  35
Mice that selectively lack the M3 receptor in pancreatic β-cells exhibit decreased glucose tolerance and impaired insulin release.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  35
M3 receptor knockout mice express an increase in basal and total energy expenditure.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  34
Smooth muscle preparations (gallbladder, urinary bladder, stomach fundus, trachea, ileum) from M3 receptor knockout mice exhibit reduced agonist-induced contractions compared to wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  28,72,103-104
Smooth muscle preparations (gallbladder, urinary bladder, stomach fundus, trachea) from M3 receptor knockout mice exhibit reduced agonist-induced contractions compared to wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  72,103-104
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:88398  MP:0004994 abnormal brain wave pattern PMID: 16110248 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac
MGI:88398  MP:0001663 abnormal digestive system physiology PMID: 11959688 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:88398  MP:0003194 abnormal frequency of paradoxical sleep PMID: 16110248 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:88398  MP:0005085 abnormal gallbladder physiology PMID: 11961069 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * C57BL/6J
MGI:88398  MP:0002078 abnormal glucose homeostasis PMID: 11242080 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
B6.129X1-Chrm3
MGI:88398  MP:0002503 abnormal histamine physiology PMID: 15691866 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ
MGI:88398  MP:0002945 abnormal inhibitory postsynaptic currents PMID: 12859343 
Chrm1tm1Kano|Chrm3tm1Mmt Chrm1tm1Kano/Chrm1tm1Kano,Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88396  MGI:88398  MP:0002945 abnormal inhibitory postsynaptic currents PMID: 12859343 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac
MGI:88398  MP:0002133 abnormal respiratory system physiology PMID: 11959688 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ
MGI:88398  MP:0005310 abnormal salivary gland physiology PMID: 15146045 
Chrm1tm1Kano|Chrm3tm1Mmt Chrm1tm1Kano/Chrm1tm1Kano,Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88396  MGI:88398  MP:0005310 abnormal salivary gland physiology PMID: 15146045 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88398  MP:0000538 abnormal urinary bladder morphology PMID: 10944224 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac
MGI:88398  MP:0010386 abnormal urinary bladder physiology PMID: 11959688 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:88398  MP:0001945 bronchoconstriction PMID: 14645675 
Chrm2tm1Jwe|Chrm3tm1Jwe Chrm2tm1Jwe/Chrm2tm1Jwe,Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S4/SvJae * 129S6/SvEvTac * CF-1
MGI:88397  MGI:88398  MP:0001945 bronchoconstriction PMID: 14645675 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88398  MP:0001265 decreased body size PMID: 10944224 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * C57BL/6J
MGI:88398  MP:0005534 decreased body temperature PMID: 11242080 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88398  MP:0001262 decreased body weight PMID: 10944224 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * C57BL/6J
MGI:88398  MP:0001262 decreased body weight PMID: 11242080  15220195 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
129S6/SvEvTac-Chrm3
MGI:88398  MP:0001262 decreased body weight PMID: 11242080 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac
MGI:88398  MP:0001262 decreased body weight PMID: 11959688 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * C57BL/6J
MGI:88398  MP:0002696 decreased circulating glucagon level PMID: 15220195 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * C57BL/6J
MGI:88398  MP:0005560 decreased circulating glucose level PMID: 15220195 
Chrm3tm2.1Jwe|Tg(Alb-cre)21Mgn Chrm3tm2.1Jwe/Chrm3tm2.1Jwe,Tg(Alb-cre)21Mgn/0
involves: 129S6/SvEvTac * C57BL/6 * DBA * FVB/N
MGI:2176226  MGI:88398  MP:0005560 decreased circulating glucose level PMID: 19752163 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * C57BL/6J
MGI:88398  MP:0002727 decreased circulating insulin level PMID: 11242080  15220195 
Chrm3+|Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3+
involves: 129S6/SvEvTac * C57BL/6J
MGI:88398  MP:0002727 decreased circulating insulin level PMID: 15220195 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * C57BL/6J
MGI:88398  MP:0005668 decreased circulating leptin level PMID: 11242080 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * C57BL/6J
MGI:88398  MP:0002644 decreased circulating triglyceride level PMID: 11242080 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
B6.129X1-Chrm3
MGI:88398  MP:0000505 decreased digestive secretion PMID: 15691866 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * C57BL/6J
MGI:88398  MP:0003910 decreased eating behavior PMID: 11242080 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * C57BL/6J
MGI:88398  MP:0002711 decreased glucagon secretion PMID: 15220195 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * C57BL/6J
MGI:88398  MP:0009283 decreased gonadal fat pad weight PMID: 11242080 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
129S6/SvEvTac-Chrm3
MGI:88398  MP:0009283 decreased gonadal fat pad weight PMID: 11242080 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * C57BL/6J
MGI:88398  MP:0003059 decreased insulin secretion PMID: 15220195 
Chrm3tm2Jwe|Tg(Ins2-cre)25Mgn Chrm3tm2Jwe/Chrm3tm2Jwe,Tg(Ins2-cre)25Mgn/0
involves: 129S6/SvEvTac * C57BL/6 * DBA
MGI:2176225  MGI:88398  MP:0003059 decreased insulin secretion PMID: 16753580 
Chrm3+|Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3+
involves: 129S6/SvEvTac * C57BL/6J
MGI:88398  MP:0003059 decreased insulin secretion PMID: 15220195 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ
MGI:88398  MP:0000623 decreased salivation PMID: 15146045 
Chrm1tm1Kano|Chrm3tm1Mmt Chrm1tm1Kano/Chrm1tm1Kano,Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88396  MGI:88398  MP:0000623 decreased salivation PMID: 15146045 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88398  MP:0000623 decreased salivation PMID: 10944224 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:88398  MP:0005591 decreased vasodilation PMID: 15130910 
Chrm2tm1Minm|Chrm3tm1Mmt Chrm2tm1Minm/Chrm2tm1Minm,Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88397  MGI:88398  MP:0000539 distended urinary bladder PMID: 12486155 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88398  MP:0000539 distended urinary bladder PMID: 10944224 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88398  MP:0000519 hydronephrosis PMID: 10944224 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:88398  MP:0009454 impaired contextual conditioning behavior PMID: 20439723 
Chrm3tm1Abt Chrm3tm1Abt/Chrm3tm1Abt
involves: 129X1/SvJ * C57BL/6
MGI:88398  MP:0009454 impaired contextual conditioning behavior PMID: 20439723 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88398  MP:0000741 impaired contractility of detrusor smooth muscle PMID: 10944224 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ
MGI:88398  MP:0000742 impaired contractility of ileal smooth muscle PMID: 12486155 
Chrm2tm1Minm|Chrm3tm1Mmt Chrm2tm1Minm/Chrm2tm1Minm,Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88397  MGI:88398  MP:0000742 impaired contractility of ileal smooth muscle PMID: 12486155 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88398  MP:0000742 impaired contractility of ileal smooth muscle PMID: 10944224 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:88398  MP:0009456 impaired cued conditioning behavior PMID: 20439723 
Chrm3tm1Abt Chrm3tm1Abt/Chrm3tm1Abt
involves: 129X1/SvJ * C57BL/6
MGI:88398  MP:0009456 impaired cued conditioning behavior PMID: 20439723 
Chrm3tm2Jwe|Tg(Ins2-cre)25Mgn Chrm3tm2Jwe/Chrm3tm2Jwe,Tg(Ins2-cre)25Mgn/0
involves: 129S6/SvEvTac * C57BL/6 * DBA
MGI:2176225  MGI:88398  MP:0005293 impaired glucose tolerance PMID: 16753580 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ
MGI:88398  MP:0000740 impaired smooth muscle contractility PMID: 12486155 
Chrm2tm1Minm|Chrm3tm1Mmt Chrm2tm1Minm/Chrm2tm1Minm,Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88397  MGI:88398  MP:0000740 impaired smooth muscle contractility PMID: 12486155 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:88398  MP:0000740 impaired smooth muscle contractility PMID: 11961069 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac
MGI:88398  MP:0000740 impaired smooth muscle contractility PMID: 11959688 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * C57BL/6J
MGI:88398  MP:0005292 improved glucose tolerance PMID: 15220195 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ
MGI:88398  MP:0003911 increased drinking behavior PMID: 15146045 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * C57BL/6J
MGI:88398  MP:0002891 increased insulin sensitivity PMID: 11242080 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ
MGI:88398  MP:0002546 mydriasis PMID: 12486155 
Chrm2tm1Minm|Chrm3tm1Mmt Chrm2tm1Minm/Chrm2tm1Minm,Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88397  MGI:88398  MP:0002546 mydriasis PMID: 12486155 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88398  MP:0002546 mydriasis PMID: 10944224 
Chrm2tm1Minm|Chrm3tm1Mmt Chrm2tm1Minm/Chrm2tm1Minm,Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88397  MGI:88398  MP:0001732 postnatal growth retardation PMID: 12486155 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * C57BL/6J
MGI:88398  MP:0001263 weight loss PMID: 11242080 
Clinically-Relevant Mutations and Pathophysiology Click here for help
Disease:  Prune belly syndrome
Synonyms: Abdominal muscles, absence of, with urinary tract abnormality and cryptorchidism
Eagle-Barrett syndrome
OMIM: 100100
Orphanet: ORPHA2970
References:  119
General Comments
For reviews on muscarinic receptor knockout mice see [13,73,120-122].

References

Show »

1. Aihara T, Fujishita T, Kanatani K, Furutani K, Nakamura E, Taketo MM, Matsui M, Chen D, Okabe S. (2003) Impaired gastric secretion and lack of trophic responses to hypergastrinemia in M3 muscarinic receptor knockout mice. Gastroenterology, 125 (6): 1774-84. [PMID:14724830]

2. Aihara T, Nakamura Y, Taketo MM, Matsui M, Okabe S. (2005) Cholinergically stimulated gastric acid secretion is mediated by M(3) and M(5) but not M(1) muscarinic acetylcholine receptors in mice. Am J Physiol Gastrointest Liver Physiol, 288 (6): G1199-207. [PMID:15691866]

3. Auerbach SS, DrugMatrix® and ToxFX® Coordinator National Toxicology Program. National Toxicology Program: Dept of Health and Human Services. Accessed on 02/05/2014. Modified on 02/05/2014. DrugMatrix, https://ntp.niehs.nih.gov/drugmatrix/index.html

4. Baghdoyan HA. (1997) Location and quantification of muscarinic receptor subtypes in rat pons: implications for REM sleep generation. Am J Physiol, 273 (3 Pt 2): R896-904. [PMID:9321865]

5. Birdsall NJ, Farries T, Gharagozloo P, Kobayashi S, Lazareno S, Sugimoto M. (1999) Subtype-selective positive cooperative interactions between brucine analogs and acetylcholine at muscarinic receptors: functional studies. Mol Pharmacol, 55 (4): 778-86. [PMID:10101037]

6. Bolden C, Cusack B, Richelson E. (1992) Antagonism by antimuscarinic and neuroleptic compounds at the five cloned human muscarinic cholinergic receptors expressed in Chinese hamster ovary cells. J Pharmacol Exp Ther, 260 (2): 576-80. [PMID:1346637]

7. Boudinot E, Yamada M, Wess J, Champagnat J, Foutz AS. (2004) Ventilatory pattern and chemosensitivity in M1 and M3 muscarinic receptor knockout mice. Respir Physiol Neurobiol, 139 (3): 237-45. [PMID:15122990]

8. Bridges TM, Marlo JE, Niswender CM, Jones CK, Jadhav SB, Gentry PR, Plumley HC, Weaver CD, Conn PJ, Lindsley CW. (2009) Discovery of the first highly M5-preferring muscarinic acetylcholine receptor ligand, an M5 positive allosteric modulator derived from a series of 5-trifluoromethoxy N-benzyl isatins. J Med Chem, 52 (11): 3445-8. [PMID:19438238]

9. Bräuner-Osborne H, Brann MR. (1996) Pharmacology of muscarinic acetylcholine receptor subtypes (m1-m5): high throughput assays in mammalian cells. Eur J Pharmacol, 295 (1): 93-102. [PMID:8925880]

10. Bräuner-Osborne H, Ebert B, Brann MR, Falch E, Krogsgaard-Larsen P. (1996) Functional partial agonism at cloned human muscarinic acetylcholine receptors. Eur J Pharmacol, 313 (1-2): 145-50. [PMID:8905341]

11. Buckley NJ, Bonner TI, Buckley CM, Brann MR. (1989) Antagonist binding properties of five cloned muscarinic receptors expressed in CHO-K1 cells. Mol Pharmacol, 35 (4): 469-76. [PMID:2704370]

12. Budd DC, Rae A, Tobin AB. (1999) Activation of the mitogen-activated protein kinase pathway by a Gq/11-coupled muscarinic receptor is independent of receptor internalization. J Biol Chem, 274 (18): 12355-60. [PMID:10212206]

13. Bymaster FP, McKinzie DL, Felder CC, Wess J. (2003) Use of M1-M5 muscarinic receptor knockout mice as novel tools to delineate the physiological roles of the muscarinic cholinergic system. Neurochem Res, 28 (3-4): 437-42. [PMID:12675128]

14. Böhme TM, Keim C, Kreutzmann K, Linder M, Dingermann T, Dannhardt G, Mutschler E, Lambrecht G. (2003) Structure-activity relationships of dimethindene derivatives as new M2-selective muscarinic receptor antagonists. J Med Chem, 46 (5): 856-67. [PMID:12593665]

15. Candell LM, Yun SH, Tran LL, Ehlert FJ. (1990) Differential coupling of subtypes of the muscarinic receptor to adenylate cyclase and phosphoinositide hydrolysis in the longitudinal muscle of the rat ileum. Mol Pharmacol, 38 (5): 689-97. [PMID:2172776]

16. Carzaniga L, Linney ID, Rizzi A, Delcanale M, Schmidt W, Knight CK, Pastore F, Miglietta D, Carnini C, Cesari N et al.. (2022) Discovery of Clinical Candidate CHF-6366: A Novel Super-soft Dual Pharmacology Muscarinic Antagonist and β2 Agonist (MABA) for the Inhaled Treatment of Respiratory Diseases. J Med Chem, 65 (15): 10233-10250. [PMID:35901125]

17. Cembala TM, Sherwin JD, Tidmarsh MD, Appadu BL, Lambert DG. (1998) Interaction of neuromuscular blocking drugs with recombinant human m1-m5 muscarinic receptors expressed in Chinese hamster ovary cells. Br J Pharmacol, 125 (5): 1088-94. [PMID:9846649]

18. Ch'ng SS, Walker AJ, McCarthy M, Le TK, Thomas N, Gibbons A, Udawela M, Kusljic S, Dean B, Gogos A. (2020) The Impact of Removal of Ovarian Hormones on Cholinergic Muscarinic Receptors: Examining Prepulse Inhibition and Receptor Binding. Brain Sci, 10 (2). [PMID:32079174]

19. Cheng K, Khurana S, Chen Y, Kennedy RH, Zimniak P, Raufman JP. (2002) Lithocholylcholine, a bile acid/acetylcholine hybrid, is a muscarinic receptor antagonist. J Pharmacol Exp Ther, 303 (1): 29-35. [PMID:12235229]

20. Christopoulos A, Grant MK, Ayoubzadeh N, Kim ON, Sauerberg P, Jeppesen L, El-Fakahany EE. (2001) Synthesis and pharmacological evaluation of dimeric muscarinic acetylcholine receptor agonists. J Pharmacol Exp Ther, 298 (3): 1260-8. [PMID:11504829]

21. Croy CH, Chan WY, Castetter AM, Watt ML, Quets AT, Felder CC. (2016) Characterization of PCS1055, a novel muscarinic M4 receptor antagonist. Eur J Pharmacol, 782: 70-6. [PMID:27085897]

22. D'Agostino G, Bolognesi ML, Lucchelli A, Vicini D, Balestra B, Spelta V, Melchiorre C, Tonini M. (2000) Prejunctional muscarinic inhibitory control of acetylcholine release in the human isolated detrusor: involvement of the M4 receptor subtype. Br J Pharmacol, 129 (3): 493-500. [PMID:10711347]

23. Del Bello F, Barocelli E, Bertoni S, Bonifazi A, Camalli M, Campi G, Giannella M, Matucci R, Nesi M, Pigini M et al.. (2012) 1,4-dioxane, a suitable scaffold for the development of novel M₃ muscarinic receptor antagonists. J Med Chem, 55 (4): 1783-7. [PMID:22243489]

24. Disse B, Reichl R, Speck G, Traunecker W, Ludwig Rominger KL, Hammer R. (1993) Ba 679 BR, a novel long-acting anticholinergic bronchodilator. Life Sci, 52 (5-6): 537-44. [PMID:8441333]

25. Dowling MR, Charlton SJ. (2006) Quantifying the association and dissociation rates of unlabelled antagonists at the muscarinic M3 receptor. Br J Pharmacol, 148 (7): 927-37. [PMID:16847442]

26. Duttaroy A, Zimliki CL, Gautam D, Cui Y, Mears D, Wess J. (2004) Muscarinic stimulation of pancreatic insulin and glucagon release is abolished in m3 muscarinic acetylcholine receptor-deficient mice. Diabetes, 53 (7): 1714-20. [PMID:15220195]

27. Dörje F, Wess J, Lambrecht G, Tacke R, Mutschler E, Brann MR. (1991) Antagonist binding profiles of five cloned human muscarinic receptor subtypes. J Pharmacol Exp Ther, 256 (2): 727-33. [PMID:1994002]

28. Ehlert FJ, Griffin MT, Abe DM, Vo TH, Taketo MM, Manabe T, Matsui M. (2005) The M2 muscarinic receptor mediates contraction through indirect mechanisms in mouse urinary bladder. J Pharmacol Exp Ther, 313 (1): 368-78. [PMID:15608083]

29. Ehlert FJ, Griffin MT, Glidden PF. (1996) The interaction of the enantiomers of aceclidine with subtypes of the muscarinic receptor. J Pharmacol Exp Ther, 279 (3): 1335-44. [PMID:8968358]

30. Ehlert FJ, Griffin MT, Sawyer GW, Bailon R. (1999) A simple method for estimation of agonist activity at receptor subtypes: comparison of native and cloned M3 muscarinic receptors in guinea pig ileum and transfected cells. J Pharmacol Exp Ther, 289 (2): 981-92. [PMID:10215678]

31. Esqueda EE, Gerstin Jr EH, Griffin MT, Ehlert FJ. (1996) Stimulation of cyclic AMP accumulation and phosphoinositide hydrolysis by M3 muscarinic receptors in the rat peripheral lung. Biochem Pharmacol, 52 (4): 643-58. [PMID:8759038]

32. Fisher JT, Vincent SG, Gomeza J, Yamada M, Wess J. (2004) Loss of vagally mediated bradycardia and bronchoconstriction in mice lacking M2 or M3 muscarinic acetylcholine receptors. FASEB J, 18 (6): 711-3. [PMID:14977875]

33. Forsythe SM, Kogut PC, McConville JF, Fu Y, McCauley JA, Halayko AJ, Liu HW, Kao A, Fernandes DJ, Bellam S et al.. (2002) Structure and transcription of the human m3 muscarinic receptor gene. Am J Respir Cell Mol Biol, 26 (3): 298-305. [PMID:11867338]

34. Gautam D, Gavrilova O, Jeon J, Pack S, Jou W, Cui Y, Li JH, Wess J. (2006) Beneficial metabolic effects of M3 muscarinic acetylcholine receptor deficiency. Cell Metab, 4 (5): 363-75. [PMID:17084710]

35. Gautam D, Han SJ, Hamdan FF, Jeon J, Li B, Li JH, Cui Y, Mears D, Lu H, Deng C et al.. (2006) A critical role for beta cell M3 muscarinic acetylcholine receptors in regulating insulin release and blood glucose homeostasis in vivo. Cell Metab, 3 (6): 449-61. [PMID:16753580]

36. Gentry PR, Kokubo M, Bridges TM, Cho HP, Smith E, Chase P, Hodder PS, Utley TJ, Rajapakse A, Byers F et al.. (2014) Discovery, synthesis and characterization of a highly muscarinic acetylcholine receptor (mAChR)-selective M5-orthosteric antagonist, VU0488130 (ML381): a novel molecular probe. ChemMedChem, 9 (8): 1677-82. [PMID:24692176]

37. Gillberg PG, Sundquist S, Nilvebrant L. (1998) Comparison of the in vitro and in vivo profiles of tolterodine with those of subtype-selective muscarinic receptor antagonists. Eur J Pharmacol, 349 (2-3): 285-92. [PMID:9671109]

38. Goutagny R, Comte JC, Salvert D, Gomeza J, Yamada M, Wess J, Luppi PH, Fort P. (2005) Paradoxical sleep in mice lacking M3 and M2/M4 muscarinic receptors. Neuropsychobiology, 52 (3): 140-6. [PMID:16110248]

39. Grillner P, Bonci A, Svensson TH, Bernardi G, Mercuri NB. (1999) Presynaptic muscarinic (M3) receptors reduce excitatory transmission in dopamine neurons of the rat mesencephalon. Neuroscience, 91 (2): 557-65. [PMID:10366013]

40. Hassall CJ, Stanford SC, Burnstock G, Buckley NJ. (1993) Co-expression of four muscarinic receptor genes by the intrinsic neurons of the rat and guinea-pig heart. Neuroscience, 56 (4): 1041-8. [PMID:8284034]

41. Hegde SS, Choppin A, Bonhaus D, Briaud S, Loeb M, Moy TM, Loury D, Eglen RM. (1997) Functional role of M2 and M3 muscarinic receptors in the urinary bladder of rats in vitro and in vivo. Br J Pharmacol, 120 (8): 1409-18. [PMID:9113359]

42. Hegde SS, Pulido-Rios MT, Luttmann MA, Foley JJ, Hunsberger GE, Steinfeld T, Lee T, Ji Y, Mammen MM, Jasper JR. (2018) Pharmacological properties of revefenacin (TD-4208), a novel, nebulized long-acting, and lung selective muscarinic antagonist, at human recombinant muscarinic receptors and in rat, guinea pig, and human isolated airway tissues. Pharmacol Res Perspect, 6 (3): e00400. [PMID:29736245]

43. Hirose H, Aoki I, Kimura T, Fujikawa T, Numazawa T, Sasaki K, Sato A, Hasegawa T, Nishikibe M, Mitsuya M et al.. (2001) Pharmacological properties of (2R)-N-[1-(6-aminopyridin-2-ylmethyl)piperidin-4-yl]-2-[(1R)-3,3-difluorocyclopentyl]-2-hydroxy-2-phenylacetamide: a novel mucarinic antagonist with M(2)-sparing antagonistic activity. J Pharmacol Exp Ther, 297 (2): 790-7. [PMID:11303071]

44. Huang F, Buchwald P, Browne CE, Farag HH, Wu WM, Ji F, Hochhaus G, Bodor N. (2001) Receptor binding studies of soft anticholinergic agents. AAPS PharmSci, 3 (4): E30. [PMID:12049493]

45. Ikeda K, Kobayashi S, Suzuki M, Miyata K, Takeuchi M, Yamada T, Honda K. (2002) M(3) receptor antagonism by the novel antimuscarinic agent solifenacin in the urinary bladder and salivary gland. Naunyn Schmiedebergs Arch Pharmacol, 366 (2): 97-103. [PMID:12122494]

46. Jakubík J, Bacáková L, el-Fakahany EE, Tucek S. (1995) Subtype selectivity of the positive allosteric action of alcuronium at cloned M1-M5 muscarinic acetylcholine receptors. J Pharmacol Exp Ther, 274 (3): 1077-83. [PMID:7562472]

47. Jakubík J, Bacáková L, El-Fakahany EE, Tucek S. (1997) Positive cooperativity of acetylcholine and other agonists with allosteric ligands on muscarinic acetylcholine receptors. Mol Pharmacol, 52 (1): 172-9. [PMID:9224827]

48. Jeon WJ, Gibbons AS, Dean B. (2013) The use of a modified [3H]4-DAMP radioligand binding assay with increased selectivity for muscarinic M3 receptor shows that cortical CHRM3 levels are not altered in mood disorders. Prog Neuropsychopharmacol Biol Psychiatry, 47: 7-12. [PMID:23962466]

49. Jolkkonen M, van Giersbergen PL, Hellman U, Wernstedt C, Karlsson E. (1994) A toxin from the green mamba Dendroaspis angusticeps: amino acid sequence and selectivity for muscarinic m4 receptors. FEBS Lett, 352 (1): 91-4. [PMID:7925952]

50. Kashihara K, Varga EV, Waite SL, Roeske WR, Yamamura HI. (1992) Cloning of the rat M3, M4 and M5 muscarinic acetylcholine receptor genes by the polymerase chain reaction (PCR) and the pharmacological characterization of the expressed genes. Life Sci, 51 (12): 955-71. [PMID:1325587]

51. Keov P, Valant C, Devine SM, Lane JR, Scammells PJ, Sexton PM, Christopoulos A. (2013) Reverse engineering of the selective agonist TBPB unveils both orthosteric and allosteric modes of action at the M₁ muscarinic acetylcholine receptor. Mol Pharmacol, 84 (3): 425-37. [PMID:23798605]

52. Khattar SK, Bora RS, Priyadarsiny P, Gupta D, Khanna A, Narayanan KL, Babu V, Chugh A, Saini KS. (2006) High level stable expression of pharmacologically active human M1-M5 muscarinic receptor subtypes in mammalian cells. Biotechnol Lett, 28 (2): 121-9. [PMID:16369696]

53. Khurana S, Yamada M, Wess J, Kennedy RH, Raufman JP. (2005) Deoxycholyltaurine-induced vasodilation of rodent aorta is nitric oxide- and muscarinic M(3) receptor-dependent. Eur J Pharmacol, 517 (1-2): 103-10. [PMID:15964566]

54. Kim JY, Yang MS, Oh CD, Kim KT, Ha MJ, Kang SS, Chun JS. (1999) Signalling pathway leading to an activation of mitogen-activated protein kinase by stimulating M3 muscarinic receptor. Biochem J, 337 ( Pt 2): 275-80. [PMID:9882625]

55. Kono M, Nakamura Y, Ishiura Y, Komatsu K, Kontani H, Namiki M. (2006) Central muscarinic receptor subtypes regulating voiding in rats. J Urol, 175 (1): 353-7. [PMID:16406941]

56. Kruse AC, Hu J, Pan AC, Arlow DH, Rosenbaum DM, Rosemond E, Green HF, Liu T, Chae PS, Dror RO et al.. (2012) Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature, 482 (7386): 552-6. [PMID:22358844]

57. Lainé DI, McCleland B, Thomas S, Neipp C, Underwood B, Dufour J, Widdowson KL, Palovich MR, Blaney FE, Foley JJ et al.. (2009) Discovery of novel 1-azoniabicyclo[2.2.2]octane muscarinic acetylcholine receptor antagonists. J Med Chem, 52 (8): 2493-505. [PMID:19317446]

58. Lamping KG, Wess J, Cui Y, Nuno DW, Faraci FM. (2004) Muscarinic (M) receptors in coronary circulation: gene-targeted mice define the role of M2 and M3 receptors in response to acetylcholine. Arterioscler Thromb Vasc Biol, 24: 1253-1258. [PMID:15130910]

59. Lazareno S, Birdsall NJ. (1993) Pharmacological characterization of acetylcholine-stimulated [35S]-GTP gamma S binding mediated by human muscarinic m1-m4 receptors: antagonist studies. Br J Pharmacol, 109 (4): 1120-7. [PMID:8401923]

60. Lazareno S, Birdsall NJ. (1995) Detection, quantitation, and verification of allosteric interactions of agents with labeled and unlabeled ligands at G protein-coupled receptors: interactions of strychnine and acetylcholine at muscarinic receptors. Mol Pharmacol, 48 (2): 362-78. [PMID:7651370]

61. Lazareno S, Dolezal V, Popham A, Birdsall NJ. (2004) Thiochrome enhances acetylcholine affinity at muscarinic M4 receptors: receptor subtype selectivity via cooperativity rather than affinity. Mol Pharmacol, 65 (1): 257-66. [PMID:14722259]

62. Lazareno S, Farries T, Birdsall NJ. (1993) Pharmacological characterization of guanine nucleotide exchange reactions in membranes from CHO cells stably transfected with human muscarinic receptors m1-m4. Life Sci, 52 (5-6): 449-56. [PMID:8441327]

63. Lazareno S, Gharagozloo P, Kuonen D, Popham A, Birdsall NJ. (1998) Subtype-selective positive cooperative interactions between brucine analogues and acetylcholine at muscarinic receptors: radioligand binding studies. Mol Pharmacol, 53 (3): 573-89. [PMID:9495826]

64. Lazareno S, Popham A, Birdsall NJ. (2000) Allosteric interactions of staurosporine and other indolocarbazoles with N-[methyl-(3)H]scopolamine and acetylcholine at muscarinic receptor subtypes: identification of a second allosteric site. Mol Pharmacol, 58 (1): 194-207. [PMID:10860942]

65. Lazareno S, Popham A, Birdsall NJ. (2002) Analogs of WIN 62,577 define a second allosteric site on muscarinic receptors. Mol Pharmacol, 62 (6): 1492-505. [PMID:12435818]

66. Levey AI, Edmunds SM, Heilman CJ, Desmond TJ, Frey KA. (1994) Localization of muscarinic m3 receptor protein and M3 receptor binding in rat brain. Neuroscience, 63 (1): 207-21. [PMID:7898649]

67. Levey AI, Edmunds SM, Koliatsos V, Wiley RG, Heilman CJ. (1995) Expression of m1-m4 muscarinic acetylcholine receptor proteins in rat hippocampus and regulation by cholinergic innervation. J Neurosci, 15 (5 Pt 2): 4077-92. [PMID:7751967]

68. Lin S, Kajimura M, Takeuchi K, Kodaira M, Hanai H, Kaneko E. (1997) Expression of muscarinic receptor subtypes in rat gastric smooth muscle: effect of M3 selective antagonist on gastric motility and emptying. Dig Dis Sci, 42 (5): 907-14. [PMID:9149041]

69. Loudon JM, Bromidge SM, Brown F, Clark MS, Hatcher JP, Hawkins J, Riley GJ, Noy G, Orlek BS. (1997) SB 202026: a novel muscarinic partial agonist with functional selectivity for M1 receptors. J Pharmacol Exp Ther, 283 (3): 1059-68. [PMID:9399977]

70. Mak JC, Barnes PJ. (1989) Muscarinic receptor subtypes in human and guinea pig lung. Eur J Pharmacol, 164 (2): 223-30. [PMID:2759174]

71. Matsui M, Araki Y, Karasawa H, Matsubara N, Taketo MM, Seldin MF. (1999) Mapping of five subtype genes for muscarinic acetylcholine receptor to mouse chromosomes. Genes Genet Syst, 74 (1): 15-21. [PMID:10549128]

72. Matsui M, Motomura D, Karasawa H, Fujikawa T, Jiang J, Komiya Y, Takahashi S, Taketo MM. (2000) Multiple functional defects in peripheral autonomic organs in mice lacking muscarinic acetylcholine receptor gene for the M3 subtype. Proc Natl Acad Sci USA, 97 (17): 9579-84. [PMID:10944224]

73. Matsui M, Yamada S, Oki T, Manabe T, Taketo MM, Ehlert FJ. (2004) Functional analysis of muscarinic acetylcholine receptors using knockout mice. Life Sci, 75 (25): 2971-81. [PMID:15474550]

74. McCormack DG, Mak JC, Minette P, Barnes PJ. (1988) Muscarinic receptor subtypes mediating vasodilation in the pulmonary artery. Eur J Pharmacol, 158 (3): 293-7. [PMID:3253104]

75. Miller JH, Aagaard PJ, Gibson VA, McKinney M. (1992) Binding and functional selectivity of himbacine for cloned and neuronal muscarinic receptors. J Pharmacol Exp Ther, 263 (2): 663-7. [PMID:1331410]

76. Minarini A, Marucci G, Bellucci C, Giorgi G, Tumiatti V, Bolognesi ML, Matera R, Rosini M, Melchiorre C. (2008) Design, synthesis, and biological evaluation of pirenzepine analogs bearing a 1,2-cyclohexanediamine and perhydroquinoxaline units in exchange for the piperazine ring as antimuscarinics. Bioorg Med Chem, 16 (15): 7311-20. [PMID:18595721]

77. Nakamura T, Matsui M, Uchida K, Futatsugi A, Kusakawa S, Matsumoto N, Nakamura K, Manabe T, Taketo MM, Mikoshiba K. (2004) M(3) muscarinic acetylcholine receptor plays a critical role in parasympathetic control of salivation in mice. J Physiol (Lond.), 558 (Pt 2): 561-75. [PMID:15146045]

78. Näsman J, Jolkkonen M, Ammoun S, Karlsson E, Akerman KE. (2000) Recombinant expression of a selective blocker of M(1) muscarinic receptors. Biochem Biophys Res Commun, 271 (2): 435-9. [PMID:10799315]

79. Oki T, Takagi Y, Inagaki S, Taketo MM, Manabe T, Matsui M, Yamada S. (2005) Quantitative analysis of binding parameters of [3H]N-methylscopolamine in central nervous system of muscarinic acetylcholine receptor knockout mice. Brain Res Mol Brain Res, 133 (1): 6-11. [PMID:15661360]

80. Olianas MC, Ingianni A, Maullu C, Adem A, Karlsson E, Onali P. (1999) Selectivity profile of muscarinic toxin 3 in functional assays of cloned and native receptors. J Pharmacol Exp Ther, 288 (1): 164-70. [PMID:9862767]

81. Orman B, Sterin-Borda L, Reina S, Borda ES. (2005) Neuronal nitric oxide synthase activity in rat urinary bladder detrusor: participation in M3 and M4 muscarinic receptor function. Auton Autacoid Pharmacol, 25 (3): 93-100. [PMID:15955028]

82. Ozenil M, Pacher K, Balber T, Vraka C, Roller A, Holzer W, Spreitzer H, Mitterhauser M, Wadsak W, Hacker M et al.. (2020) Enhanced arecoline derivatives as muscarinic acetylcholine receptor M1 ligands for potential application as PET radiotracers. Eur J Med Chem, 204: 112623. [PMID:32717485]

83. Pei XF, Gupta TH, Badio B, Padgett WL, Daly JW. (1998) 6beta-Acetoxynortropane: a potent muscarinic agonist with apparent selectivity toward M2-receptors. J Med Chem, 41 (12): 2047-55. [PMID:9622546]

84. Peralta EG, Ashkenazi A, Winslow JW, Ramachandran J, Capon DJ. (1988) Differential regulation of PI hydrolysis and adenylyl cyclase by muscarinic receptor subtypes. Nature, 334 (6181): 434-7. [PMID:2841607]

85. Peralta EG, Ashkenazi A, Winslow JW, Smith DH, Ramachandran J, Capon DJ. (1987) Distinct primary structures, ligand-binding properties and tissue-specific expression of four human muscarinic acetylcholine receptors. EMBO J, 6 (13): 3923-9. [PMID:3443095]

86. Pfeiffer A, Rochlitz H, Noelke B, Tacke R, Moser U, Mutschler E, Lambrecht G. (1990) Muscarinic receptors mediating acid secretion in isolated rat gastric parietal cells are of M3 type. Gastroenterology, 98 (1): 218-22. [PMID:2293581]

87. Post MJ, Te Biesebeek JD, Doods HN, Wemer J, Van Rooji HH, Porsius AJ. (1991) Functional characterization of the muscarinic receptor in rat lungs. Eur J Pharmacol, 202 (1): 67-72. [PMID:1723953]

88. Powers AS, Pham V, Burger WAC, Thompson G, Laloudakis Y, Barnes NW, Sexton PM, Paul SM, Christopoulos A, Thal DM et al.. (2023) Structural basis of efficacy-driven ligand selectivity at GPCRs. Nat Chem Biol, 19 (7): 805-814. [PMID:36782010]

89. Prat M, Buil MA, Fernández MD, Castro J, Monleón JM, Tort L, Casals G, Ferrer M, Huerta JM, Espinosa S et al.. (2011) Discovery of novel quaternary ammonium derivatives of (3R)-quinuclidinyl carbamates as potent and long acting muscarinic antagonists. Bioorg Med Chem Lett, 21 (11): 3457-61. [PMID:21524581]

90. Prat M, Fernández D, Buil MA, Crespo MI, Casals G, Ferrer M, Tort L, Castro J, Monleón JM, Gavaldà A et al.. (2009) Discovery of novel quaternary ammonium derivatives of (3R)-quinuclidinol esters as potent and long-acting muscarinic antagonists with potential for minimal systemic exposure after inhaled administration: identification of (3R)-3-{[hydroxy(di-2-thienyl)acetyl]oxy}-1-(3-phenoxypropyl)-1-azoniabicyclo[2.2.2]octane bromide (aclidinium bromide). J Med Chem, 52 (16): 5076-92. [PMID:19653626]

91. Preiksaitis HG, Krysiak PS, Chrones T, Rajgopal V, Laurier LG. (2000) Pharmacological and molecular characterization of muscarinic receptor subtypes in human esophageal smooth muscle. J Pharmacol Exp Ther, 295 (3): 879-88. [PMID:11082420]

92. Pönicke K, Heinroth-Hoffmann I, Brodde OE. (2003) Demonstration of functional M3-muscarinic receptors in ventricular cardiomyocytes of adult rats. Br J Pharmacol, 138 (1): 156-60. [PMID:12522085]

93. Renuka TR, Robinson R, Paulose CS. (2006) Increased insulin secretion by muscarinic M1 and M3 receptor function from rat pancreatic islets in vitro. Neurochem Res, 31 (3): 313-20. [PMID:16733808]

94. Richards MH, van Giersbergen PL. (1995) Human muscarinic receptors expressed in A9L and CHO cells: activation by full and partial agonists. Br J Pharmacol, 114 (6): 1241-9. [PMID:7620715]

95. Rosenblum K, Futter M, Jones M, Hulme EC, Bliss TV. (2000) ERKI/II regulation by the muscarinic acetylcholine receptors in neurons. J Neurosci, 20 (3): 977-85. [PMID:10648702]

96. Salmon M, Luttmann MA, Foley JJ, Buckley PT, Schmidt DB, Burman M, Webb EF, DeHaas CJ, Kotzer CJ, Barrett VJ et al.. (2013) Pharmacological characterization of GSK573719 (umeclidinium): a novel, long-acting, inhaled antagonist of the muscarinic cholinergic receptors for treatment of pulmonary diseases. J Pharmacol Exp Ther, 345 (2): 260-70. [PMID:23435542]

97. Schrage R, Holze J, Klöckner J, Balkow A, Klause AS, Schmitz AL, De Amici M, Kostenis E, Tränkle C, Holzgrabe U et al.. (2014) New insight into active muscarinic receptors with the novel radioagonist [³H]iperoxo. Biochem Pharmacol, 90 (3): 307-19. [PMID:24863257]

98. Sheffler DJ, Williams R, Bridges TM, Xiang Z, Kane AS, Byun NE, Jadhav S, Mock MM, Zheng F, Lewis LM et al.. (2009) A novel selective muscarinic acetylcholine receptor subtype 1 antagonist reduces seizures without impairing hippocampus-dependent learning. Mol Pharmacol, 76 (2): 356-68. [PMID:19407080]

99. Shida T, Tokunaga A, Kondo E, Ueda Y, Ohno K, Saika T, Kiyama H, Tohyama M. (1993) Expression of muscarinic and nicotinic receptor mRNA in the salivary gland of rats: a study by in situ hybridization histochemistry. Brain Res Mol Brain Res, 17 (3-4): 335-9. [PMID:8510505]

100. Sinha S, Gupta S, Malhotra S, Krishna NS, Meru AV, Babu V, Bansal V, Garg M, Kumar N, Chugh A et al.. (2010) AE9C90CB: a novel, bladder-selective muscarinic receptor antagonist for the treatment of overactive bladder. Br J Pharmacol, 160 (5): 1119-27. [PMID:20590605]

101. Smith CM, Wallis RM. (1997) Characterisation of [3H]-darifenacin as a novel radioligand for the study of muscarinic M3 receptors. J Recept Signal Transduct Res, 17 (1-3): 177-84. [PMID:9029489]

102. Stanton T, Bolden-Watson C, Cusack B, Richelson E. (1993) Antagonism of the five cloned human muscarinic cholinergic receptors expressed in CHO-K1 cells by antidepressants and antihistaminics. Biochem Pharmacol, 45 (11): 2352-4. [PMID:8100134]

103. Stengel PW, Cohen ML. (2002) Muscarinic receptor knockout mice: role of muscarinic acetylcholine receptors M(2), M(3), and M(4) in carbamylcholine-induced gallbladder contractility. J Pharmacol Exp Ther, 301 (2): 643-50. [PMID:11961069]

104. Stengel PW, Yamada M, Wess J, Cohen ML. (2002) M(3)-receptor knockout mice: muscarinic receptor function in atria, stomach fundus, urinary bladder, and trachea. Am J Physiol Regul Integr Comp Physiol, 282 (5): R1443-9. [PMID:11959688]

105. Stocks MJ, Alcaraz L, Bailey A, Bowers K, Donald D, Edwards H, Hunt F, Kindon N, Pairaudeau G, Theaker J et al.. (2010) The discovery of new spirocyclic muscarinic M3 antagonists. Bioorg Med Chem Lett, 20 (24): 7458-61. [PMID:21036043]

106. Struckmann N, Schwering S, Wiegand S, Gschnell A, Yamada M, Kummer W, Wess J, Haberberger RV. (2003) Role of muscarinic receptor subtypes in the constriction of peripheral airways: studies on receptor-deficient mice. Mol Pharmacol, 64 (6): 1444-51. [PMID:14645675]

107. Sykes DA, Dowling MR, Leighton-Davies J, Kent TC, Fawcett L, Renard E, Trifilieff A, Charlton SJ. (2012) The Influence of receptor kinetics on the onset and duration of action and the therapeutic index of NVA237 and tiotropium. J Pharmacol Exp Ther, 343 (2): 520-8. [PMID:22854200]

108. Tanis SP, Plewe MB, Johnson TW, Butler SL, Dalvie D, DeLisle D, Dress KR, Hu Q, Huang B, Kuehler JE et al.. (2010) Azaindole N-methyl hydroxamic acids as HIV-1 integrase inhibitors-II. The impact of physicochemical properties on ADME and PK. Bioorg Med Chem Lett, 20 (24): 7429-34. [PMID:21036042]

109. Tobin G, Giglio D, Götrick B. (2002) Studies of muscarinic receptor subtypes in salivary gland function in anaesthetized rats. Auton Neurosci, 100 (1-2): 1-9. [PMID:12422954]

110. Tseng J, Erbe CB, Kwitek AE, Jacob HJ, Popper P, Wackym PA. (2002) Radiation hybrid mapping of five muscarinic acetylcholine receptor subtype genes in Rattus norvegicus. Hear Res, 174 (1-2): 86-92. [PMID:12433399]

111. Tyagi S, Tyagi P, Van-le S, Yoshimura N, Chancellor MB, de Miguel F. (2006) Qualitative and quantitative expression profile of muscarinic receptors in human urothelium and detrusor. J Urol, 176 (4 Pt 1): 1673-8. [PMID:16952712]

112. Vilaró MT, Palacios JM, Mengod G. (1994) Multiplicity of muscarinic autoreceptor subtypes? Comparison of the distribution of cholinergic cells and cells containing mRNA for five subtypes of muscarinic receptors in the rat brain. Brain Res Mol Brain Res, 21 (1-2): 30-46. [PMID:8164520]

113. Wackym PA, Chen CT, Ishiyama A, Pettis RM, López IA, Hoffman L. (1996) Muscarinic acetylcholine receptor subtype mRNAs in the human and rat vestibular periphery. Cell Biol Int, 20 (3): 187-92. [PMID:8673067]

114. Waelbroeck M, De Neef P, Domenach V, Vandermeers-Piret MC, Vandermeers A. (1996) Binding of the labelled muscarinic toxin 125I-MT1 to rat brain muscarinic M1 receptors. Eur J Pharmacol, 305 (1-3): 187-92. [PMID:8813552]

115. Wang SZ, el-Fakahany EE. (1993) Application of transfected cell lines in studies of functional receptor subtype selectivity of muscarinic agonists. J Pharmacol Exp Ther, 266 (1): 237-43. [PMID:7687290]

116. Wang SZ, Lee SY, Zhu SZ, el-Fakahany EE. (1996) Differential coupling of m1, m3, and m5 muscarinic receptors to activation of neuronal nitric oxide synthase. Pharmacology, 53 (5): 271-80. [PMID:8990485]

117. Watson J, Brough S, Coldwell MC, Gager T, Ho M, Hunter AJ, Jerman J, Middlemiss DN, Riley GJ, Brown AM. (1998) Functional effects of the muscarinic receptor agonist, xanomeline, at 5-HT1 and 5-HT2 receptors. Br J Pharmacol, 125 (7): 1413-20. [PMID:9884068]

118. Watson N, Daniels DV, Ford AP, Eglen RM, Hegde SS. (1999) Comparative pharmacology of recombinant human M3 and M5 muscarinic receptors expressed in CHO-K1 cells. Br J Pharmacol, 127 (2): 590-6. [PMID:10385263]

119. Weber S, Thiele H, Mir S, Toliat MR, Sozeri B, Reutter H, Draaken M, Ludwig M, Altmüller J, Frommolt P et al.. (2011) Muscarinic Acetylcholine Receptor M3 Mutation Causes Urinary Bladder Disease and a Prune-Belly-like Syndrome. Am J Hum Genet, 89 (5): 668-74. [PMID:22077972]

120. Wess J. (2003) Novel insights into muscarinic acetylcholine receptor function using gene targeting technology. Trends Pharmacol Sci, 24 (8): 414-20. [PMID:12915051]

121. Wess J. (2004) Muscarinic acetylcholine receptor knockout mice: novel phenotypes and clinical implications. Annu Rev Pharmacol Toxicol, 44: 423-50. [PMID:14744253]

122. Wess J, Duttaroy A, Zhang W, Gomeza J, Cui Y, Miyakawa T, Bymaster FP, McKinzie L, Felder CC, Lamping KG et al.. (2003) M1-M5 muscarinic receptor knockout mice as novel tools to study the physiological roles of the muscarinic cholinergic system. Recept Channels, 9 (4): 279-90. [PMID:12893539]

123. Wess J, Lambrecht G, Mutschler E, Brann MR, Dörje F. (1991) Selectivity profile of the novel muscarinic antagonist UH-AH 37 determined by the use of cloned receptors and isolated tissue preparations. Br J Pharmacol, 102 (1): 246-50. [PMID:2043926]

124. Widzowski DV, Bialobok P, Kucera KE, Mihut R, Sitar S, Knowles M, Stagnitto M, Howell A, McCreedy S, Machulskis A, Gordon J, Marler M, Wu ESC, Mullen G, Triggle DJ, Blosser J. (1997) Development of a pharmacological target profile for muscarinic agonists. Drug Development Research, 40: 117-132.

125. Willmy-Matthes P, Leineweber K, Wangemann T, Silber RE, Brodde OE. (2003) Existence of functional M3-muscarinic receptors in the human heart. Naunyn Schmiedebergs Arch Pharmacol, 368 (4): 316-9. [PMID:14520506]

126. Wood MD, Murkitt KL, Ho M, Watson JM, Brown F, Hunter AJ, Middlemiss DN. (1999) Functional comparison of muscarinic partial agonists at muscarinic receptor subtypes hM1, hM2, hM3, hM4 and hM5 using microphysiometry. Br J Pharmacol, 126 (7): 1620-4. [PMID:10323594]

127. Xie G, Drachenberg C, Yamada M, Wess J, Raufman JP. (2005) Cholinergic agonist-induced pepsinogen secretion from murine gastric chief cells is mediated by M1 and M3 muscarinic receptors. Am J Physiol Gastrointest Liver Physiol, 289 (3): G521-9. [PMID:15933222]

128. Yamada M, Miyakawa T, Duttaroy A, Yamanaka A, Moriguchi T, Makita R, Ogawa M, Chou CJ, Xia B, Crawley JN et al.. (2001) Mice lacking the M3 muscarinic acetylcholine receptor are hypophagic and lean. Nature, 410 (6825): 207-12. [PMID:11242080]

129. Yamashita Y, Tanaka K, Asano T, Yamakawa N, Kobayashi D, Ishihara T, Hanaya K, Shoji M, Sugai T, Wada M et al.. (2014) Synthesis and biological comparison of enantiomers of mepenzolate bromide, a muscarinic receptor antagonist with bronchodilatory and anti-inflammatory activities. Bioorg Med Chem, 22 (13): 3488-97. [PMID:24844758]

130. Yasuda RP, Ciesla W, Flores LR, Wall SJ, Li M, Satkus SA, Weisstein JS, Spagnola BV, Wolfe BB. (1993) Development of antisera selective for m4 and m5 muscarinic cholinergic receptors: distribution of m4 and m5 receptors in rat brain. Mol Pharmacol, 43 (2): 149-57. [PMID:8429821]

131. Zawalich WS, Zawalich KC, Tesz GJ, Taketo MM, Sterpka J, Philbrick W, Matsui M. (2004) Effects of muscarinic receptor type 3 knockout on mouse islet secretory responses. Biochem Biophys Res Commun, 315 (4): 872-6. [PMID:14985093]

132. Zhang W, Yamada M, Gomeza J, Basile AS, Wess J. (2002) Multiple muscarinic acetylcholine receptor subtypes modulate striatal dopamine release, as studied with M1-M5 muscarinic receptor knock-out mice. J Neurosci, 22 (15): 6347-52. [PMID:12151512]

133. Zhang X, Hernandez MR, Yang H, Erickson K. (1995) Expression of muscarinic receptor subtype mRNA in the human ciliary muscle. Invest Ophthalmol Vis Sci, 36 (8): 1645-57. [PMID:7541396]

Contributors

Show »

How to cite this page